Skip to main content

Sparse Coding Based Skin Lesion Segmentation Using Dynamic Rule-Based Refinement

  • Conference paper
  • First Online:
Book cover Machine Learning in Medical Imaging (MLMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10019))

Included in the following conference series:

Abstract

This paper proposes an unsupervised skin lesion segmentation method for dermoscopy images by exploiting the contextual information of skin image at the superpixel level. In particular, a Laplacian sparse coding is presented to evaluate the probabilities of the skin image pixels to delineate lesion border. Moreover, a new rule-based smoothing strategy is proposed as the lesion segmentation refinement procedure. Finally, a multi-scale superpixel segmentation of the skin image is provided to handle size variation of the lesion in order to improve the accuracy of the detected border. Experiments conducted on two datasets show the superiority of our proposed method over several state-of-the-art skin segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    m is the feature dimension.

  2. 2.

    \(w_{ij}=exp\left( -\frac{\left\| y_{i},y_{j} \right\| }{\sigma ^{2}} \right) \quad s.t. \quad j\in NB\left( i \right) \).

  3. 3.

    The parameter \(\beta \) is set to 0.2.

  4. 4.

    https://challenge.kitware.com/challenge/n/ISBI_2016_3A_Skin_Lesion_Analysis_Tow ards_Melanoma_Detection.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Ahn, E., Bi, L., Jung, Y.H., Kim, J., Li, C., Fulham, M., Feng, D.D.: Automated saliency-based lesion segmentation in dermoscopic images. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3009–3012. IEEE (2015)

    Google Scholar 

  3. Alcón, J.F., Ciuhu, C., Ten Kate, W., Heinrich, A., Uzunbajakava, N., Krekels, G., Siem, D., De Haan, G.: Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J. Sel. Top. Sig. Process. 3(1), 14–25 (2009)

    Article  Google Scholar 

  4. Cavalcanti, P.G., Yari, Y., Scharcanski, J.: Pigmented skin lesion segmentation on macroscopic images. In: 2010 25th International Conference of Image and Vision Computing New Zealand (IVCNZ), pp. 1–7. IEEE (2010)

    Google Scholar 

  5. Das Gupta, M., Srinivasa, S., Antony, M., et al.: KL divergence based agglomerative clustering for automated vitiligo grading. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2700–2709 (2015)

    Google Scholar 

  6. Emre Celebi, M., Kingravi, H.A., Iyatomi, H., Alp Aslandogan, Y., Stoecker, W.V., Moss, R.H., Malters, J.M., Grichnik, J.M., Marghoob, A.A., Rabinovitz, H.S., et al.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14(3), 347–353 (2008)

    Article  Google Scholar 

  7. Erkol, B., Moss, R.H., Joe Stanley, R., Stoecker, W.V., Hvatum, E.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 11(1), 17–26 (2005)

    Article  Google Scholar 

  8. Garnavi, R., Aldeen, M., Celebi, M.E., Varigos, G., Finch, S.: Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 35(2), 105–115 (2011)

    Article  Google Scholar 

  9. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  10. Li, X., Li, Y., Shen, C., Dick, A., Van Den Hengel, A.: Contextual hypergraph modeling for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3328–3335 (2013)

    Google Scholar 

  11. Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal, A.R., Rozeira, J.: PH 2-A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5437–5440. IEEE (2013)

    Google Scholar 

  12. Nascimento, J.C., Marques, J.S.: Adaptive snakes using the EM algorithm. IEEE Trans. Image Process. 14(11), 1678–1686 (2005)

    Article  Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  14. Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 8(8), 630–632 (1978)

    Article  Google Scholar 

  15. Sezgin, M., et al.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

    Article  MathSciNet  Google Scholar 

  16. Silveira, M., Nascimento, J.C., Marques, J.S., Marçal, A.R., Mendonça, T., Yamauchi, S., Maeda, J., Rozeira, J.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel. Topics Sig. Process. 3(1), 35–45 (2009)

    Article  Google Scholar 

  17. Society, A.C.: Cancer Facts & Figures 2015. American Cancer Society, Atlanta (2015)

    Google Scholar 

  18. Tong, N., Lu, H., Ruan, X., Yang, M.H.: Salient object detection via bootstrap learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1884–1892 (2015)

    Google Scholar 

  19. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. submitted to SIAM J. J. Optim (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Bozorgtabar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bozorgtabar, B., Abedini, M., Garnavi, R. (2016). Sparse Coding Based Skin Lesion Segmentation Using Dynamic Rule-Based Refinement. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47157-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47156-3

  • Online ISBN: 978-3-319-47157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics