Skip to main content

Learning for Graph-Based Sensorless Freehand 3D Ultrasound

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10019))

Included in the following conference series:

Abstract

Sensorless freehand 3D ultrasound (US) uses speckle decorrelation to estimate small rigid motions between pairs of 2D images. Trajectory estimation combines these motion estimates to obtain the position each image relative to the first. This is prone to the accumulation of measurement bias. Whereas previous work concentrated on correcting biases at the source, this paper proposes to reduce error accumulation by carefully choosing the set of measurements used for trajectory estimation. An undirected graph is created with frames as vertices and motion measurements as edges. Using constrained shortest paths in the graph, random trajectories are generated and averaged to obtain trajectory estimate and uncertainty. To improve accuracy, a Gaussian process regressor is trained on tracked US sequences to predict systematic motion measurement error, which is then used to weigh the edges of the graph. Results on speckle phantom imagery show significantly improved trajectory estimates in comparison with the state-of-the-art, promising accurate volumetric reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afsham, N., et al.: A generalized correlation-based model for out-of-plane motion estimation in freehand ultrasound. IEEE Trans. Med. Imaging 33(1), 186–199 (2014)

    Article  Google Scholar 

  2. Afsham, N., et al.: Nonlocal means filter-based speckle tracking. IEEE Trans. Ultrason. Ferroelectr. 62(8), 1501–1515 (2015)

    Article  Google Scholar 

  3. Chen, J.F., et al.: Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997)

    Article  Google Scholar 

  4. Conrath, J., Laporte, C.: Towards improving the accuracy of sensorless freehand 3D ultrasound by learning. In: Wang, F., Shen, D., Yan, P., Suzuki, K. (eds.) MLMI 2012. LNCS, vol. 7588, pp. 78–85. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35428-1_10

    Chapter  Google Scholar 

  5. van De Kraats, E.: Standardized evaluation methodology for 2-D-3-D registration. IEEE Trans. Med. Imaging 24(9), 1177–1189 (2005)

    Article  Google Scholar 

  6. Gee, A.H., et al.: Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle. Med. Image Anal. 10(2), 137–149 (2006)

    Article  Google Scholar 

  7. Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. In: Proceedings of CVPR, vol. 1, pp. 684–691 (2004)

    Google Scholar 

  8. Housden, R.J., et al.: Sensorless reconstruction of unconstrained freehand 3D ultrasound data. Ultrasound Med. Biol. 33(3), 408–419 (2007)

    Article  Google Scholar 

  9. Housden, R., et al.: Rotational motion in sensorless freehand three-dimensional ultrasound. Ultrasonics 48(5), 412–422 (2008)

    Article  Google Scholar 

  10. Laporte, C., Arbel, T.: Combinatorial and probabilistic fusion of noisy correlation measurements for untracked freehand 3-D ultrasound. IEEE Trans. Med. Imaging 27(7), 984–994 (2008)

    Article  Google Scholar 

  11. Laporte, C., Arbel, T.: Measurement selection in untracked freehand 3D ultrasound. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 127–134. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15705-9_16

    Chapter  Google Scholar 

  12. Laporte, C., Arbel, T.: Learning to estimate out-of-plane motion in ultrasound imagery of real tissue. Med. Image Anal. 15(2), 202–213 (2011)

    Article  Google Scholar 

  13. Li, P.C., et al.: Tissue motion and elevational speckle decorrelation in freehand 3D ultrasound. Ultrason. Imaging 24(1), 1–12 (2002)

    Article  Google Scholar 

  14. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  15. Rousseau, F., et al.: Confhusius: a robust and fully automatic calibration method for 3D freehand ultrasound. Med. Image Anal. 9, 25–38 (2005)

    Article  Google Scholar 

  16. Rousseau, F., et al.: A novel temporal calibration method for 3D ultrasound. IEEE Trans. Med. Imaging 25(8), 1108–1112 (2006)

    Article  Google Scholar 

  17. Tuthill, T.A., et al.: Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology 209(2), 575–582 (1998)

    Article  Google Scholar 

  18. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. 13(4), 376–380 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Tetrel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tetrel, L., Chebrek, H., Laporte, C. (2016). Learning for Graph-Based Sensorless Freehand 3D Ultrasound. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47157-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47156-3

  • Online ISBN: 978-3-319-47157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics