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Abstract. Magnetic Resonance Imaging (MRI) has become one of the most 
used techniques in research and clinical settings. One of the limiting factors of 
the MRI is the relatively low resolution for some applications. Although new 
high resolution MR sequences have been proposed recently, usually these ac-
quisitions require long scanning times which is not always possible neither de-
sirable. Recently, superresolution techniques have been proposed to alleviate 
this problem by inferring the underlying high resolution images from low reso-
lution acquisitions. We present a new superresolution technique that takes bene-
fit from the self-similarity properties of the images and the use of a high resolu-
tion image library. The proposed method is compared with related state-of-the-
art methods showing a significant reconstruction improvement. Finally, we 
show the advantage of the proposed framework compared to classic interpola-
tion when used for segmentation of hippocampus subfields. 

1 Introduction 

Magnetic resonance imaging (MRI) is a valuable tool in the study of many brain dys-
functions for different areas such as neurology and psychiatry. For instance, MRI 
enables to investigate specific structures such as the hippocampus. This structure is 
known to be an important biomarker for several pathologies like Alzheimer's disease 
[1]. However, the study of specific areas such as the hippocampus requires high-
resolution images difficult to obtain in clinical practice. Interpolation based methods 
[2] have been used in the past to increase the apparent resolution. However, these 
techniques do not provide new information but just produce blurred versions of the 
corresponding high resolution images. The application of super-resolution techniques 
has demonstrated to improve image quality in MRI [3]. Nevertheless, these methods 
are usually based on multiple low-resolution acquisitions with small shifts that results 
in additional time and thus can be a limiting factor in clinical environments. Recently, 
single MRI superresolution techniques have emerged as an efficient and accurate way 
to improve image resolution [4,5]. These methods are often based on a nonlocal 
means framework [6] taking advantage of the intra-image pattern redundancy. 



Manjón et al. presented a method called Non-local Upsampling [4] that improved 
effectively the image resolution by using a constrained reconstruction process based 
on image regularity and inter-scale coherence constraints to produced physically plau-
sible results. Coupe et al. [7] further extended this method by using a local adaptive 
regularization that made the process more efficient and accurate. 

In this work we propose an extension of Local Adaptive SR (LASR) method [7] 
that uses an external HR image library to take advantage from the intra and inter-
image pattern redundancy at the same time. The method is compared to related state-
of- the-art methods and the impact of SR on hippocampus subfield segmentation is 
also evaluated. 

2 Material and Methods 

As described in [4], MRI low resolution (LR) image voxels y can be related to the 
corresponding underlying high resolution (HR) voxels x through a simple degradation 
model: 

 𝑦 = 𝐷𝐻𝑥 + 𝑛 (1) 
 
where D is a decimation operator (defined as taking each Lth value starting from 

zero in each dimension), H is the convolution matrix (modeled as a 3D boxcar func-
tion), x is the underlying HR data, and n is random noise [4]. Therefore, the aim of 
any superresolution method is to infer the HR xi values within each y LR voxel using 
some internal or external image information together with some reconstruction con-
straints. 

2.1 Non-local Upsampling  

In [4], the authors presented the Non-local Upsampling method. This SR method is 
able to infer a HR image by taking benefit of the self-similarity properties on the MR 
images. The SR method proposed in this paper is an improvement of this method that 
improves the HR image reconstruction by using a library of HR images. Briefly, Non-
local Upsampling method infers the HR image iteratively by alternating two steps: 1) 
regularization and 2) mean correction.  
 
First, the regularization consist of the application of a 3D non-local means filter 
which enforces the regularity of the image by estimating the value of each voxel as a 
weighted average of nearby voxels by using their patch similarity (see eq. 2 and 3). 
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Where 𝑥!!  is the voxel located at the position p of the actual image at iteration t, w 

measures the similarity between 𝑁(𝑥!!) and 𝑁(𝑥!!), the patches around voxels p and q, 
Ω is a restricted search volume surrounding the voxel being processed, Cp is a nor-
malization constant, h is a filtering parameter related to the degree of smoothing and 
N is the number of voxels in each patch. Eq. (3) shows how the similarity between 
patches is estimated by preselecting patches with similar mean values µμ!! . 
 
Second, after the regularization step a mean correction step is necessary to enforce the 
inter-scale coherence (i.e. downsampled version of the inferred HR image has to be 
equal than the original LR image). To do so, Eq. (4) is applied.  
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where S is a downsampling operator that transforms actual reconstructed HR data to 
the original LR scale and NN is a nearest neighbor interpolation operation that inter-
polates LR data to HR scale. Due to the presence of noise, the constraint expressed in 
(4) cannot be directly used. To simplify the problem, LR data is first denoised using a 
non-local means filter [8] so the inter-scale constrain can be roughly met. For more 
details on the Non-Local Upsampling method, we refer the reader to the original pa-
per [4]. This process (regularization-correction) is repeated iteratively using decreas-
ing values of the filter parameter h until no significant differences are found. 

