
ar
X

iv
:1

60
3.

06
73

2v
1

 [c
s.

D
B

]
22

 M
ar

 2
01

6

Efficient Approximation of Well-Designed SPARQL Queries

Zhenyu Song
szyhw@tju.edu.cn

Zhiyong Feng
zyfeng@tju.edu.cn

Xiaowang Zhang
xiaowangzhang@tju.edu.cn

Xin Wang
wangx@tju.edu.cn

Guozheng Rao
rgz@tju.edu.cn

School of Computer Science and Technology, Tianjin University, Tianjin, China
Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

ABSTRACT
Query response time often influences user experience in the
real world. However, it possibly takes more time to an-
swer a query with its all exact solutions, especially when
it contains the OPT operations since the OPT operation is
the least conventional operator in SPARQL. So it becomes
essential to make a trade-off between the query response
time and the accuracy of their solutions. In this paper,
based on the depth of the OPT operation occurring in a
query, we propose an approach to obtain its all approximate
queries with less depth of the OPT operation. This paper
mainly discusses those queries with well-designed patterns
since the OPT operation in a well-designed pattern is re-
ally “optional”. Firstly, we transform a well-designed pat-
tern in OPT normal form into a well-designed tree, whose
inner nodes are labeled by OPT operation and leaf nodes
are labeled by patterns containing other operations such as
the AND operation and the FILTER operation. Secondly,
based on this well-designed tree, we remove “optional” well-
designed subtrees with less depth of the OPT operation and
then obtain approximate queries with different depths of the
OPT operation. Finally, we evaluate the approximate query
efficiency with the degree of approximation.

CCS Concepts
•Information systems→Query languages; Query op-

timization;

Keywords
Semantic Web, RDF, SPARQL,Well-designed patterns, Ap-
proximate queries

1. INTRODUCTION
Currently, there is renewed interest in the classical topic

of graph databases [1, 16, 11]. Much of this interest has
been sparked by SPARQL: the query language for RDF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2018 ACM. ISBN xxx-xxxx-xx-xxxx.

DOI: xxx.xxx/xxx

Resource Description Framework (RDF) [7] is the standard
data model in the Semantic Web. RDF describes the rela-
tionship of entities or resources using directed label graph.
RDF has a broad range of applications in the Semantic Web,
social network, bio-informatics, geographical data, etc [3].
An example in Table 1 has been given to describe the en-
tities of Jon Smith and Liz Ben. For example, in the first
line, it describes that the person Jon smith works for Se-
mantic University. SPARQL [13] recommended by W3C
has become the standard language for querying RDF data
since 2008 by inheriting classical relational languages such
as SQL.

Table 1: professor.rdf

Jon Smith workFor Semantic University
Jon Smith teachOf Liz Ben
Jon Smith rdf:type professor
Liz Ben rdf:type master
Liz Ben advisor Jon Smith
Liz Ben takesCourse Ontology

In the process of information retrieval, users’ tolerable
waiting time is limited [10]. Users also might have tolerable
waiting time for querying RDF data. For a SPARQL query,
if it contains the OPT operation, it will take much time to
query optional pattern in SPARQL since OPT is the least
conventional operator in AND, OPT, FILTER, SELECT
and UNION [18]. It has been shown in [12, 15] that the com-
plexity of SPARQL query evaluation raises from PTIME-
membership for the conjunctive fragment to PSPACE-completeness
when OPT operation is considered. So it is important to
make a trade-off between query response time and accuracy
of solutions, which is a traditional topic in databases [2].
Since it is hard to obtain all exact solutions of a SPARQL
query in a fixed time, a natural idea to reduce the response
time of SPARQL query is by removing some“optional” parts
of this query (i.e., occurrences of the OPT operator). More-
over, we still expect to preserve its “non-optional” part of
this query. For instance, consider a pattern Q as follows:

Q = ((?x, rdf:type, professor) OPT

((?x,workFor, ?y) OPT (?x, teachOf, ?z))).

Here (?x, rdf:type, professor) is a “non-optional” pattern in
this query while both (?x,workFor, ?y) and (?x, teachOf, ?z))
are “optional” patterns. Based on this natural idea, there
are three possible new patterns with less OPT operators as
follows:

http://arxiv.org/abs/1603.06732v1
xxx.xxx/xxx

• Q1 = (?x, rdf:type, professor);
• Q2 = ((?x, rdf:type, professor) OPT (?x,workFor, ?y));
• Q3 = ((?x, rdf:type, professor) OPT (?x, teachOf, ?z)).

Clearly, we can find that Q1 and Q2 are ideal candidates
which contain less optional patterns with protecting “non-
optional” patterns while Q3 is not since (?x, teachOf, ?z) di-
rectly depends on (?x,workFor, ?y).

In 2015, Barceló, Pichler, and Skritek [4] proposed the
notion of approximation (for short, BPS’s approximation)
to characterize “partial answer”, that is, an answer can be
extended to a “maximal answer” (i.e., exact answer) of a
SPARQL query represented in well-designed pattern trees
[9]. In this sense, the evaluation problems of Q1 and Q2 are
taken as the partial evaluation problems of Q. However, we
investigated that the BPS’s approximation did not provide
a fine-grained classification between Q1 and Q2. For users,
they can’t judge which one will lead to less query response
time within tolerable waiting time.

In this paper, based on the depth of OPT operation oc-
curring in a query, we propose an approach to obtain its
all approximate queries with less depth of the OPT opera-
tion. We mainly consider the fragment of UNION-free well-
designed SPARQL patterns where the OPT operator is a re-
ally“optional”operation [12]. Besides, the UNION-free well-
designed SPARQL fragment is indeed maximal among all
fragments of LSQ [14] - a linked dataset describing SPARQL
queries extracted from the logs of public SPARQL endpoints
in our real world. For simplification, we directly call well-
designed patterns instead of UNION-free well-designed SPARQL
patterns. The main contributions of this paper can be sum-
marized as follows:
• Firstly, we provide the conception of OPT-depth. For

a well-designed pattern in OPT normal form, its OPT-
depth can describe the depth of OPT operation oc-
curring in this pattern. Our approximation approach
method is proposed based on the OPT normal form
via OPT-depth.
• Secondly, we treat a well-designed pattern in OPT nor-

mal form as a well-designed tree, whose inner nodes
are labeled by OPT operation. We apply our approx-
imation method by removing “optional” subtrees of a
well-designed tree.
• Finally, through comparison with the non-approximate

queries on LUBM dataset, the approximate queries
lead to better performance.

The rest of this paper is organized as follows: Section
2 briefly introduces the SPARQL and conception of well-
designed patterns. Section 3 defines the k-approximation
queries. Section 4 presents the well-designed tree to capture
k-approximation queries and Section 5 evaluates experimen-
tal results. Finally, Section 6 summarizes the paper.

2. PRELIMINARIES
In this section, we introduce the syntax and semantics of

SPARQL 1.0 and well-designed patterns [12].

2.1 RDF
Let I , B and L be infinite sets of IRIs, blank nodes and

literals, respectively. These three sets are pairwise disjoint.
We denote the union I ∪B ∪L by U , and elements of I ∪ L
will be referred to as constants.

A triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called an
RDF triple. An RDF graph is a finite set of RDF triples.

2.2 The Syntax and Semantics of SPARQL
Assume furthermore an infinite set V of variables, disjoint

from U . The convention is to write variables starting with
the character ‘?’. SPARQL patterns are inductively defined
as follows.
• Any triple from (I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V)

is a pattern (called a triple pattern). A Basic Graph
Pattern (BGP) is a set of triple patterns.
• If P1 and P2 are patterns, then so are the following:

P1 UNION P2, P1 AND P2 and P1 OPT P2.
• If P is a pattern and S is a finite set of variables then

SELECTS(P) is a pattern.
• If P is a pattern and C is a constraint (defined next),

then P FILTER C is a pattern; we call C the filter
condition. Here, a constraint is a boolean combination
of atomic constraints.

The semantics of patterns is defined in terms of sets of so-
called mappings, which are simply total functions µ : S → U
on some finite set S of variables. We denote the domain S
of µ by dom(µ).

