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Abstract. We report on our progress-to-date in implementing a soft-
ware development environment which integrates the efforts of two for-
mal software engineering techniques: program refinement as supported
by Event B and program verification as supported by the Spec# pro-
gramming system. Our objective is to improve the usability of formal
verification tools by providing a general framework for integrating these
two approaches to software verification. We show how the two approaches
Correctness-by-Construction and Post-hoc Verification can be used in a
productive way. Here, we focus on the final steps in this process where
the final concrete specification is transformed into an executable algo-
rithm. We present EB2RC, a plug-in for the Rodin platform, that reads
in an Event B model and uses the control framework introduced during
its refinement to generate a graphical representation of the executable
algorithm. EB2RC also generates a recursive algorithm that is easily
translated into executable code. We illustrate our technique through case
studies and their analysis.

1 Introduction

The problem that we address is as follows: Given a program specification how do
we provide an integrated software development environment in which we can (a)
refine the specification into one that is algorithmic and (b) automatically verify
that the derived algorithm meets the specification?1 Our proposed solution is
to combine the efforts of two formal software engineering techniques: program
refinement as supported by Event B [1] and program verification as supported
by the Spec# Programming System [3]. Our objective is to improve the usability
of formal verification tools by providing a general framework for integrating these
two approaches to software verification. We focus on the strengths of each so that
1 We acknowledge the Irish Research Council and Campus France for the joint funding
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their integration makes the verification task more approachable for users. The
final architecture induces a methodology which is useful for the specification,
the construction and the verification of correct sequential algorithms.

Here, we report on progress in implementing our integrated software devel-
opment environment. The input to our system is an abstract specification which
is then refined into a more concrete specification using the Event B modelling
language and its associated tool-set, the Rodin platform. The output from our
system is a concrete Spec# program containing both the executable code and
the proof obligations that are necessary for its automatic verification. Here, we
focus on the later steps in this process where the final concrete specification is
transformed into an executable algorithm. We present a plug-in for the Rodin
platform that reads in an Event B model and uses the control framework intro-
duced during its refinement to generate both a graphical representation of the
executable algorithm, and a recursive algorithm that is easily translated into
executable code.

In [10], we presented and verified the transformations involved in generating
executable code from Event B. We verified the correctness of the transformed
executable code in a static program verification environment for C# programs,
namely the Spec# programming system.

In this paper, we focus on implementing one of the core transformations,
which is the final concrete specification is transformed into an executable recur-
sive algorithm. This has been implemented by the EB2RC, a plug-in for the
Rodin platform. We analysis the impact of our tool through several case stud-
ies. The analysis leads us to identify and discuss on the strengths of program
refinement and post-hoc program verification so that their integration makes the
verification task more approachable for users.

Paper organization. We provide a brief overview of program refinement as
supported by Event B (Sect. 2). We then give an overview of our framework
for refinement based program verification (Sect. 3). The technical details of our
translation procedure and its implementation as EB2RC are presented in Sect. 4.
The impact of our tool is shown in Sect. 5. An analysis of more case studies that
illustrate our technique and our conclusion are then presented in Sects. 6 and 7
respectively.

2 The Event B Modelling Framework

Event B [1] is a formal method for system-level modelling and analysis. An
Event B model is defined via contexts which define the static components of the
model and machines which define the dynamic components of the model. Event
B machines are characterized by a finite list x of state variables, modified by a
finite list of events, where an invariant I(x) states properties that must always
be satisfied by the variables x and maintained by the events. For an example see
events find and fail in Sect. 5 which provides for an initial model of a binary
search algorithm.
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Each event has three main parts: a list of local parameters, a guard G and
a relation R over values denoted pre-values (x) and post-values (x′) of state
variables. When the guard holds the actions in the event body modify the state
variables according to the relation R. A before–after predicate BA(e)(x, x′) asso-
ciated with each event describes the event as a logical predicate for expressing
the relationship linking values of the state variables just before, and just after,
the execution of event e. The most common representation of an event has the
form

ANY t WHERE G(t, x) THEN x : |(R(x, x′, t)) END

where t is a local parameter and the event actions establish x : |(R(x, x′, t)). The
form is semantically equivalent to ∃ t· (G(t, x) ∧ R(x, x′, t)).

2.1 Verifying Event B Models

The Event B modelling language is supported by the RODIN platform [12].
These both provide facilities for editing machines, refinements, contexts and
projects, for generating proof obligations corresponding to a given property, for
proving proof obligations in an automatic or/and interactive process and for
animating models. Note that our models can only express safety and invari-
ance properties, which are state properties. Proof obligations produced via the
RODIN platform (see Listing 1) include that the initialisation event establishes
the invariant I, that the event e preserves the invariant I and that the event e
is feasible with respect to the invariant I. By proving feasibility, we prove that
BA(e)(x, y) provides an after-state whenever grd(e)(x) holds. This means that
the guard indeed represents the enabling condition of the event.

Refinement of an Event B model is achieved by extending the list of state
variables (and possibly suppressing some of them), by refining each abstract
event to a set of possible concrete versions, and by adding new events. The
abstract (x) and concrete (y) state variables are linked by means of a glueing
invariant J(x, y) which must be maintained throughout the system modelling.
A number of proof obligations generated by each refinement step (see Listing 2)
ensure that each abstract event is correctly refined by its corresponding concrete
version, each new event refines skip, no new event takes control forever and
relative deadlock freedom is preserved. Through refinement we can enrich our
Event B models in a step-by-step manner and validate each decision step as
we construct the final concrete model. This is the foundation of the correct-by-
construction approach [7].
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2.2 The Call-as-event Paradigm

The main idea of our methodology is based on the call-as-event paradigm [9].
It expresses the consequences on the correct-by-construction approach. In this
section, we give a short summary of the method.

Abrial [1] shows how sequential programs can be developed by the Event B
refinement approach. He lists rules for producing sequential programs by merg-
ing events. Kourie and Watson [6] illustrates the use of Morgan’s refinement
calculus for developing sequential programs without any proof assistant sup-
port. Both approaches are based on the same idea of developing invariants to
prove verification conditions. However, developing invariants is generally not an
easy task. The refinement-based development, which involves several steps of
refinements, makes this task even more difficult (i.e. to glue/synchronize the
developed invariants across refinements).

The call-as-event paradigm initiates the development of a sequential program
by stating its specification (i.e. inputs-outputs behaviours through the pre/post-
conditions) as abstract events in an abstract model. Then, the subsequent refine-
ments introduce more concrete models, based on an inductive definition of the
outputs with respect to the input. Each concrete model contains concrete events
that aim to compute the same sequential program under development, but with
more detail of the computation.

The essential idea of the call-as-event paradigm is that the concrete event
can be expressed in a way to represent a procedure call (by following a straight-
forward syntactic naming convention for events [10]), which makes refinement
proofs easier: (a) the control variables can be introduced over the events for
structuring the inductive computation. (b) the invariants can be defined in a
simpler way by analysing the specification of calls.

Specifically, the call-as-event paradigm has three types of events to be used
in a concrete model:

– Basic events. An event e is a basic event if it represents a sequence of atomic
computation steps.

– Recursive call events. An event e is a recursive call event if it corresponds to
the call of the procedure under development.

– Non-recursive call events. An event e is a non-recursive call event if it corre-
sponds to the call of another procedure.

The type of the events are distinguished by their event name. The recur-
sive and non-recursive call events are prefixed with rec and call respectively,
followed by the sub-procedure to be called. Moreover, to ensure the soundness
of the program development, the sub-procedure to be called should have been
defined/specified by an Event B machine, since the developed program should
not call a miracle procedure (i.e. a procedure that does not exists). This is a
incremental development strategy, where the developer can focus on develop-
ing the main-procedure, reuse of developed specifications of sub-procedures and
stage their development using the same call-as-event paradigm.
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In summary, the refinement process that based on the call-as-event paradigm
is straightforward, and writing invariant becomes easier for following the induc-
tive property defining the computation to program. In the next section, we show
how we interact with the Spec# language.

3 An Overview of Our Integrated Development
Framework

Our integrated development framework for implementing abstract Event B
models brings together the strengths of the refinement based approaches and
verification based approaches to software development. In particular, our frame-
work supports:

1. Splitting the abstract specification to be solved into its component specifica-
tions.

2. Refining these specifications into a concrete model using Event B and the
RODIN platform.

3. Transforming the concrete model into algorithms that can be directly imple-
mented as real source code using graph visualisation and applying code gen-
eration transformations.

4. Verifying the iterative algorithm in the automatic program verification envi-
ronment of Spec#.

In this paper we focus on the transformations involved in item number three.
First we provide an overview of our integrated development framework to help
set the context of our work. Figure 1 provides an overview of our framework
for refinement based program verification. The problem to be solved is stated
as a collection of method contracts, in the form of a Spec# program. Spec#
is a formal language for API contracts (influenced by JML, AsmL, and Eiffel),
which extends C# through a rich assertion language that allows the specification
of objects through class invariants, field annotations, and method specifications
[2,3]. Spec# comes with a sound programming methodology that allows the
compiler to emit run-time checks at compile time, recording the assertions in
the specification as meta-data for consumption by downstream tools. This allows
the analysis of program correctness before allowing the program to be executed.

Note that in the traditional verification approach, the programmer provides
both the specification and its implementation. In our integrated development
framework we use model refinement in Event B to construct the Spec# imple-
mentation from its specification. This refinement also generates the proof oblig-
ations that must be discharged as part of the verification. We add these as
invariants and assertions in the program so that its verification is completely
automatic with the Spec# programming system. The result is a program, from
which we can obtain a cross-proof, which verifies that the refinement process
generates a program, which correctly implements its contract.

The Event B refinement square (with nodes PREPOST, CONTEXT,
PROCESS and CONTROL) in Fig. 1, provides the mechanism for deriving
annotations via refinement. It can be explained briefly as follows:
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– The Event B machine PREPOST contains events, which have the same
contract as that expressed in the original pre/post contract. This machine
SEES the Event B CONTEXT, which expresses static information about
the machine.

– The Event B machine PROCESS refines PREPOST generating a concrete
specification that satisfies the contract. This machine SEES the Event B
context CONTROL, which adds control information for the new machine.

– The labelled actions REFINES, SEES and EXTENDS, are supported by
the RODIN platform and are checked completely using the proof assistant
provided by RODIN.

The result of the refinement is the Event B machine PROCESS, which contains
the refined events and the proof obligations that must be discharged in order
to prove that the refinement is correct. The transformation of this Event B
machine PROCESS into a concrete iterative OPTIMISED ALGORITHM is
achieved via our EB2RC tool (Sect. 4) and removing recursion [10].

pre/post

(Spec# contract)
PREPOST

(Event B machine)
CONTEXT

(Event B context)

PROCESS
(Event B machine)

CONTROL
(Event B context)

ALGORITHM
(Recursive Algorithm)

FLOWCHART
(Annotated Graphs)

(Events & Assertions)

program

(Spec# program)

OPTIMISED
ALGORITHM

(Iterative Algorithm)

call−as−event

checking

SEES

REFINES

SEES

EB2RC
EB2RC

EXTENDS

removing recursion

translating

Fig. 1. An overview of our integrated development framework to combine program
refinement with program verification

4 EB2RC: A Tool for Translating Event B Models
to Recursive Code

We support the generation of a concrete recursive algorithm ALGORITHM
from the Event B machine PROCESS with EB2RC, a plug-in for Rodin
which we have developed. In the sections that follow we describe the generation
process in detail.
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4.1 Overview of Our EB2RC Plugin

As seen in Fig. 1 the result of the refinement is a concrete Event B machine
PROCESS, which is the input of our EB2RC plugin. Then, our plugin gen-
erates a recursive algorithm (ALGORITHM) in text format, and a graphical
representation of the recursive algorithm (FLOWCHART) to improve compre-
hensibility. The textual recursive algorithm can be easily translated into either
executable code or artefacts of the post-hoc verification tools (e.g. Spec#).

Our approach for generating a recursive algorithm from a concrete machine
is based on a systematic transformation using control labels: each machine has
a start and an end label, and each event is characterised by a current label
and a next label. The purpose of these control labels is to simulate the dif-
ferent computation steps of the developed recursive algorithm. In other words,
the computation steps of the recursive algorithm are abstracted by a acyclic
graph of control labels, where these labels describe the set of events used in the
computation.

Specifically, our plugin first ensures the input machine is ready for recur-
sive algorithm generation by design extra proof obligations (Sect. 4.2). Then, it
extracts essential information (e.g. control labels) from the concrete machine
(Sect. 4.3). This step is guided by a auxiliary configuration file provided by the
user (i.e. the developer of the concrete machine). Next, based on the essential
information extracted, our plugin systematically reconstructs a recursive algo-
rithm in textual and graphical representation (Sect. 4.4).

Our EB2RC plugin is written in Java. It interacts with APIs of the Rodin
platform (v2.7) to extract information from the concrete machine of interest.
Then, after automatic systematic reconstruction, our plugin directly generates
textual recursive algorithm, and a input file for the Dot tool of GraphViz, thereby
producing its graphical representation.

4.2 Proof Obligations

A set of extra proof obligations are generated during the generating-algorithm
stage in our Integrated Development Framework (Fig. 1). They are to ensure
that the Event B machine can be safely translated into a recursive algorithm,
for example:

– The annotated control labels in the actions and guards of each event are
different (i.e. the event always progresses);

– Only one event does not have any control labels in its guards (i.e. the start
event);

– Only one event does not have any control labels in its actions (i.e. the end
event);

– The labels in an Event B machine forms an acyclic graph;

4.3 Extracting Information from Event B Machine

To guide our plugin to proceed, we require the user to define the following
information into a configuration file:
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– The name of the input Event B machine (i.e. the concrete Event B machine
to be processed).

– The name of the control label used by the input Event B machine.
– The name of the start control label used by the input Event B machine.

Then, based on the configuration file the user provided, our EB2RC plugin
extracts essential information from each event of the input machine. One of the
essential information our plugin interested in is the current and next labels of
each event. The control labels are used to control the order in which the events
are combined to achieve a recursive algorithm. The current label informs us of
the start state of an event, whereas the next label of an event determines which
events will follow it. The current and next control labels are derived from the
guards and actions of each event respectively.

Another essential information our plugin recorded is the type of each event.
During the refinements, we distinguish three types of events by their names: (a)
basic events represent a sequence of atomic computation steps, whose names
are without any prefixes. (b) recursive events represent a computation step of
a recursive call, whose names are prefixed with rec. (c) call events represent a
computation step of a external function call, whose names are prefixed with call.
By categorising events by their types, EB2RC will treat them differently while
extracting information.

Our plugin also records the guards and actions of each event. To facilitate
textual and graphical recursive algorithm generation, we perform some optimiza-
tions: First, for events of basic type, all the guards and deterministic actions2

are recorded unless they reference control labels. Second, for events of recursive
and call type, the guards and actions are derived from their event name. This
becomes practical because of the naming convention of our approach [10], i.e.
we require the guards and actions need to be explicitly referred by the name of
the events of recursive and call type.

Finally, our plugin needs to store the next events of an target event. An event
x is regarded as the next event of a target event y if the current label of x equals
to the next label of y. In this manner, each event can be related to other events
as in a transition system.

4.4 Representing Extracted Information

An intuitive diagram allows easier understanding of the algorithm, and is a pre-
requisite for modularizing complex algorithms. Therefore, we construct a control
flow graph for the input Event B machine by using extracted information.

We start by consulting the configuration file for the start control label used
by the input Event B machine. Then, we find an event of the input with this
start label as its current label, printing its actions and guards (according to
the grammar of the Dot language), and recursively apply the same printing
procedure to its next events.
2 In Event B, two types of actions (becomes such that and becomes in set actions)

are non-deterministic.
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Representing the developed Event B machine in textual format is similar
to the generation of graphical format, only differs in how it is printed. We chose
a general syntax that can be understand by the programmers to print, and it is
straightforward to customize the printing to generate artefacts for the post-hoc
verification tools (e.g. Spec#). Examples of generating textual and graphical
representation for a recursive binary search algorithm is given in Sect. 5. More
applications can be seen in Sect. 6.

5 Case Study: The Binary Search Problem

We detail the complete development by refinement of an algorithm which solves
the problem of searching for a value in a table. We demonstrate concrete example
of the output of our EB2RC plugin, which is a recursive algorithm and its
graphical representation. Then, we discuss our experience of integrating two
popular approaches to formal software development, i.e. refinement and post-
hoc verification approaches.

5.1 Specifying the Binary Search Problem

The input parameters of the binsearch procedure are: a sorted array t; the bounds
of the array within which the algorithm should search (lo and hi); and the value
for which the algorithm should search (val). Output parameters are result and
a boolean flag ok that indicates if t(result) = val. The procedures pre and post
conditions are presented in Algorithm 1.

Algorithm 1. binsearch(t, val, lo, hi, ok, result)

precondition :

⎛

⎜
⎜
⎜
⎜
⎝

t ∈ 0..t.Length −→ N

∀k.k ∈ lo..hi − 1 ⇒ t(k) ≤ t(k + 1)
val ∈ N

l, h ∈ 0..t.Length
lo ≤ hi

⎞

⎟
⎟
⎟
⎟
⎠

postcondition :

(
ok = TRUE ⇒ t(result) = val
ok = FALSE ⇒ (∀i.i ∈ lo..hi ⇒ t(i) �= val

)

The array t is sorted with respect to the ordering over integers and a simple
inductive analysis is applied leading to a binary search strategy. The specifi-
cation is first expressed by two events corresponding to the two possible cases
(Listing 3): either a key exists in the array t containing the value val, or there is
no such key. These two events correspond to the two possible resulting calls to
the procedure binsearch(t, val, lo, hi; ok, result):

– EVENT find is binsearch(t, val, lo, hi; ok, result) where ok = TRUE
– EVENT fail is binsearch(t, val, lo, hi; ok, result) where ok = FALSE
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These two events form the machine called binsearch1 which is refined to
obtain binsearch2 (corresponding to PROCESS of Fig. 1). In addition to these
events, the events of this refined machine contains a new control label, l, which
simulates how the binary search is achieved. We illustrate two of the events of
binsearch2 in Listing 3. Its complete refinement is presented in [10].

5.2 Automatic Generation of the Algorithm

The result of our translation is two-fold. Firstly, to help people comprehend the
algorithm, EB2RC reads in the Event B machine and visualizes it as in Fig. 2.
Specifically, we draw a circular node to present each event. The guards of each
event are indicated by the arrows, and the actions of the event are indicated in
the text of the rectangular node belonging to each arrow. The outcome of each
event is transitions to other events, which is indicated by directed edges between
two circular nodes.

Secondly, a textual representation of the binary search algorithm is con-
structed by the EB2RC. The produced algorithm (as shown in Algorithm2)
has been compared to the algorithm produced by hand by the authors. The two
algorithms are identical up to a slight reformatting.
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Fig. 2. Visualized representation of the binary search algorithm

Table 1. Proof effort of our refinement approach for the binary search case study

Model Total Auto Manual Reviewed Undischarged % auto

binsearch1 5 5 0 0 0 100%

binsearch2 71 63 8 0 0 78%

The proof effort of our refinement approach for the Binary Search case study
is illustrated in Table 1. The first abstract model is proved automatically and
the second concrete model is automatic in 78 % of its proof obligations.

5.3 Discussion

Upon this point, we have shown that our technique assists in discovering a good
inductive process which will lead to a recursive solution. However, we do not take
dynamic properties (e.g. range of array index) of general programming languages
into consideration while applying our technique. As a result, it is possible to pro-
duce unreliable executable code from the recursive algorithm we generated. To
our knowledge, checking dynamic properties of general programming languages
is not currently supported by the Event B approach. It would be cumbersome to
mimic this feature in Event B for every developed algorithm. Whereas, Spec#
checks several dynamic properties of the C# language by default.

The essential idea of our integrated development framework is to bring
together the strengths of the refinement based approaches and post-hoc veri-
fication based approaches to software development. This kind of interoperabil-
ity between approaches allows several techniques to interact with each other
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Algorithm 2. Recursive Algorithm binsearch(t,lo,hi,val;ok,result) gener-
ated by EB2RC

ok := FALSE;mi := 0;
if lo = hi ∧ t(lo) = val then

ok := TRUE; result := lo;

else if lo = hi ∧ t(lo) �= val then
ok := FALSE;

else if lo < hi then
mi := (lo + hi) ÷ 2;
if t(mi) = val then

ok := TRUE; result := mi;

else if val > t(mi) ∧ mi + 1 ≤ hi then
ok, result := binsearch(t,mi + 1, hi, val);

else if val < t(mi) ∧ lo ≤ mi − 1 then
ok, result := binsearch(t, lo,mi − 1, val);

(e.g. share information, chain the proof obligations) so that they can collectively
prove tasks/theorems more automatically than any one of them could prove in
isolation.

Kaufmann and Moore, based on their experience, suggest that what prevents
interoperability between verifiers is that the time it takes to interact with another
verifier is often dominated by the time it takes to convert a problem into the
representation used by the “foreign” verifier [5]. In our experience, this phenom-
enon also applies to the interoperability between refinement based approaches
and post-hoc verification based approaches.

Take the binary search algorithm we developed in this section for example.
We find that the equivalent recursive program in Spec# time-out when it is
verified. In fact, our experience shows that Spec# does not perform very well on
recursive program (due to the two different semantics of assertion languages).

Our integrated development framework takes this into consideration. As
shown in Fig. 1, we suggest to translate every recursive algorithm ALGO-
RITHM into a partially annotated and iterative OPTIMISED ALGORITHM
to be verified within the Spec# Programming System. In [10], we have pro-
posed and proved a sound translation procedure from ALGORITHM to OPTI-
MISED ALGORITHM to perform this task. For example, the iterative version
of the binary search algorithm in Spec# is shown in Fig. 3.

By sending this program to Spec#, Spec# reports the program as verified.
No user interaction is required in this verification as all assertions required (pre-
conditions, postconditions and loop invariants) have been generated as part of
the refinement and transformation of the initial abstract specification into the
final iterative algorithm. The automatic verification of the final Spec# program
is available online at http://www.rise4fun.com/SpecSharp/kyKW.
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class BS {
int BinarySearch ( int [ ] t , int val , int lo , int hi , bool ok )
requires 0 <= lo && lo < t . Length && 0 <= hi && hi < t . Length ;
requires l o <= hi && 0 < t . Length ;
requires f o r a l l { int i in ( 0 : t . Length ) , int j in ( i : t . Length ) ; t [ i ]<=t [ j ] } ;
ensures −1 <= r e s u l t && r e s u l t < t . Length ;
ensures (0 <= r e s u l t && r e s u l t < t . Length)==> t [ r e s u l t ] == val ;
ensures r e s u l t == −1 ==> f o r a l l { int i in ( l o . . h i ) ; t [ i ] != va l } ;

{ int mi = ( l o + hi ) / 2 ;
while ( ! ( l o == hi && t [ l o ] == val ) | | ( l o == hi && t [ l o ] != va l )

| | ( l o < hi && (mi == ( lo + hi ) /2) && t [ mi ] == val ) )
invariant 0 <= lo && lo < t . Length && 0 <= hi && hi < t . Length ;
invariant 0 <= mi && mi < t . Length ;
invariant ( va l < t [ mi ] ) ==> f o r a l l { int i in (mi . . h i ) ; t [ i ] != va l } ;
invariant ( va l > t [ mi ] ) ==> f o r a l l { int i in ( l o . . mi ) ; t [ i ] != va l } ;

{ mi = ( l o + hi ) / 2 ;
i f ( ( mi+1 <= hi ) && ( va l > t [ mi ] ) ) l o = mi +1;
else i f ( ( l o <= mi−1) && ( va l < t [ mi ] ) ) h i = mi − 1 ;

}
i f ( ( l o == hi ) && ( t [ l o ] == val ) ) {ok = true ; return l o ;}
else {
i f ( ( l o == hi ) && ( t [ l o ] != va l ) ) {ok = f a l s e ; return −1;}
else i f ( ( l o < hi ) && ( t [ mi ] == val ) ) {ok = true ; return mi ;}
else {ok = f a l s e ; return −1;}

}
}

}

Fig. 3. Binary Search C# program corresponding to the generated iterative procedure.

6 Further Case Studies

We now summarize several case studies that have been developed using our
methodology and tool-kit. We give the details of the development of an abstract
Event B model into a recursive algorithm by summarizing the number of proof
obligations required for each case study. Moreover, the procedures used for dis-
charging proof obligations can help understand the automation of this process.

Insertion Sort: The effort of formalisation of the insertion sort algorithm lies in
simplifying how to express inserting an element into a sorted list. Our method-
ology starts with a procedure sortingspec which is simply specified by an event
modelling the pre/post specification of the insertion sort algorithm. As shown in
Table 2, during the development, 75 % of the proof obligations is automatically
discharged in both the initial specification and in the refined machine sortingref .

As shown in Algorithm 3, the call of the procedure inserting illustrates the
reusability of an already developed problem within our MOdels DEveloped on
the shelf (MODES) library of verified procedures. Proof obligations associated
with calling these procedures must be discharged to prove the correctness of this
procedure call.

Moreover, in this case study, proofs which are manually discharged relates to
permutations of the input array. However, they are easier to prove than in the
classical iterative algorithms for sorting, since the complexity is hidden by the
recursive call.

Exponentiation: This problem is to compute the function ab using the fact
that when b is even, the value to compute is transformed into

(
a2

)b/2 and when
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Algorithm 3. Recursive Algorithm sorting(m,t;st) generated by EB2RC

st := t; at := t;
if m = 1 then

st := ide; t;

else if m �= 1 then
at := sorting(m − 1, t);
st := inserting(m, at);

Table 2. Proof effort of our refinement approach for the insertion sort case study

Model Total Auto Manual Reviewed Undischarged % auto

sortingspec 4 3 1 0 0 75 %

sortingref 45 33 1 0 11 75 %

b is odd, the value to compute is ab−1 × a. These two ways to compute the
exponentiation are easy to express in the following Event B context:

axm1 : a ∈ N1 ∧ b ∈ N ∧ p ∈ N × N → N

axm4 : ∀n·n ∈ N1 ⇒ p(n 	→ 0) = 1
axm5 : ∀n,m·n ∈ N ∧ m ∈ N1 ⇒ p(n 	→ m) = p(n 	→ m − 1) ∗ n
axm6 : ∀n,m·n ∈ N ∧ m ∈ N ∧ m/2 ∗ 2 = m − 1 ⇒ p(n 	→ m) = p((n 	→ m − 1)) ∗ n
axm7 : ∀n,m·n ∈ N ∧ m ∈ N ∧ m/2 ∗ 2 = m ⇒ p(n 	→ m) = p((n ∗ n 	→ m/2))

As shown in Table 3, our methodology leads to two refinement steps to
develop the exponentiation algorithm. During the refinement, the Rodin proof
system automatically knows which axioms to use in the context. However, in our
experience, the proof obligations involves these axioms are difficult to prove auto-
matically, which results the score of automatically discharged proof obligations
to be 79 % in the refined machine. Finally, the refinement of the exponentiation
algorithm generates the Algorithm 4 by the EB2RC.

Table 3. Proof effort of our refinement approach for the exponentiation case study

Model Total Auto Manual Reviewed Undischarged % auto

expspec 4 4 0 0 0 100%

expref 84 66 18 0 0 79%

Maximum of a List: The maximum of a list is quite complex for the first
model which stating the specification of this algorithm. However, we find that
this complexity in the specification contributes to the proof automation in the
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Algorithm 4. Recursive Algorithm exp(u,v;r) generated by EB2RC

r := 0;u := 0; v := 0; temp := 0;
if b = 0 then

r := 1;

else if b �= 0 then
if b ÷ 2 ∗ 2 = b then

u := a ∗ a; v := b ÷ 2; r := exp(u, v);

else if b ÷ 2 ∗ 2 = b − 1 then
u := a; v := b − 1;
temp := exp(u, v); r := temp ∗ a;

Table 4. Proof effort of our refinement approach for the list maximum case study

Model Total Auto Manual Reviewed Undischarged % auto

specmax 5 4 1 0 0 25%

refmax 49 46 3 0 0 94%

Algorithm 5. Recursive Algorithm max(f,n,i;m) generated by EB2RC

m := 0; temp := 0; ftemp := 0;
if i = 0 then

m := f(0);

else if i �= 0 then
temp := maximum(f, n, i − 1);
if f(i) < temp then

ftemp := temp; m := ftemp;

else if f(i) ≥ temp then
ftemp := f(i); m := ftemp;

second model (a score of 94 % as shown in Table 4). The proof obligations that
need to manually discharged in the refined model relates to prove the existence
of a maximum in a list, which is proved by using a theorem of the context.
Finally, Algorithm5 is generated by EB2RC.

