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Abstract

In this paper, we propose a novel multi-atlas based longitudinal label fusion method with temporal 

sparse representation technique to segment hippocampi at all time points simultaneously. First, we 

use groupwise longitudinal registration to simultaneously (1) estimate a group-mean image of a 

subject image sequence and (2) register its all time-point images to the estimated group-mean 

image consistently over time. Then, by registering all atlases with the group-mean image, we can 

align all atlases longitudinally consistently to each time point of the subject image sequence. 

Finally, we propose a longitudinal label fusion method to propagate all atlas labels to the subject 

image sequence by simultaneously labeling a set of temporally-corresponded voxels with a 

temporal consistency constraint on sparse representation. Experimental results demonstrate that 

our proposed method can achieve more accurate and consistent hippocampus segmentation than 

the state-of-the-art counterpart methods.

1 Introduction

The hippocampus plays a crucial role in memory and spatial navigation function of brain 

[1]. The structural change of hippocampus over time is highly related to many 

neurodegenerative diseases, such as Alzheimer's disease (AD). As a characteristic feature of 

AD, hippocampal atrophy is considered as a potential biomarker for the diagnosis and 

assessment of AD in magnetic resonance (MR) imaging based neuro-science studies [2, 3]. 

In order to measure the hippocampal atrophy over time, accurate quantization of 

hippocampal volumes from serial structural three-dimensional (3D) MR images is required. 

To this end, it is important to accurately and temporally consistently segment four-

dimensional (3D+t) hippocampus from longitudinal structural MR images.

Many automatic segmentation methods have been proposed to segment 3D hippocampus 

independently from MR images of different time points [4–8]. In this case, hippocampus 
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segmentation from longitudinal MR images is decomposed into a series of separate 

hippocampus segmentation from each 3D MR image. However, due to various reasons such 

as variant noises and hippocampal tissue contrast in the acquired longitudinal MR images, 

3D segmentation methods, when applied to longitudinal MR images, have limited temporal 

consistency for segmented longitudinal hippocampi. To improve segmentation consistency 

from longitudinal MR images, several longitudinal segmentation methods have been 

proposed [9–12]. Wolz et al. [9] proposed a 4D graph-cut based method to simultaneously 

segment longitudinal MR images. By using a 4D graph to represent longitudinal MR data, 

the method segmented MR images at all time points by solving the min-cut/max-flow 

problem on the 4D graph. Chincarini et al. [12] presented a hippocampal segmentation 

method by integrating longitudinal information. They implemented longitudinal analysis 

with four progressive steps, and addressed the impact of these steps on longitudinal 

performance of hippocampal volume measurements for early detection of AD. However, due 

to large variance of noise level and intensity bias field across different time points in the 

longitudinal MR images, consistent hippocampus segmentation of serial MR images remains 

a challenging problem.

Accordingly, in this paper, we propose a 3D+t hippocampus segmentation method for 

longitudinal MR brain images, by integrating temporal sparse representation within the 

multi-atlas patch-based label fusion framework. First, we use the groupwise longitudinal 

image registration toolbox (GLIRT) [13] to simultaneously (1) estimate a subject-specific 

group-mean image and (2) register all time-point images of subject image sequence 

consistently to the estimated group-mean image. Then, by registering all atlas images to the 

estimated group-mean image, we can align all atlases longitudinally consistently to each 

time point of the subject image sequence. Thus, given the temporal correspondence in 

subject image sequence, we can form a 3D+t image patch at each location of subject brain. 

Then, we can use temporal sparse representation technique to simultaneously determine 

labels for all time points of the subject image sequence by propagating labels from all 

aligned atlas images. Experimental results on both simulated and real longitudinal MR 

images demonstrate that our proposed method can achieve more accurate and consistent 

hippocampus segmentation than the state-of-the-art multi-atlas label fusion methods, which 

often apply label fusion for each time point independently.

2 Method

Before describing our method in detail, we first introduce some mathematical descriptions. 

First, a longitudinal subject image sequence (also namely 3D+t subject image) is denoted as 

{T′t}t = 1
N , where T′t is a 3D image at time point t(t ∈ {1, …, N}). Then, M 3D atlas images 

are denoted as I′(1), …, I′(M) with their corresponding hippocampal label images denoted as 

L′(1), …,L′(M). So, our goal is to segment 3D+t subject image, i.e., to automatically 

estimate a hippocampal label image sequence {L′t}t = 1
N  corresponding to the 3D+t subject 

image {T′t}t = 1
N  as illustrated in Fig. 1, where L′t denotes a 3D subject label image at time 

point t(t ∈ {1, …, N}).
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2.1 Temporal Sparse Representation

Unbiased Groupwise Registration—The first step in our method is to estimate 

temporal correspondences along different time points of the subject image sequence. Here, 

we use GLIRT [13] to achieve this goal. Unlike other pairwise registration methods, which 

need choose a reference template, the groupwise registration is free of template selection, 

and can thus build an unbiased subject-specific group-mean image and simultaneously 

register all time-point images to this group-mean image. Assuming {φ′t}t = 1
N  as the 

deformation fields for N time points, the original 3D+t subject image {T′t}t = 1
N  can be 

transformed to the group-mean image space as {T′t}t = 1
N , which is illustrated in Fig. 1. Here, 

Tt = φ′t(T′t) ..

Furthermore, all 3D atlas images are registered to the estimated group-mean image, first by 

affine registration [14] with 12 degrees of freedom and then by deformable registration [15]. 

By following the same estimated affine transformation matrix and deformation field, the 

corresponding 3D hippocampal label image of each atlas can be also registered to the 

estimated group-mean image space. As shown in Fig. 1, I(1), …, I(M) and L(1), …, L(M) 

denote the M aligned 3D atlas images and their corresponding aligned 3D label images in 

the estimated group-mean image space, respectively.

Temporal Sparse Patch-Based Representation—For each voxel x in the group-mean 

image, its 3D+t subject patch can be extracted as {α(x, t)}t = 1
N , where α(x,t) represents a 3D 

patch centered at voxel x of the aligned 3D+t subject image at time point t. Let n(x) denote a 

spatial neighborhood of x. All candidate atlas patches within the search neighborhood n(x) 

of the aligned atlas images {I(m)}m = 1
M

 are denoted as { βz
(m) z ∈ n(x), m = 1, …, M}, along 

with their corresponding center voxel labels { lz
(m) z ∈ n(x), m = 1, …, M}. The total number 

of atlas patches { βz
(m) z ∈ n(x), m = 1, …, M} used to label the 3D+t subject patch 

{α(x, t)}t = 1
N  is Q = M × |n(x)|, where |n(x)| denotes the cardinality of n(x).

After rearranging βz
(m) and α(x,t) into a d-dimensional column vector bz

(m) and a(x,t), 

respectively, where d is the number of voxels in each 3D patch, our temporal sparse 

representation can be formulated as a problem of finding optimal sparse representation for 

the 3D+t subject patch vector {a(x, t)}t = 1
N  by using all atlas patch vectors {bz

(m)}
m = 1
M

 as 

follows [6]:
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{w(x, t)}t = 1
N = arg min

{w(x, t)}t = 1
N

1
2 ∑t = 1

N Bxw(x, t) − a(x, t) 2
2 + λ1∑t = 1

N w(x, t) 1

+ λ2∑t = 1
N − 1 w(x, t) − w(x, t + 1) 1 s . t . w(x, t) ≥ 0, ∀t = 1, …, N

(1)

where Bx ∈ ℛd×Q denotes a dictionary matrix constructed by arranging {bz
(m)}

m = 1
M

 column 

by column, w(x,t) ∈ ℛQ denotes a weight vector by arranging all non-negative weights 

{ w(x, t), z
(m) w(x, t), z

(m) ≥ 0, z ∈ n(x), m = 1, …, M} into a column vector, and w(x, t), z
(m)  is the 

representation coefficient of the patch vector bz
(m) of the m-th atlas image in constructing the 

patch vector a(x,t) of the subject image at time point t. The first term in Eq. (1) is the 

reconstruction discrepancy. The second term, which is equivalent to the ℓ1-norm, enforces 

sparsity in w(x,t). The third term is the temporal fused smoothness term, used to constrain the 

temporal consistency of two successive sparse representation vectors (w(x,t) and w(x,t+1)).λ1 

and λ2 are the two weighting parameters used to balance the contributions from the second 

and third terms. The objective function in Eq. (1) can be solved by the fast proximal gradient 

method [16].

2.2 Multi-Atlas Based Label Fusion with Temporal Sparse Representation

Once the temporal sparse code {w(x, t)}t = 1
N  is estimated by solving the optimization problem 

in Eq. (1), the label at the voxel (x, t) of the aligned subject image Tt can be obtained by the 

multi-atlas based label fusion method by combining the center voxel labels { lz
(m) z ∈ n(x), m 

= 1, …, M} using the estimated temporal sparse code {w(x, t)}t = 1
N .

By following the same order of the dictionary matrix Bx, { lz
(m) z ∈ n(x), m = 1, …, M} is 

constructed as a label vector lx(lx ∈ ℛ1×Q). Supposing there are P possible labels {L1, …, 

Lp, …,LP} in the atlases, the label at the voxel (x, t) of the aligned subject image Tt can be 

determined by:

L(x, t) = arg minLp, p = 1, …, P ∑ j = 1
Q w(x, t), j ⋅ δ(lx, j, Lp) , ∀t = 1, …, N (2)

where ŵ(x,t),j and lx,j are the j-th components of ŵ(x,t) and lx, respectively, and the function 

δ{lx,j, Lp) is equal to 1 if lx,j = Lp and 0 otherwise.
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After determining the label L̂(x,t) at each voxel (x, t) of aligned 3D+t subject image {Tt}t = 1
N , 

the aligned 3D+t subject label image {Lt}t = 1
N  in the group-mean image space can be 

obtained. Then, we can obtain the 3D+t subject label image {L′t}t = 1
N  corresponding to the 

input 3D+t subject image {T′t}t = 1
N  by transforming {Lt}t = 1

N  back to the subject image space 

by following L′t = φt
′ − 1(Lt), where φt

′ − 1 is the inverse transformation field of φt′.

3 Experimental Results

In this section, we evaluate our proposed longitudinal (3D+t) hippocampus segmentation 

method on both simulated and real longitudinal MR brain image datasets. Specifically, 10 

subjects with simulated atrophy in hippocampi, and 12 subjects with each subject having 

three MR images acquired at three time points in the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (http://www.adni-info.org/) are used, respectively. All the images 

in both datasets are the T1-weighted MR images, which are processed to have the same size 

and same resolution of 256 × 256 × 256 and 1 × 1 × 1 mm3, respectively. The proposed 

method is compared to two state-of-the-art label fusion methods, namely nonlocal patch-

based method (Non-local) [5] and sparse patch-based method (SPBM) [6]. To be fair, a 

similar unbiased groupwise registration is applied to the two comparison methods. That is, 

subject image is registered to the estimated group-mean image of subject image sequence by 

GLIRT, and all atlases are registered to the estimated group-mean image sequentially by 

affine registration and deformable registration. The final segmentations are evaluated in each 

subject's own space. In the following experiments, the patch size and search neighborhood 

size are both set to 3 × 3 × 3, and the regularization coefficients λ1 and λ2 are both set to 

0.001.

3.1 Experiments on Simulated Dataset

In the simulation experiments, 10 subjects with manual hippocampal labels at year 1 are 

used as the baseline data (t = 1), and then used to simulate atrophy on the hippocampi. Each 

subject is simulated with three longitudinal MR images, where images at year 2 (t = 2) and 

year 3 (t = 3) are generated by an atrophy simulation model [17] to ensure shrinking 

hippocampal volumes along the temporal dimension. Thus, ten sets of simulated 

longitudinal data with about 5% of annual hippocampal volume shrinking are obtained. The 

total simulated atrophy rate of hippocampus in three years is 9:15%.

A leave-one-out strategy on the total 10 simulated subjects is adopted to compare the 

segmentation performances of Non-local, SPBM, and our proposed method. Specifically, in 

each leave-one-out experiment, one subject is selected as 3D+t subject image, and the rest 9 

subjects are selected as 3D atlases (27 atlases in total). For both Non-local and SPBM 

methods, three time-point images in the 3D+t subject image are segmented independently. 