2.2 Library-based Non-local Upsampling  

One of the main limitations of the Non-Local Upsampling method is the fact that only 
the information contained within the image itself is taken into account while inter-
image pattern redundancy could be useful as shown in [5]. 
  

In this paper, we extend the Non-Local Upsampling method by using a library of 
HR images that have the resolution desired after upsampling. Therefore, the training 
images and the image under study have to be preprocessed in a similar way. The steps 
included in this preprocessing are the following: 1) Denoising: The Spatially Adaptive 
Non-local Means (see [8]) Filter was applied to reduce the noise in the images. This 
filter is chosen because it is able to automatically consider stationary and spatially 
varying noise levels. 2) Inhomogeneity correction: The N4 bias field correction [9] 
was applied to correct intensity inhomogeneities across the image. 3) MNI space af-
fine registration: The images are linearly registered to the Montreal Neurological 



Institute (MNI) space using the MNI152 template. This was done using the Advanced 
Normalization Tools (ANTs) [10]. 4) Subvolume cropping: A cropping step is applied 
as the region of interest is significantly smaller than the image volume to reduce the 
computational burden of the method limiting the process to the area of interest. This 
step can be omitted if we are interested in the whole volume. 5) Subvolume Non-
linear registration: To achieve a better local anatomy matching between the target 
image and the image library the cropped volume of both (target and templates) is non-
linearly registered to the cropped MNI152 atlas. The non-linear registration was per-
formed using ANTs tool [10] using cross correlation similarity measure. 6) Intensity 
normalization: It is necessary to normalize the images in order to obtain the same 
intensity values across all subjects so similar patterns can be found among them by 
using an intensity based similarity metric. To this purpose, a simple mean and vari-
ance matching method was used so all the cases have the same mean and variance. 
This normalization needs only to be approximated since we will compensate any local 
difference during the reconstruction process as we will show later. 7) BSpline interpo-
lation: This step is done to produce the initial estimation (only for the case to be up-
sampled not for the library cases). 

Library-based Upsampling  
 
Once the library and the case to be upsampled are in the same geometric space and 

intensity range, we can apply the regularization-correction scheme but this time in-
cluding the HR image library in the process (see equation 5).  
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where K is the number of cases in the library, iqx , is the voxel q of the HR image I 

and pµ , qµ and iq ,µ are the mean value of a 3x3x3 voxel patch around voxels p , q 
and q,i. Note that x0 is initialized by BSpline interpolation.  

 
The main difference between equation 2 and 5 is the inclusion of a library of HR 

cases in the reconstruction process. While first term is aimed to regularize the image 
the second tries to bring new texture from proper examples in the library. To compen-
sate for the different mean values of the patches from the library the mean of every 
patch is subtracted so only high frequency information is transferred from the HR 
images to the reconstructed image. 



* Images obtained from http://cobralab.ca/atlases/Hippocampus 
 

2.3 Multiatlas non-local label fusion segmentation 

In order to measure the impact of the SR preprocessing on further image analysis, 
we decided to evaluate the ability of the SR to produce better segmentations. Specifi-
cally, we applied a recent non-local multi-atlas label fusion segmentation method that 
uses an adaptation of PatchMatch method called OPAL [11]. OPAL has an efficient 
strategy to find patch correspondences between two or more images, combines multi-
ple matches and performs late label fusion with different scales and features.  

3 Experiments and results 

For our experiments we used a public dataset consisting in 5 HR cases with their 
corresponding manual hippocampus subfield segmentations* [12]. Each case consists 
of T1- and T2-weighted images at 0.3 mm resolution.  

These images were preprocessed as described in the previous section. Specifically, 
the native 0.3 mm images were registered to MNI space at 0.5 mm resolution, 
cropped, non-linearly registered and intensity normalized. To increase the size of the 
library left hippocampus cropped images were mirrored so the final library consists of 
10 right hippocampus area images (10 for T1 and 10 for T2). We run two types of 
experiments: 

1. Reconstruction quality assessment: In this experiment, the HR images were 
downsampled to have 1 mm resolution and later upsampled with the different 
methods to assess their quality.  

2. Segmentation accuracy assessment: In this experiment, the different upsampling 
methods were evaluated in order to find out which was their impact on segmenta-
tion accuracy. 

3.1 Superresolution reconstruction image quality assessment  

For the first experiment, both T1 and T2 HR image libraries were used. A leave-two-
out was used by removing from the library both hippocampi (left and right) belonging 
to the case being evaluated. We upsampled the 1 mm LR images to 0.5 mm resolution 
using 3 different methods, classic BSpline interpolation,  LASR [7] and the proposed 
library-based SR method. Peak Signal to Noise Ratio (PSNR) was used to evaluate 
the results (tables 1and 2). 
 



