
Formal analysis of HTM Spatial Pooler
performance under predefined operation conditions

Marcin Pietroń, Maciej Wielgosz, Kazimierz Wiatr
AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Krakow, Poland

Email: pietron,wielgosz,wiatr@agh.edu.pl

Abstract—This paper introduces mathematical formalism for
Spatial (SP) of Hierarchical Temporal Memory (HTM) with a
spacial consideration for its hardware implementation. Perfor-
mance of HTM network and its ability to learn and adjust to
a problem at hand is governed by a large set of parameters.
Most of parameters are codependent which makes creating
efficient HTM-based solutions challenging. It requires profound
knowledge of the settings and their impact on the performance
of system. Consequently, this paper introduced a set of formulas
which are to facilitate the design process by enhancing tedious
trial-and-error method with a tool for choosing initial parameters
which enable quick learning convergence. This is especially
important in hardware implementations which are constrained
by the limited resources of a platform.

The authors focused especially on a formalism of Spatial Pooler
and derive at the formulas for quality and convergence of the
model. This may be considered as recipes for designing efficient
HTM models for given input patterns.

I. INTRODUCTION

Recent years witnessed huge progress in deep learning
architecture driven mostly by abundance of training data and
huge performance of parallel GPU processing units [3][2].
This sets a new path in a development of intelligent sys-
tems and ultimately puts us on a track to general artificial
intelligence solutions. It is worth noting that in addition
to well-established Convolutional Neural Networks (CNN)
architectures there is a set of biologically inspired solutions
such as Hierarchical Temporal Memories [11][10][6]. Those
architectures as well as CNNs suffer from lack of well-defined
mathematical formulation of rules for their efficient hardware
implementation. Large range of heuristics and rules of thumb
are used instead. This was not very harmful except for a
long training time when most of the algorithm were executed
on CPUs without hardware acceleration. However, nowadays
most of biologically inspired are ported to hardware for a
sake of performance efficiency [4][5]. This in turn requires a
profound consideration and analysis of resources consumption
to be able to predict both the capacity of the platform and
the ultimate performance of the system. Consequently, the
authors of the papers analyzed HTM design constrains on the
mathematical ground and formulated a set of directives for
building hardware modules.

The rest of the paper is organized as follows. Section
II provides the background and related works. Section III

describes mathematical formalism of Spatial Pooler. Finally,
we present our conclusions in Section IV.

II. HTM ARCHITECTURE

Hierarchical Temporal Memory (HTM) replicates the struc-
tural and algorithmic properties of the neocortex [1]. It can
be regarded as a memory system which is not programmed
and it is trained through exposing them to data i.e. text. HTM
is organized in the hierarchy which reflects the nature of the
world and performs modeling by updating the hierarchy. The
structure is hierarchical in both space and time, which is the
key in natural language modeling since words and sentences
come in sequences which describe cause and effect relation-
ships between the latent objects. HTMs may be considered
similar to Bayesian Networks, HMM and Recurrent Neural
Networks, but they are different in the way hierarchy, model
of neuron and time is organized.

At any moment in time, based on current and past input, an
HTM will assign a likelihood that given concepts are present
in the examined stream. The HTM’s output constitutes a set of
probabilities for each of the learned causes. This moment-to-
moment distribution of possible concepts (causes) is denoted
as a belief. If the HTM covers a certain number of concepts
it will have the same number of variables representing those
concepts. Typically HTMs learn about many causes and create
a structure of them which reflects their relationships.

Even for human beings, discovering causes is considered
to be a core of perception and creativity, and people through
course of their life learn how to find causes underlying objects
in the world. In this sense HTMs mimic human cognitive
abilities and with a long enough training, proper design
and implementation, they should be able to discover causes
humans can find difficult or are unable to detect.

HTM infers concepts of new stream elements and the result
is a distribution of beliefs across all the learned causes. If the
concept (e.g. one of the categories occurring in the examined
stream) is unambiguous, the belief distribution will be peaked
otherwise it will be flat. In HTMs it is possible to disable
learning after training and still do inference.

A. Encoder

The role of an encoder within HTM processing flow is
critical. It maps data from various representations to Sparse

ar
X

iv
:1

60
7.

00
79

1v
1

 [
cs

.A
I]

 4
 J

ul
 2

01
6

Distributed Representation (SDR) which is an internal form
of holding data within HTM network. Quality of a trans-
formation process directly affect the performance of the
implemented system. The conversion involves mapping to
strongly semantic-oriented way of representing data in which
a single bit holds a meaning of tens or hundreds of original
representation bits. There are various kinds of encoders for
different input data [12].

B. Spatial Pooler

SP operates in the spatial domain and acts as an advanced
encoder which translates from binary representation to the
sparse distributed binary representation of approx. 3% density.
SP is also an interface between the encoder and the remaining
part of the HTM module Fig. 1.

The detailed implementation of the algorithm is as follows:
• Each column is connected by a fixed number of inputs

to randomly selected node inputs. Based on the input
pattern, some columns will receive more active input
values,

• Inputs of columns (synapses) have values (floating point
between 0 and 1 called permanence value) which repre-
sents possibility of activating the synapse (if the value is
greater than 0.5 and corresponding input is 1 the synapse
is active),

• Columns which have more active connected synapses
than given threshold (minOverlap) and its overlap pa-
rameter (number of active synapses) is better than k-th
overlap of set of columns in spectrum of inhibition radius,

• During learning process columns gather information
about their history of activity, overlap values (if overlap
was greater than minOverlap or not), compute mini-
mum and maximum overlap duty cycle and then decides
according to the combinations of these parameters if
their permanence values or inhibition radius should be
changed.

There are two main parameters of Spatial Pooler which
mimic the behaviour of the mammalian brain, i.e. permValue
and inhibitionRadius. The first one reflects the sensitivity of
the brain to external stimuli, and the latter one may be con-
sidered a focus. In the process of adjusting those parameters,
SP adapts to the profile of the input data.

Generally, spatial pooling selects a relatively constant num-
ber of the most active columns and inactivates (inhibits) other
columns in the vicinity of the active ones. Similar input
patterns tend to activate a stable set of columns. The classifier
module based on Spatial Pooler is realized by overlap and
activation computing on incoming input values. The rest of the
parameters are set during learning process. The functionality
of Spatial Pooler is similar to LVQ or Self Organizing Maps
neural models.

III. MATHEMATICAL FORMALISM

A. Spatial Distributed Representation

This section covers properties and important features of
SDR (Sparse Distributed Representation) vector space.

Algorithm 1 Overlap
for all col ∈ sp.columns do

2: col.overlap ← 0
for all syn ∈ col.connected_synapses() do

4: col.overlap ← col.overlap + syn.active()
end for

6: if col.overlap < min_overlap then
col.overlap ← 0;

8: else
col.overlap ← col.overlap * col.boost;

10: end if
end for

Algorithm 2 Inhibition
for all col ∈ sp.columns do

2: max_column ← max(n_max_overlap(col, n), 1)
if col.overlap > max_column then

4: col.active ← 1;
else

6: col.active ← 0;
end if

8: end for

Algorithm 3 Learning : adapting perm values
for all col ∈ sp.columns do

2: max_column ← max(n_max_overlap(col, n), 1)
if col.active then

4: for all synapses ∈ col.synapses do
if syn.active() then

6: syn.perm_value ← min(1, syn.perm_value +
syn.perm_inc);

else
8: syn.perm_value ← max(0, syn.perm_value -

syn.perm_dec);
end if

10: end for
end if

12: end for

Algorithm 4 Learning : Column boosting operation
for all col ∈ sp.columns do

2: col.mdc ← 0.01 * max_adc(range_neighbor(col))
col.update_active_duty_cycle()

4: col.update_boost()
col.update_overlap_duty_cycle()

6: if col.odc < col.mdc then
for all synapses ∈ col.synapses do

8: syn.perm_value ← min(1, syn.perm_value + 0.1 *
min_perm_value);

end for
10: end if

end for
sp.update_inhibition_radius()

Fig. 1. Architecture of HTM Spatial Pooler

B. Space definition

S : {0, 1}n (1)

where S and n are SDR vector space and its dimension
respectively.

Depending on the context, the vectors are called points,
patterns or words.

C. Notation

This section covers HTM encoder formalism. It is mostly
based on [12].
• A - an arbitrary input set,
• a - element of the input space A,
• S(n, k) - SDR (Sparse Distributed Representation) of

length n and w bits on (egual 1),
• s - element of SDR space S,
• n - total number of bits in a vector of SDR (s),
• w - number of active bits in a vector of SDR (s),
• buckets - number of buckets (ranges) to which ai is

mapped S,
• valmin - min value of the input space range,
• valmax - max value of the input space range.

D. Preserving semantics

Both input space and SDR space are decent metric spaces
which means that they meet metric space postulates [?].
• (A, dA) - input space
• dA - input space metric
• (S, dS) - SDR space
• dS - SDR space metric

1) Input space:

dA : A×A→ R (2)

∧
ai,aj∈A

dA(ai, aj) > 0 (3)

∧
ai,aj∈A

dA(ai, aj) = 0⇐⇒ ai = aj (4)

∧
ai,aj∈A

dA(ai, aj) = dA(aj , ai) (5)

∧
ai,aj ,ak∈A

dA(ai, ak) 6 dA(ai, aj) + dA(aj , ak) (6)

2) SDR space:

dS : S × S → N (7)

∧
si,sj∈S

dS(si, sj) > 0 (8)

∧
si,sj∈S

dS(si, sj) = 0⇐⇒ si = sj (9)

∧
si,sj∈S

dS(si, sj) = dS(sj , si) (10)

∧
sisj ,sk∈S

dS(si, sk) 6 dS(si, sj) + dS(sj , sk) (11)

E. Relationship between Input and SDR spaces

Input and SDR spaces are correlated (Eq.12).

∧
ai,aj ,ak,aw∈A

dS(f(ai), f(aj)) > ds(f(ak), f(aw))

⇐⇒ dA(ai, aj) 6 dA(ak, aw)

(12)

F. Basic assumptions

There are several important aspects which must be consid-
ered in a process of encoding data:
•
∧
ai,aj∈A∧si,sj∈S:si=f(ai),sj=f(aj) : ai ≈ aj ⇒ si ≈ sj ,

•
∧
ai,aj∈A∧si,sj∈S:si=f(ai),sj=f(aj) : ai = aj ⇒ si = sj ,

•
∧
si,sj∈S ni = nj = n

•
∧
si,sj∈S wi ≈ wj ≈ w

G. Encoder formalism

The following notation prerequisites are adopted:

s ∈ {0, 1}n (13)

The number of buckets is given by Eq. 14.

buckets = n− w + 1 (14)

The function mapping from the input space to SDR is
expressed by Eq. 15.

f : A −→ S(n, k) (15)

Input space is limited by the range is given by Eq. 16.∧
a∈A

a ∈ 〈valmin, valmax〉 (16)

Formula for a simple numbers encoder is given by Eq. 17
and 18.∧

a∈A

∨
s∈S,k∈〈0,n〉

: k = bbuckets · (a− valmin)
valmax − valmax

c (17)

{ ∧
i∈〈0,k)∪(k+w,n〉, s[i] = 0∧

i∈〈0,k+w〉, s[i] = 1
(18)

H. Spatial Pooler

This section will concentrate on mathematical formalism
of Spatial Pooler. The functionality of spatial pooler can be
described in a vector and matrix representation, this format of
data can improve the efficiency of the operations. The previous
section covered encoder formalism definition which is critical
since input data for the Spatial Pooler are generated at this
stage. The quality of the data directly affects performance of
SP. In article vectors are defined by lowercase names with an
arrow hat (the transpose of the vector will produce a column
vector). All matrices will be uppercase. Subscripts on vectors
and matrices are presented as right bottom indexes to denote
internal elements (e.g. Xi,j refers to element in i row and j
column). Element wise operations are defined by � and ⊕
operators. The I(k) function is indicator function that returns
1 if event k given as a parameter is true and 0 otherwise. The

TABLE I
SP SYMBOLS.

Symbol Meaning
n Number of patterns
p Number of inputs (features) in a pattern
m Number of columns
q Number of proximal synapses per column
φ+ Permanence increment amount
φ− Permanence decrement amount
φσ Window of permanence initialization
ρs Proximal synapse activation treshold
ρd Proximal dendrite segment activation treshold
ρc Desired column activity level

sduty Minimum activity level scaling factor
sboost Permanence boosting scaling factor
β0 Maximum boost
τ Duty cycle period

input of this function can be matrix or vector, then the output
is matrix or vector, respectively.

The user-defined input parameters are defined in (Table
I). These are parameters that must be defined before the
initialization of the algorithm.