The mean and standard deviation of Dice ratios are shown in Table 1. We can observe that 

our proposed method receives significant improvement over both Non-local and SPBM 

methods in terms of Dice ratio according to the paired t-test (p < 0:05). Thus, our proposed 

method achieves the best segmentation accuracy.
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Figure 2(a) shows the curves of the longitudinal loss of overall hippocampus volume in a 

typical subject by Non-local, SPBM, and our method. Figure 2(b) shows the averaged loss of 

overall hippocampus volume estimated by these three methods. The final estimated mean 

and standard deviation of loss of overall hippocampus volume is 11:84% ± 1:63% by Non-

local, 12:31% ± 1:57% by SPBM, and 10:87% ± 1:21% by the proposed method. We can 

see that our proposed method is the closest to the ground truth, and also the most consistent 

in measuring longitudinal hippocampal volume changes, due to the use of temporal 

consistency constraint on sparse representation of multi-atlas based label fusion.

3.2 Experiments on Real Dataset

In the real experiments, we randomly select 12 subjects with each having 3 time points 

(baseline, 6 and 12 months) from ADNI dataset. The hippocampi of these MR images have 

been manually labeled, which are regarded as ground truth.

We also adopt a leave-one-out strategy on the total 12 real subjects for experiments of 

hippocampus segmentation. The mean and standard deviation of Dice ratios and also the 

average symmetric surface distance (ASSD) of the hippocampus segmentation results by 

Non-local, SPBM, and our proposed method are shown in Table 2. We can observe that our 

proposed method achieves significant improvement over Non-local and SPBM methods in 

terms of both Dice ratio and ASSD according to the pair t-test (p < 0.05). Figure 3 shows the 

surface distances of the left hippocampus for a typical subject, between manual 

segmentations and automatic segmentations by Non-local, SPBM, and our proposed method. 

It is obvious that our proposed 3D+t hippocampus segmentation method achieves the best 

segmentation performance.

4 Conclusion

In this paper, we proposed an integrated temporal sparse representation and multi-atlas 
patch-based label fusion method for longitudinal (3D+t) hippocampus segmentation in the 

longitudinal MR images. To make the registration at different time points consistent to the 

subsequent data analysis, we registered the 3D+t subject image and all atlases to the group-

mean image of 3D+t subject image by using GLIRT. Moreover, to respect the smooth 

change of longitudinal structure (i.e., hippocampus), we added a temporal fused smoothness 

term to the objective function of sparse representation, for enforcing small difference 

between two successive sparse representation vectors from adjacent time points. 

Experimental results demonstrated the improved segmentation accuracy and longitudinal 

consistency by our proposed method, compared to both Non-local and SPBM methods.
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Fig. 1. 
Schematic diagram of the proposed 3D+t hippocampus segmentation method.
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Fig. 2. 
Demonstration of loss of overall hippocampus volume through 3 time points. (a) Loss of 

longitudinal hippocampus volume for a typical subject, and (b) average loss of longitudinal 

hippocampus volumes for all subjects.
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Fig. 3. 
Visualization of surface distances (in mm) for hippocampus segmentation results by three 

methods.
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Table 1

Mean and standard deviation of Dice ratio in hippocampus segmentation on simulated atrophy data (Unit: %).

Method Left hippo Right hippo Overall

Non-local 81.27 ± 1.98 80.08 ± 2.82 80.69 ± 2.12

SPBM 80.80 ± 1.71 79.55 ± 2.43 80.19 ± 1.76

Proposed 82.71 ± 1.51* 81.86 ± 2.44* 82.30 ± 1.76*

*
Indicates significant improvement over Non-local and SPBM methods (p < 0.05)
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Table 2

Mean and standard deviation of Dice ratios and the average symmetric surface distance (ASSD) for automatic 

segmentations by Non-local, SPBM, and our proposed method.

Method Left hippo Right hippo Overall

Dice ratio (%) Non-local 83.53 ± 2.99 82.37 ± 4.02 82.93 ± 2.97

SPBM 82.32 ± 3.83 82.32 ± 2.64 82.31 ± 2.87

Proposed 84.85 ± 2.30* 84.29 ± 2.34* 84.55 ± 2.22*

ASSD (mm) Non-local 0.497 ± 0.072 0.524 ± 0.098 0.512 ± 0.067

SPBM 0.520 ± 0.096 0.509 ± 0.057 0.515 ± 0.066

Proposed 0.455 ± 0.049* 0.476 ± 0.063* 0.466 ± 0.053*

*
Indicates significant improvement over Non-local and SPBM methods (p < 0.05)
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