 

Table 1. Upsampling PSNR results of the 10 T1 cases. Best results in bold.      . 

Method 
 Cases       

1 2 3 4 5 6 7 8 9 10 Avg. 

BSpline 26.06 27.22 30.98 28.46 28.83 27.69 29.26 29.06 28.27 26.83 28.27 

LASR  27.72 28.40 32.50 30.01 29.92 29.05 30.00 30.58 29.97 29.51 29.77 

Proposed 30.89 29.96 34.41 32.28 31.72 31.01 31.83 32.18 31.50 30.80 31.66 

 

Table 2. Upsampling PSNR results of the 10 T2 cases. Best results in bold.       

Method 
 Cases       

1 2 3 4 5 6 7 8 9 10 Avg. 

BSpline 29.95 30.13 29.64 29.38 30.23 29.82 31.12 30.47 29.31 29.54 29.96 

LASR  31.64 31.44 31.72 30.85 31.62 32.02 32.75 32.29 31.36 31.93 31.76 

Proposed 32.98 32.60 32.58 31.74 32.96 33.65 34.15 33.60 32.07 32.62 32.89 

 
As can be noticed the proposed method obtained the best results in all the cases for 

both T1 and T2 libraries. The improvement of the proposed method over LASR was 
found to be significant (p<0.001). In Figure 1, an example of the SR results with the 
different methods is shown. Regarding the processing times, BSpline interpolation 
took 1 second to process, LASR around 20 seconds and the proposed method 5 
minutes. 

 

Fig. 1. Example of T1 SR results with the different methods. Note that both LASR and the 
proposed method produced a clearly better reconstruction than BSpline result (less blurry and 
more regular). Differences between LASR and the proposed method were not so obvious to 
assess visually (for example the white matter layer between hippocampus head and amygdala is 
better recovered by the proposed method). 

3.2 Segmentation accuracy assessment 

For the second experiment, we evaluated the accuracy improvement for a segmenta-
tion task obtained with the different upsampling methods. OPAL segmentation algo-
rithm [11] was applied using default parameters to the original 10 HR T1 and T2 
images (used as reference) and to the different upsampled results using BSpline, 
LASR and the proposed method over the images downsampled with a factor 2. Again, 
a leave-two-out was used by removing from the library both hippocampi (left and 
right) belonging to the case being evaluated. We used the DICE coefficient [13] to 



 

measure the segmentation accuracy. In table 3 the segmentation results for the differ-
ent subfields and for the whole hippocampus are shown.   
 
Table 3. Segmentation results of the different methods compared (DICE). Best results in bold.       

Method 
 Cases    

T1 
HR 

T2 
HR 

T1 
BSpline 

T2 
BSpline 

T1 
LASR 

T2 
LASR 

T1  
Proposed 

T2  
Proposed 

CA1 0.6582 0.7031 0.6484 0.6826 0.6556 0.6935 0.6550 0.6958 

CA2\CA3 0.6725 0.6261 0.6608 0.6061 0.6669 0.6176 0.6681 0.6195 

CA4\DG 0.7035 0.7538 0.6932 0.7411 0.7020 0.7479 0.7019 0.7499 

SR\SL\SM 0.4964 0.5723 0.4623 0.5401 0.4864 0.5539 0.4888 0.5552 

Subiculum 0.5312 0.6154 0.5152 0.5830 0.5275 0.5980 0.5265 0.6013 

Avg. 0.6124 0.6541 0.5960 0.6306 0.6077 0.6422 0.6081 0.6443 

Whole 0.8752 0.8843 0.8701 0.8772 0.8742 0.8817 0.8738 0.8814 

 
As expected, best results were found when using the T2 library. More importantly, 

we can clearly see how both SR methods improved significantly the segmentation 
results for both T1 and T2 cases compared to interpolation results. The proposed 
method improved subfield segmentation but not the whole hippocampus segmenta-
tion. Probably, SR helped to recover small details useful for subfield segmentation but 
not relevant to higher scale structures like the whole hippocampus.  

4  Discussion 

In this paper we presented a new super-resolution method that takes benefit from 
the use of an external HR image library to better reconstruct HR images from their 
corresponding LR counterparts. While LASR method was able to improve the image 
quality using the information within the image in form of a smart regularization, the 
proposed method is able to further improve these results by adding external infor-
mation from similar examples in the library. More importantly, we have shown that 
both LASR and the proposed method are able to improve segmentation accuracy 
compared to simple BSpline interpolation and open the door to analyze retrospective 
LR data with a new insight. Although the improvement of the proposed method over 
LASR method is relatively small we have to note that we were using a small library 
(just 8 HR cases) and therefore we expect that using a larger library we will be able to 
represent more anatomical variability resulting in better results.          
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