Now given a graph G and a pattern P , we define the
semantics of P on G, denoted by JP KG, as a set of mappings,
in the following manner.
• If P is a triple pattern (u, v, w), then

JP KG = {µ : {u, v, w} ∩ V → U | (µ(u), µ(v), µ(w)) ∈
G}. Here, for any mapping µ and any constant c ∈
I ∪ L, we agree that µ(c) equals c itself. In other
words, mappings are extended to constants according
to the identity mapping.
• If P is of the form P1UNIONP2, then JP KG = JP1KG∪

JP2KG.
• If P is of the form P1 AND P2, then JP KG = JP1KG ✶

JP2KG, where, for any two sets of mappings Ω1 and
Ω2, we define Ω1 ✶ Ω = {µ1 ∪ µ2 | µ1 ∈ Ω1 and µ2 ∈
Ω2 and µ1 ∼ µ2}. Here, two mappings µ1 and µ2 are
called compatible, denoted by µ1 ∼ µ2, if they agree
on the intersection of their domains, i.e., if for every
variable ?x ∈ dom(µ1) ∩ dom(µ2), we have µ1(?x) =
µ2(?x). Note that when µ1 and µ2 are compatible,
their union µ1 ∪ µ2 is a well-defined mapping; this
property is used in the formal definition above.
• If P is of the form P1 OPT P2, then JP KG = (JP1KG ✶

JP2KG) ∪ (JP1KG r JP2KG), where for any two sets of
mappings Ω1 and Ω2, we define Ω1 r Ω2 = {µ1 ∈ Ω1 |
¬∃µ2 ∈ Ω2 : µ1 ∼ µ2}.
• If P is of the form SELECTS(P1), then

JP KG = {µ|S∩dom(µ) | µ ∈ JP1KG}.
• If P is of the form P1 FILTER C, then JP KG = {µ ∈

JP1KG | µ(C) = true}. Here, for any mapping µ and
constraint C, the evaluation of C on µ, denoted by
µ(C), is defined as normal in terms of a three-valued
logic with truth values true , false and error .

2.3 Well-designed Patterns
The notion of well-designed patterns is introduced to char-

acterize the weak monotonicity [12].
A UNION-free pattern P is well-designed if the followings

hold:
• P is safe, that is, each subpattern of the formQ FILTER

C of P holds the condition: var(C) ⊆ var(Q).
• for every subpattern P ′ = (P1 OPT P2) of P and for

every variable ?x occurring in P , the following condi-
tion hold: If ?x occurs both inside P2 and outside P ′,

then it also occurs in P1.
For instance, the pattern Q in Section 1 is a well-designed

pattern. However, consider the pattern (((?x,p, ?y) OPT
(?y, q, ?z)) OPT (?x, r, ?z)), it is not a well-designed pattern
since ?z occurs in both (?y, q, ?z) and (?x, r, ?z) but ?z does
not occur in (?x, p, ?y).

Note that the OPT operation provides really optional
left-outer join due to the weak monotonicity [12], which
is an important property to characterize the satisfiability
of SPARQL [17]. For instance, consider the pattern Q in
Section 1, (?x,workFor, ?y) and (?x, teachOf, ?z) are freely
optional.

3. APPROXIMATE QUERIES
In this section, we introduce our approximation method

in the OPT normal form.

3.1 OPT Normal Form
A UNION-free pattern P is in OPT normal form [12] if

P meets one of the following two conditions:
• P is constructed by using only the AND and FILTER

operators;
• P = (P1 OPT P2) where P1 and P2 patterns are in

OPT normal form.
For instance, the pattern Q stated in Section 1 is in OPT

normal form. However, consider the pattern (((?x, p, ?y) OPT
(?x, q, ?z)) AND (?x, r, ?z)) is not in OPT normal form.

Note that all patterns in OPT normal form have the fol-
lowing form:

P0 OPT P1 OPT . . .OPT Pm
1; (1)

where P0 is an OPT-free pattern, that is, P0 contains only
AND and FILTER operations (called AF -pattern). In this
sense, we use BGP (P) to denote P0 and O(P) to denote
{P1, . . . , Pm}, i.e., the collection of optional patterns occur-
ring in P .

Proposition 3.1. [12, Theorem 4.11] For every UNION-
free well-designed pattern P , there exists a pattern Q in OPT
normal form such that P and Q are equivalent.

In the proof of Proposition 3.1, we apply three rewriting
rules based on the following equations: let P,Q,R be pat-
terns and C a constraint,
• (P OPTR) FILTER C ≡ (P FILTER C) OPTR;
• (P OPTR) ANDQ ≡ (P ANDQ) OPTR;
• P AND (QOPT R) ≡ (P ANDQ) OPTR.
Since each UNION-free well-designed pattern is equivalent

to a pattern in OPT normal form by Proposition 3.1, we
mainly consider all well-designed patterns in OPT normal
form in the following.

To further observe some features of patterns in OPT nor-
mal form, we consider a complicated pattern P , where the
OPT operation is deeply nested, as follows:

P = (t1 OPT (t2 OPT t3)) OPT (t4 OPT t5). (2)

Note that, in P , t1 is non-optional while t2, t3, t4 and t5
are optional. Furthermore, if we consider the subpattern
(t2 OPT t3), t2 is non-optional while t3 is still optional.
Analogously, if we consider the subpattern (t4 OPT t5), t4

1We abbreviate ((P0 OPT P1) OPT. . .OPT Pm) as P0 OPT
P1 OPT . . .OPT Pm.

is non-optional while t5 is still optional. Now, if we observe
the figure of P shown in Figure 1, t2 and t4 are on top of t3
and t4, respectively.

t1 t2 t4

t3 t5

OPT OPT

OPTOPT

Figure 1: The figure of OPT normal form

3.2 OPT-depth in OPT Normal Form
To characterize the different levels of optional patterns,

we define OPT-depth of patterns in OPT normal form.

Definition 3.1 (OPT-depth). Let P be a pattern in
OPT normal form. We use dep(P) to denote its OPT-depth
as follows:
• dep(P) = 0 if P is an AF -pattern;
• dep(P) = max{dep(P1), . . . , dep(Pm)} + 1 if O(P) =
{P1, . . . , Pm}.

For instance, the OPT-depth of the pattern Q stated in
Section 1 and the pattern P in Equation (2) are 2.

3.3 Approximate Queries
To define our approximate queries, we introduce an im-

portant notion called reduction [12].
We say that a pattern P ′ is a reduction of a pattern

P , if P ′ can be obtained from P by replacing subpattern
(P1 OPT P2) with P1, that is, P ′ is obtained by delet-
ing some optional parts of P . The reflexive and transitive
closure of the reduction relation is denoted by ✂. In this
sense, for a pattern, its reductions can be taken as “inexact”
patterns, which can be obtained by reducing the OPT oper-
ation. For instance, in Section 1, Q1 and Q2 are reductions
of Q.

Inspired from the notion of reduction, we introduce our
k-approximate patterns.

Definition 3.2 (k-approximation). Let P be a pat-
tern in OPT normal form (P0 OPT P1 OPT . . .OPT Pm)
and k be a natural number. The k-approximate pattern of P
(written as P (k)) can be obtained in the following inductive
way:
• P (k) = BGP(P) if k = 0;

• P (k) = P0OPTP
(k−1)
1 OPT . . .OPTP

(k−1)
m if 1 ≤ k ≤

dep(P)− 1;

• P (k) = P if k ≥ dep(P).

Intuitively, approximate patterns are subpatterns obtained
by reducing their OPT-depths. In this sense, our approxima-
tion generalizes reduction [12] in a fine-grained way. Since
there exists the unique OPT-depth for each OPT in OPT
normal form, we have the following proposition:

Proposition 3.2. Let P be a pattern in OPT normal
form and k be a natural number. P (k) exists and P (k) is
unique.

For instance, in Section 1, Q(0) = Q1 and Q(1) = Q2. In
Equation (2), P (0) = t1 and P (1) = ((t1 OPT t2) OPT t4).

Q(0) and Q(1) are the reductions of Q. Analogously, P (0)

and P (1) are the reductions of P .

4. K-APPROXIMATION COMPUTATION
In this section, we propose a method to compute all ap-

proximate patterns based on a redesigned parse tree called
well-designed tree.

Now, we introduce the notion of well-designed tree.

Definition 4.1 (well-designed tree). Let P be a well-
designed pattern in OPT normal form. A well-designed tree
T based on P is a redesigned parse tree, which can be defined
as follows:
• All inner nodes in T are labeled by OPT operations

and leaf nodes are labeled by AF -patterns.
• For each subpattern (P1 OPT P2) of P , the well-

designed tree T1 of P1 and the well-designed tree T2 of
P2 have the same parent node.

For instance, given a pattern P 2 in OPT normal form,

P = ((((t1 AND t3) FILTER C) OPT2 t2) OPT1

((t4 OPT4 t5) OPT5 (t6 OPT6 t7))).

We write ((t1 AND t3) FILTER C) as p0 for short, which
is the non-optional part of P . The well-designed tree T is
shown in Figure 2.

Figure 2: Well-designed Tree

OPT1

OPT2

p0 t2

OPT3

OPT4

t4 t5

OPT5

t6 t7

Some pruning strategies can be applied to the well-designed
tree to achieve k-approximation. After removing optional
subtrees from the well-designed tree, we get a k-approximation
spanning tree (KST for short) which is also a well-designed
tree. We denote a k-approximation spanning tree from well-

designed tree T as KST
(k)
T . In order to obtain KST

(k)
T , we

define a special traversal method for the well-designed tree
based on the conception of OPT-depth, called Left-Deep
Level Traversal. Before defining Left-Deep Level Traver-
sal, we provide a partial traversal approach called Leftmost
Traversal.

For a well-designed tree, Leftmost Traversal of this tree is
by only traversing the left subtree after visiting root node.
For instance, consider T in Figure 2, the leftmost traversal
of T is denoted by LT (T) = {OPT1,OPT2, p0}. Left-Deep
Level Traversal of the well-designed tree is proposed as fol-
lows:

Definition 4.2 (left-deep level traversal). Let T
be a well-designed tree. Left-Deep Level Traversal denoted
by LD(T) is composed of levels. level(i) can be obtained by
leftmost traversing each node’s right children node (called
candidate) in level(i− 1). Especially, level(0) = LT (T).

For each subtree t in the well-designed tree, the leftmost
leaf node written as LM (t) is the non-optional part of t. For
instance, for the well-designed tree T in Figure 2, LM (T) =

{p0}. We construct KST
(k)
T by removing the subtrees below

2We give each OPT operator a subscript to differentiate
them so that readers understand clearly.

level(k − 1) from T . Particularly, KST
(0)
T can be built by

returning LM (T).

In the process of building KST
(k)
T , firstly we compute

each node’s candidate in level(k − 1). Secondly we obtain
the LM (n) for each OPT node n in level(k − 1). Finally

KST
(k)
T can be constructed by replacing the leftmost nodes

with corresponding OPT nodes in T . We obtain the k-

approximation query through traversing on KST
(k)
T . The

process of building KST
(k)
T is described in Algorithm 1.

Example 4.1. Consider the well-designed tree T in Fig-
ure 2 from pattern P . The LD(T)3 with candidates and
leftmost list can be described as follows:

Level Traversal List Candidates Leftmost
0 OPT1, OPT2, p0 OPT3, t2 t4, ×
1 OPT3, OPT4, t4, t2 OPT5, t5 t6, ×
2 OPT5, t6, t5 t7 ×
3 t7

In KST
(0)
T , p0 is set as the root node without any child node.

If we want to obtain KST
(1)
T , we can replace t4 with OPT3 in

T based on level(0). Analogously, KST
(2)
T can be obtained

by replacing t6 with OPT5 in T based on level(1). Since

dep(P) = 3, KST
(3)
T is regarded as T itself. Both KST

(1)
T

and KST
(2)
T are shown in Figure 3.

Figure 3: Approximation Spanning Tree

OPT1

OPT2

p0 t2

t4

(a) 1-approximation

OPT1

OPT2

p0 t2

OPT3

OPT4

t4 t5

t6

(b) 2-approximation

[P]1 and [P]2 are shown as follows:

[P]1 = ((((t1 AND t3) FILTER C) OPT2 t2) OPT1 t4),

and

[P]2 = ((((t1 AND t3) FILTER C) OPT2 t2) OPT1

((t4 OPT4 t5) OPT5 t6)).

5. EXPERIMENTS AND EVALUATIONS
This section presents our experiments. The purpose of the

experiments is to evaluate (1) the performance improvement
of approximate well-designed SPARQL queries, and (2) the
appropriate k to reduce the users’ waiting time for solutions.

5.1 Experiments

Implementations and running environment.
All experiments were carried out on a machine running

Linux, which has one CPU with four cores of 2.40GHz, 32GB

3We use × to denote that for each non-OPT node n in can-
didates, there exist no corresponding LM (n) in leftmost list.