The terms s, r, i, j and k are integer indices
used in article. Theirs vaues are bounded as follows:
s ∈ [0, n), r ∈ [0, p), i ∈ [0,m), j ∈ [0,m), k ∈ [0, q) .

I. Initialization

Competitive learning networks have typically each node
fully connected to each input. The other architectures and tech-
niques like self organizing maps, stochastic gradient networks
have single input connected to single node. In Spatial Pooler
the inputs connecting to a particular column are determined
randomly. The density of inputs visible by Spatial Pooler can
be computed by using input parameters which defines SP
architecture. These rules and dependencies formulas will be
described in this section. Let ~c ∈ Z1×m be the vector of
columns indices. The ~ci where i ∈ [0,m) is the column’s
index at i. Let I ∈ {0, 1}n×p be the set of input patterns,
such that Is,r indicates s index of r pattern.
Let column synapse index CSI ∈ rm×q be the source column
indices for each proximal synapse on each column, such that
CSIi,k is the source column’s ~ci index of proximal synapse
at index k (CSIi,k refers to specific index in Is).
For hardware implementation purpose and its memory limita-
tions the modifications to formal description were done. The
following changes parameters were defined:
• cconi - central index of input to which column i is assign
• radius - spectrum from cconi in which the indexes of

synapses’ inputs are randomly selected
• CSIi,k ∈ {cconi ± radius}m×q

Given q and p, the probability of a single input Is,r,
connecting to a column is calculated by using 19. In 19, the
probability of an input not connecting is first determined.
That probability is independent for each input. The total
probability of a connection not being formed is simply the
product of those probabilities. The probability of a connection

forming is therefore the complement of the probability of a
connection not forming.

P (irci) = 1−
q∏

k=0

(1− 1

p− k
) =

q + 1

p
(19)

The number of columns that are connected to single input
(20):

ncolr = 1−
m−1∑
i=0

q−1∑
k=0

I(CSIi,k == r) (20)

Expected number of columns to which given input is
connected (21):

E[ncolr] = m ∗ P (irci) (21)

The version of above equations for hardware
implementation are as follows (equations 22, 23 and
24):

P (irci) =


1−

∏q
k=0(1−

1
2∗radius−k) ifr ∈

[cconi − radius, cconi + radius]

0 ifr ∈
[0, cconi − radius] ∪ [cconi + radius, p]

(22)

ncolr = 1−
m−1∑
i=0

q−1∑
k=0

I(CSIi,k == r) (23)

E[ncolr] = m ∗ P (irci) (24)

It is also possible to calculate the probability of an input
never connecting 25.

P (ncolr = 0) = (1− P (irci)m (25)

The probabilities of connecting or not connecting input to
different columns are independent, it reduces to the product of
the probability of a input not connecting to a column, taken
over all columns (26 and 27).

nccol =

p−1∑
r=0

I(ncolr == 0) (26)

E[nccol] = p ∗ P (ncolr == 0) (27)

Using equation 19 and equation 25, it is possible to obtain
a lower bound for input parameters m and q, by choosing
those parameters such way that a certain percentage of input
visibility is obtained. To guarantee observance of all inputs,
equation 26 must be zero. The desired number of times an
input is observed may be determined by using equation eq:enc.

After connecting columns to input, the permanences of
synapses must be initialized. Permanences were defined to
be initialized with a random value close to ρs. Permanences
should be randomly initialized, with approximately half of

the permanences creating connected proximal synapses and
the remaining permanences creating potential (unconnected)
proximal synapses.

Let φ ∈ Rm×q be defined as the set of permanences for
each column, φi is set of permanences for proximal synapses
for column ~ci. φi,k is initialized by formula 28. Expected
permanence value is equal to ρs. Therefore q

2 synapses will
be connected. The parameter ρd should be less to give chance
each column to be activated at the beginning of learning
process.