Figure 4: K-approximation on Jena

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

·106

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(a) Q1

0 1 2 3 4
0

200

400

600

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(b) Q2

0 1 2 3 4

200

300

400

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(c) Q3

0 1 2 3 4

0

1

2

3

4

·106

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(d) Q4

Figure 5: K-approximation on Sesame

0 1 2 3 4

0

2

4

6

8

·105

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(a) Q1

0 1 2 3 4
0

200

400

600

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(b) Q2

0 1 2 3 4

100

200

300

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(c) Q3

0 1 2 3 4

0

1

2

3

4
·106

k

R
es
p
o
n
se

T
im

e[
m
s]

LUBM1

LUBM5

LUBM10

(d) Q4

Algorithm 1 K-approximation Spanning Tree

Input: Well-designed tree T from pattern P , Leftmost list
leftmost, and k-approximation with k
Initialize Candidate candidate with T , i← 0

Output: K-approximation Spanning Tree
1: if k = 0 then

2: return LM (T)
3: else if k ≥ dep(P) then
4: return T
5: else

6: while i 6= k do

7: level(i)← LT (candidate)
8: candidate← GetCandidate(level(i)).
9: for each node in candidate do

10: if node is OPT then

11: leftmost ← LM (node)
12: end if

13: end for

14: end while

15: Replace the nodes in leftmost with corresponding
OPT nodes in T .

16: return T

17: end if

memory and 500GB disk storage. All of the algorithms were
implemented in JAVA with Eclipse as our compiler. Jena[6]
(Jena-3.0.1) and Sesame[5] (Sesame-4.1.1) are used as the
underlying query engines of approximate queries.

Dataset.
We used LUBM4 as the dataset in our experiments to

4http://swat.cse.lehigh.edu/projects/lubm/

look for the relationship between approximate query effi-
ciency and k. LUBM, which features an ontology for the
university domain, is a standard benchmark to evaluate the
performance of Semantic Web repositories, In our experi-
ments, we used LUBM1, LUBM5 and LUBM10 as query
datasets shown in Table 2.

Table 2: Profiles of datasets
Dataset Number of Triples NT File Size(bytes)
LUBM1 103,104 14,497,954
LUBM5 645,836 90,960,405
LUBM10 1,316,701 185,474,846

SPARQL queries.
The queries over LUBM were designed as 4 forms in Ta-

ble 3. Obviously, OPT nesting in Q4 is the most complex
among 4 forms. Furthermore, we built AND and FILTER
operations in each query. All of query patterns have k rang-
ing from 0 to 4. Specially, since dep(Q2) is 1, we regard
k-approximate query as Q2 itself when k > 1.

Table 3: Queries on LUBM

Query Well-designed tree Amount of OPT
Q1 zigzag tree 9
Q2 left-deep tree 4
Q3 right-deep tree 4
Q4 full tree 15

The amount of OPT after approximation.
The amount of OPT with different k is shown in Table

4. Clearly, the amount of OPT is decreasing after approx-
imation since our approximation method can reduce OPT-

depth. Note that when k is 4, query is itself without any
approximation.

Table 4: Amount of OPT after approximation

k k=0 k=1 k=2 k=3 k=4
Q1 0 2 5 8 9
Q2 0 4 4 4 4
Q3 0 1 2 3 4
Q4 0 4 10 14 15

5.2 Efficiency of Approximate Queries
For a well-designed queryQ and its k-approximation query

Q(k), Q(k) is more closed to Q with higher value of k. The
variation tendencies of query response time shown in Figure
4 and Figure 5 are similar. Query efficiency is promoted
with lower response time when k is decreasing (approxima-
tion degree becomes larger). Furthermore, there has been a
significant increase in query efficiency when the dataset scale
grows up. For instance, we observeQ4, which corresponds to
a full well-designed tree. When the dataset is LUBM10, its
query response time is more than an hour implemented by

Jena and Sesame without any approximation (Q
(4)
4). How-

ever, the response time of Q
(1)
4 is less than a minute. Fur-

thermore, comparing Q
(3)
4 with Q

(4)
4 implemented by Jena

and Sesame, an approximately decrease of 25% in the query
response time has shown in both Figure 4 and Figure 5. Q2

and Q3 has less time than Q1 and Q4 since Q2 and Q3 have
less OPT amounts and simpler OPT nestings.

Approximate queries can efficiently reduce the query re-
sponse time and users’ waiting time. An appropriate k can
be determined to reduce users’ waiting time for solutions
since users’ tolerable waiting time is limited. We assume
that Q4 on LUBM10 comes from users, and it takes more

than an hour time to answer Q
(4)
4 by Jena and Sesame if

users want to obtain all exact solutions, which might lead to
bad user experience. In this scene, it can be approximated

as Q
(1)
4 to improve user experience within a minute waiting

time.
More results of k-approximation can be found in the online

demo website: http://123.56.79.184/approximate.html.

6. CONCLUSION
In this paper, we have presented the approximation of

well-designed SPARQL patterns in OPT normal form based
on the depth of OPT operation. Theoretically, our proposal
k-approximation generalizes reductions of patterns in a fine-
grained way. The k-approximation provides rich and various
approximate queries to answer user’s query within a fixed
time. Our experimental results show that our approximation
on the depth of OPT operation is reasonable and useful.

In the future, we are going to handle other non-well-
designed patterns and deal with more operations such as
UNION. Besides, we will extend the approximation method
to obtain other approximation queries.

7. ACKNOWLEDGMENTS
This work is supported by the program of the National

Natural Science Foundation of China (NSFC) under 61502336,
61572353, 61373035 and the National High-tech R&D Pro-
gram of China (863 Program) under 2013AA013204. Xi-
aowang Zhang is supported by the project-sponsored by

School of Computer Science and Technology in Tianjin Uni-
versity.

8. REFERENCES
[1] R. Angles and C. Gutierrez. Survey of graph database

models. ACM Computing Surveys, 40(1)(2008): article
1.

[2] S. Abiteboul, H. Richard, and V. Vianu. Foundations

of databases. Addison Wesley, page 9:3́lC9:56, 1995.

[3] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: from relations to semistructured data and XML.
Morgan Kaufmann, 2000.

[4] P. Barcelo, R. Pichler, and S. Skritek. Efficient
evaluation and approximation of well-designed pattern
trees. In Proc. of PODS 2015, pages 131–144. ACM,
2015.

[5] J. Broekstra, A. Kampman, and F. V. Harmelen.
Sesame: A generic architecture for storing and
querying RDF and RDF Schema. Springer Berlin
Heidelberg, 2002.

[6] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,
A. Seaborne, and K. Wilkinson. Jena: implementing
the semantic web recommendations. In Proc. of
WWW 2004, pages 74–83, 2004.

[7] G. Klyne, C. J. Jeremy, and B. McBride. Resource
description framework (RDF): Concepts and abstract
syntax. W3C Recommendation, 2004.

[8] G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den
Bussche, D. Van Gucht, S. Vansummeren, and Y. Wu.
Relative expressive power of navigational querying on
graphs. In Proc. of ICDT 2011, pp.197–207, 2011.

[9] A. Letelier, J. Ṕle֒rez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries. In
Proc. of PODS 2012, 38(4):84–87, 2012.

[10] F. H. Nah. A study on tolerable waiting time: How
long are web users willing to wait? Behaviour and
Information Technology, 23(3), 2003.

[11] J. Hellings, B. Kuijpers, J. Van den Bussche, and
X. Zhang. Walk logic as a framework for path query
languages on graph databases. In Proc. of ICDT 2013,
pp.117–128, 2011.

[12] J. Ṕle֒rez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. ACM Transactions on
Database Systems, 34(3):30–43, 2009.

[13] E. Prud’Hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C Recommendation, 2008.

[14] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and
A.-C. N. Ngomo. LSQ: The linked SPARQL queries
dataset. In Proc. of ISWC 2015, pages 261–269.
Springer, 2015.

[15] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In Proc. of ICDT’10,
pp. 4–33, 2010.

[16] P. Wood, Query languages for graph databases,
SIGMOD Record, 41(1) (2012): 50–60.

[17] X. Zhang and J. Van den. Bussche. On the
satisfiability problem for SPARQL patterns.
arXiv:1406.1404, 2014.

[18] X. Zhang and J. Van den. Bussche. On the primitivity
of operators in SPARQL. Information Processing
Letters, 114(9):480–485, 2014.

http://123.56.79.184/approximate.html
http://arxiv.org/abs/1406.1404

	1 Introduction
	2 preliminaries
	2.1 RDF
	2.2 The Syntax and Semantics of SPARQL
	2.3 Well-designed Patterns

	3 Approximate queries
	3.1 OPT Normal Form
	3.2 OPT-depth in OPT Normal Form
	3.3 Approximate Queries

	4 K-approximation computation
	5 Experiments and evaluations
	5.1 Experiments
	5.2 Efficiency of Approximate Queries

	6 Conclusion
	7 Acknowledgments
	8 References