φi,k ∼ uniform(ρs − φδ, ρs + φδ) (28)

As initial parameters are set the activation process can be
described by mathematical formulas. Let X ∈ {0, 1}m×q is
the set of inputs for each column, Xi set of inputs for column
~ci. Let aci =

∑q−1
k Xi,k be the random variable of number of

active inputs on column i. The average number of active inputs
on a column is defined by: ac = 1

m

∑m−1
i=0

∑q−1
k=0Xi,k. The

P (Xi,k) is defined as the probability of the input connected to
column i via proximal synapses. Therefore expected number
of active proximal synapses can be computed as follows 29:

E[~aci] = q ∗ P (Xi) (29)

Let ActConi,k = Xi,k ∩ I(φi,k ≥ ρs) defines the event
that proximal synapse k is active and connected to column i.
Random variable of number of active and connected synapses
for column i is define by 30:

~actconi =

q−1∑
k=0

ActConi,k (30)

The probability that synapse is active and connected:
P (ActConi) = P (Xi,k) ∗ 1

2 . Expected number of active and
connected synapses for single column is defined as 31:

E[~actconi] = q ∗ P (ActConi) (31)

Bin(k, n, p) is the probability mass function of a binomial
distribution (k number of successes, n number of trials, p
success probability in each trial). Number of columns with
more active inputs than threshold 32:

acts =

m−1∑
i=0

I(

q−1∑
k=0

Xi,k > ρd) (32)

Number of columns with more active and connected prox-
imal synapses than threshold 33:

actcol =

m−1∑
i=0

I(

q−1∑
k=0

ActConi,k > ρd) (33)

Let πx be the mean of P(x) and πac the mean of
P (ActCon) then by 35 and 34, the summation computes the
probability of having less than ρd active connected and active
proximal synapses, where the individual probabilities within
the summation follow the PMF of a binomial distribution.

To obtain the desired probability, the complement of that
probability is taken.

E[acts] = m ∗ [1−
ρd−1∑
t=0

Bin(t, q, πx)] (34)

P [ActCol] = [1−
ρd−1∑
t=0

Bin(t, q, πac)] (35)

E[actcol] = m ∗ [1−
ρd−1∑
t=0

Bin(t, q, πac)] (36)

J. Overlap

Let ConSyn ∈ {0, 1}m×q and ConSyni ∈ {0, 1}1×q
be the bit mask for proximal synapses connectivity where
ConSyni,k (equation 37).

ConSyni,k =

{
1 if φi,k ≥ ρs
0 otherwise

(37)

Let ~b ∈ R1×m be the vector of boost values for each
column (bi is the boost value for ith column). The equation
38 computes ovlpi, which is the number of synapses in
connected state whose input is activated (line 4 in II-B):

~ovlpi = ~Xi × ~ConSyni (38)

Then real overlap ~r_ovlp value based on boost factor can be
computed for each column (equation 39). The value r_ovlpi
is greater then zero if ovlpi ≥ 0 is (line 6-9 in II-B).

~r_ovlpi =

{
~ovlpi · bi if ovlpi ≥ ρd

0 otherwise
(39)

K. Inhibition

After computing overlap values for each column, the
process of activating them is based on set of neighbours
of the specified column (defined by inhibition radius).
Therefore neighborhood mask matrix is performed as
N ∈ {0, 1}m×m, where Ni is the neighborhood of the ith
column. Each element in a matrix is indicator of event that
column belongs to neighborhood or not (1 or 0 value). In
case of further optimizations the matrix can be reduced to
N ∈ {0, 1}m×inhibition_radius. Let kmax(S, k) be the k-th
largest value from set S and max(~v) be the largest value
from vector ~v. The set of active columns can be represented
by vector ~r_actCol ∈ {0, 1}1×m. The vector can be obtained
by computing following formula (line 2 in II-B, equation 40):

~γ = max ∗ (kmax(Ni � r_ovlp, ρc))∀i (40)

then (line 3-7 in II-B, equation 41):

~r_actCol = I(r_ovlpi ≥ γi)∀i (41)

L. Learning

Learning phase consists of updating permanence values,
inhibition radius and boosting factors updating and duty cycle
parameters coputing. The permanence values of synapses are
updated only when column is activated. Therefore update
of synapse can be defined as element wise multiplication
of transposed vector of column activations and matrix of
values of inputs connected to columns synapses. If inputs are
active then permanences are increased by value θ+ otherwise
decreased by θ− (line 6 and 8 in II-B, equations 42 and 43).

δφ = r_actColT � (θ+X − (θ_¬X)) (42)

δφi,k = r_actColTi � (θ+XCSIi,k − (θ_¬XCSIi,k)) (43)

The permanence values must been in [0,1] range. The
following equation is a rule of updating final permanence
values (line 6 and 8 in II-B, equation 44):

φ = clip(φ⊕ δφ, 0, 1) (44)

The clip function clips the permanence values in [0,1] range
(45).

clip(k, l, u) =


u if k ≥ u
l if ≤ l
k otherwise

(45)

Each column in learning phase updates activeDutyCycle
parameter - ~µai . The set of these paramters is represented by
vector ~µa. It is worth noticed that history of activation of the
columns activation should be stored in a additional structure
to remember and update duty cycle parameter in each cycle
- ActDCHist = {0, 1}m×history, (only set number of steps
before should be remember, history parameter is sliding
window width). The activeDutyCycle is computed as follows
(equation 46):

~µai =

τ∑
k=0

ActDCHisti,k (46)

The procedure of update_active_duty_cycle in each cycle
can be done by organizing above matrice as cycle list. In
each cycle the whole single column is updated. Then the
index to the column which will be update in next cycle is
incremented by one. If the index will be greater then matrice
width the index is set to 0. The minimum active duty cycle
~µmin is computed for boosting purposes by the following
equation (47):

~µmin = sduty ∗max(Hi � ~µa)∀i (47)

The maximal active duty cycle of columns in neighbourhood
is scaled by sduty factor.
The boost factor computation is base on µa, µmin parameters.
The boost function should be used when µa ≤ µmin. It
should be monotonically decreasing due to µa (equations 48
and 49).

b = β(µa, µmin)∀i (48)

β(µa, µmin) =


β0 for µmin = 0

1 for µa > µmin

boost function otherwise
(49)

The next parameter ~µo is overlapDutyCycle. It is computed
by the same manner like activeDutyCycle. Apart from
activation indicators the overlap are used. The similar matrice
of overlap history is used - OvlpDCHist. The permanence
boosting definition is based on comparing ~µo < ~µmin. If it
is true than all input synapses permanence are increased by
constant factor (line 8 in II-B, equation 50).

φ = clip(φ⊕ spboost ∗ I(~µo < ~µmin), 0, 1) (50)

The original inhibition radius presented by Numenta is
based on distances between columns and active connected
synapses (equation 51). Equation 54 presents how inhibition
is computed (sum of distances divided by sum of connected
synapses). The inhibition radius can be constant during
learning phase or can be changed. It depends of SP mode.
Both modes what will be described later should converge to
the stable value of inhibition radius or to value with minimal

variance.

D = d(pos(ci, 0), pos(CSIi,k))� ConSyni∀i∀k (51)

inhibitioni = max(1, b
∑m
i

∑q
kDi,k

max(1,
∑m
i

∑q
k ConSyni,k)

c)
(52)

It should be noticed that the spectrum of inhbition radius in
case of hardware implementation can be shifted or decreased
in some situations. In GPU when columns are processed by
thread blocks, boundary threads compare theirs overlap and
activeDutyCycle in spectrum of reduced inhibition radius to
avoid device memory synchronization [13]. During initializa-
tion process the mean distance and inhibition is defined by
equations 53 and 54:

mean_dist(ci) =
end−pos
input_size ∗ q ∗ avleft +

pos−start
input_size ∗ q ∗ avright

q
(53)

inhibition =

∑
meani
1
2 ∗ q

(54)

The initial probability of column activation based on inhi-
bition radius is defined by equation 55.

P (r_ActCol) =
k

inhibition
∗ P (ActCol) (55)

The probability of boosting at initial stage can be computed
by equation 56.

P (boost) =
inhibition− k
inhibition

∗ P (ActCol) (56)

M. Quality of SP

The Spatial Pooler output representation is in sparse format
so number of active columns is k << n (equations 57 and
58).

|
∑

I(ActCol == 1)| = k (57)

max(k) ' 4− 5%(minoverlap == 1 if sparse input) (58)

As SP pattern is learnt we can estimate what input give
the same output and its probability. The probability is
equals to product of probabilities that for active columns for
given pattern the overlap is greater or equal to minoverlap
(equation 59).

N−k∏
i=0

P (ovlpi < minovlp) ∗
k∏
i=0

P (ovlpi ≥ minovlp) (59)

The single probability can be computed by following equation

(60):

P (ovlpi ≥ minovlp) =
q∏

k=0

P (XCSIi,k−>(φi,k≥ρs) == 1)

(60)
The number of unique patterns that can be represented on

n bits with w bits on is defined by (equation 61):

(
n

w

)
=

p!

w!(p− w)!
(61)

Then we can define the number of codings that can give
similar output as learnt pattern by SP (equation 62 is a
number of input codings for actie columns and 63 is number
of input codings for non active columns).

act∏
i=0

(2(q−
∑
I(φi,k≥ρs)) ∗

(∑
I(φi,k ≥ ρs)
minoverlap

)
(62)

N−act∏
i=0

(2(q−
∑
I(φi,k≥ρs)) ∗

minoverlap−1∑
g=0

(∑
I(φi,k ≥ ρs)
g − 1

)
(63)

The 2(q−
∑
I(φi,k≥ρs)) is the number of codings on input to

synapses that are learnt zero bit pattern (φi,k < ρs). The(∑
I(φi,k≥ρs)

minoverlap

)
is number of codings that input has more bits

on than minoverlap on synapses learnt for receiving bits with
value 1 (φi,k ≥ ρs).

N. Convergence of SP

In this section the convergence of SP learning process will
be described. We divided the process of learning SP to two
different modes. The first one consists of learning each pattern
seperately. In this case for each column ci the final state
of SP after learning process should be as follows (for t→∞):

•
∑q

0Xi,k > minovlp
φi,k → 1.0 for Xi,k == 1
φi,k → 0.0 for Xi,k == 0

•
∑q

0Xi,k < minovlp, φi,k → 1.0

There are three possible starting states at the beginning of
learning, the possible transisions from state to other state are
as follows (indicated by →):
• not overlap→ (t→∞) permanence boosting→ (overlap
≥ minoverlap) if

∑q
k=0Xi,k ≥ ρs

• overlap ≥ minOverlap & no activation → overlap boost-
ing (activeDutyCycle value)→ activation→ permanence
updating

• overlap ≥ minOverlap & activation → permanence up-
dating

It can be noticed that if there are more columns than k
parameter with overlap greater or equal than minoverlap
value in spectrum of constant inhibition radius than columns
are in priority queue (priority is activeDutyCycle) in which
they are will be activated in cyclic way (because of overlap
boosting).
Process of single pattern learning can be run further for next
pattern. Before this process learnt columns (columns activated
by learnt pattern) should be blocked from permanence
boosting (avoid boosting of learnt synapses). The columns
activated (learnt) by previous pattern can ba activated by new
pattern only when overlap between inputs of patterns to this
column is greater or equal minoverlap. Overlap function is
defined as follows (equation 64):

overlap(x, y) = x× y (64)

where: x and y are binary vectors.
In case of SP learning process of multiple patterns simulta-

neously there can exist some other situation which can speed
up or slow down process of convergence. These all situation
are mentioned below:
• detraction of 1 on single synapse when multiple patterns

activate the same column with opposite input value on
single synapse (((r_ovlpi,s < minoverlap)&(Xi,k ==
1))||(ovlpDCi,s < minActDCi,s)) & ((r_ovlpi,s+1 <
minoverlap)&(Xi,k == 0))

• P(detraction of 0)=(P(Act=1)*P(synapse=1) + P(boost))
• attraction of 1 on single synapse when multiple patterns

activate the same column with the same input value on
single synapse (((r_ovlpi,s < minoverlap)&(Xi,k ==
1))||(ovlpDCi,s < minActDCi,s)) & ((r_ovlpi,s+1 >
minoverlap)&(Xi,k == 1))

• attraction of 0 on single synapse when multiple patterns
activate the same column with the same input value on
single synapse ((r_ovlpi,s < minoverlap)&(Xi,k ==
0)) & ((r_ovlpi,s+1 > minoverlap)&(Xi,k == 0))

There are three possible situations during learning process
(multiple pattern learning with constant inhibition radius):
• permanence boosting of inputs of columns activated by

different patterns, harmful effect but if duty cycle big
enough (almost bigger than number of patterns), inputs
will be learned

• attraction (equations above) - speeding up learning
• detraction (equations above) - slowing down learning
In both presented situations (single and multi pattern learn-

ing) constant inhibition radius is used. According to the orig-
inal Numenta algorithm the fluctuations of inhibition radius
should decrease during learning process [8], but there is
possibility that inhibition radius never converge to constant
value. In our approach the constant inhibition radius allows to
show convergence of learning process. This situation can be
achieved by stopping the inhibition radius changing after some
learning steps or to change algorithm by the one with radius
convergence to stable value. It should be noticed that values

of inhibition radius and k should guarantee sparse output at
the end of learning.

IV. CONCLUSIONS AND FUTURE WORK

The presented HTM model is a new architecture in deep
learning domain inspired by human brain. Initial results show
[9] that it can be at least efficient like other machine and deep
learning models. Additionally, our earlier research [13] showed
that it can be significantly speed up by hardware accelerators.
The presented formalism is one of the first article with full
mathematical description of HTM Spatial Pooler. The formal
description will help to parameterized the model. According
to given encoder and its input distribution characteristic it
is possible by formal model to estimate number of learning
cycles, probability of patterns attraction, detraction etc. Further
work the should concentrate on extending the formalism by
accurate proofs of convergence of learning process. Then
formal description of temporal pooler should be added.

REFERENCES

[1] V. B, Mountcastle, “The columnar organization of the neocortex”,
Brain, 1997, vol. 120, no.4, pp. 701–722.

[2] Y. Bengio, A. Courville, P. Vincent, “Representation Learning: A Re-
view and New Perspectives”, IEEE Transactions on Pattern Analysis
and Machine Intelligence , 2013, vol. 35, no. 8, pp. 1798–1828.

[3] Q. Liu, Z. Huang, F. Hu, “Accelerating convolution-based detection
model on GPU”, Estimation, Detection and Information Fusion
(ICEDIF), 2015 International Conference on, Harbin, 2015, pp. 61–
66.

[4] K. Woodbeck, G. Roth and Huiqiong Chen, "Visual cortex on the
GPU: Biologically inspired classifier and feature descriptor for rapid
recognition," Computer Vision and Pattern Recognition Workshops,
2008. CVPRW ’08. IEEE Computer Society Conference on, Anchor-
age, AK, 2008, pp. 1-8.

[5] D. Thomas and W. Luk, "FPGA Accelerated Simulation of Biologi-
cally Plausible Spiking Neural Networks," Field Programmable Cus-
tom Computing Machines, 2009. FCCM ’09. 17th IEEE Symposium
on, Napa, CA, 2009, pp. 45-52.

[6] X. Chen, W. Wang and W. Li, “An overview of Hierarchical Temporal
Memory: A new neocortex algorithm“, Proceedings of International
Conference on Modelling, Identification & Control (ICMIC), Wuhan,
Hubei, China, 2012, pp. 1004-1010.

[7] Human Brain Project,https://www.humanbrainproject.eu/, access
10.04.2016.

[8] J. Mnatzaganian, E. FokouÃl’, D. Kudithipudi. A Mathematical
Formalization of Hierarchical Temporal Memory’s Spatial Pooler,
2016; arXiv:1601.06116.

[9] Y. Cui, S. Ahmad, J. Hawkins. Continuous online sequence learning
with an unsupervised neural network model, 2015; arXiv:1512.05463.

[10] S. Ahmad, J. Hawkins. How do neurons operate on sparse distributed
representations? A mathematical theory of sparsity, neurons and
active dendrites, 2016; arXiv:1601.00720.

[11] S. Ahmad, J. Hawkins. Properties of Sparse Distributed Representa-
tions and their Application to Hierarchical Temporal Memory, 2015;
arXiv:1503.07469.

[12] S. Purdy. Encoding Data for HTM Systems, 2016; arXiv:1602.05925.
[13] M. Pietron, M. Wielgosz, K. Wiatr, Parallel Implementation of

Spatial Pooler in Hierarchical Temporal Memory.In Proceedings of
the 8th International Conference on Agents and Artificial Intelligence,
pp. 346–353.

https://www.humanbrainproject.eu/
http://arxiv.org/abs/1601.06116
http://arxiv.org/abs/1512.05463
http://arxiv.org/abs/1601.00720
http://arxiv.org/abs/1503.07469
http://arxiv.org/abs/1602.05925

	I Introduction
	II HTM architecture
	II-A Encoder
	II-B Spatial Pooler

	III Mathematical formalism
	III-A Spatial Distributed Representation
	III-B Space definition
	III-C Notation
	III-D Preserving semantics
	III-D1 Input space
	III-D2 SDR space

	III-E Relationship between Input and SDR spaces
	III-F Basic assumptions
	III-G Encoder formalism
	III-H Spatial Pooler
	III-I Initialization
	III-J Overlap
	III-K Inhibition
	III-L Learning
	III-M Quality of SP
	III-N Convergence of SP

	IV Conclusions and future work
	References