Shortest Paths by Floyd: Floyd’s algorithm [4] computes the shortest dis-
tances in a graph and is based on an algorithmic design technique called dynamic
programming, where simpler sub-problems are first solved before the full problem
is solved. It computes a distance matrix from a cost matrix, where the cost of the
shortest path between each pair of vertices is O(|V |3). The set of nodes N is 1..n,
where n is a constant value, and the graph is simply represented by the distance
function d (d ∈ N×N×N �→N). When the function is not defined, it means that
there is no vertex between the two nodes. The relation of the graph is defined as
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Algorithm 6. Recursive Algorithm floyd(l,a,b,g;D,FD) generated by
EB2RC
D := D0;Fpath := FALSE;FD1 := FALSE;FD2 := FALSE;FD3 :=
FALSE;
if l = 0 ∧ a 	→ b ∈ dom(D) then

Fpath := TRUE;

else if l = 0 ∧ a 	→ b ∈ dom(D) then
Fpath := FALSE;

else if l > 0 then
D1, FD1 := floyd(l − 1, a, b, g);D2, FD2 := floyd(l − 1, a, l, g);D3, FD3 :=
floyd(l − 1, l, b, g);
if FD1 = TRUE ∧ FD2 = TRUE ∧ FD3 = TRUE ∧ D1 ≤ D2 + D3 then

D(a 	→ b) := D1;Fpath := TRUE;

else if FD1 = TRUE ∧ FD2 = TRUE ∧ FD3 = TRUE ∧ D1 > D2 + D3
then

D(a 	→ b) := D2 + D3;Fpath := TRUE;

else if FD1 = FALSE ∧ FD2 = TRUE ∧ FD3 = TRUE then
D(a 	→ b) := D2 + D3;Fpath := TRUE;

else if FD1 = TRUE ∧ (FD2 = FALSE ∨ FD3 = FALSE) then
D(a 	→ b) := D1;Fpath := TRUE;

else if FD1 = FALSE ∧ (FD2 = FALSE ∨ FD3 = FALSE) then
Fpath := FALSE;

the domain of the function d. n is clearly greater than 1, meaning that the set of
nodes is not empty. The distance function d is defined inductively from bottom
to top according to the principle of dynamic programming, and axioms define
this function. The optimal property is derived from the definition of d itself,
because it starts by defining the bottom elements and applies an optimal princi-
ple summarized as follows: Di+1(a, b) = Min(Di(a, b),Di(a, i+1)+Di(i+1, b)).
This means that the distances in Di represent paths with intermediate vertices
smaller than i. Di+1 is defined by comparing new paths including i + 1. Di is
defined by a partial function over N ×N ×N . The partiality of d leads to some
possible problems in computing the minimum, and when at least one term is
not defined, we should define a specific definition for the resulting term. Floyd’s
algorithm provides an algorithmic process for obtaining a matrix of all short-
est possible paths with respect to a given initial matrix that represents links
between nodes together with their distance. The method is applied and leads to
compute the function d and to store the value into D. Algorithm 6 is generated
by EB2RC.
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7 Conclusions and Future Work

In this work, we illustrated the blueprint of our integrated development frame-
work to combine the efforts of two formal software engineering techniques: pro-
gram refinement as supported by Event B and post-hoc program verification as
supported by the Spec# programming system. Our goal is to improve the usabil-
ity of formal verification tools by providing a general framework for integrating
these two approaches to software verification. We identified and discussed on
the strengths of each so that their integration makes the verification task more
approachable for users.

We detailed one of the core steps in our integrated development framework,
which is the final concrete specification is transformed into an executable recur-
sive algorithm. This has been implemented by the EB2RC, a plug-in for the
Rodin platform, that reads in an Event B model and uses the control frame-
work introduced during the models refinement, to generate both a graphical
representation of the executable algorithm and a recursive algorithm that is
easily translated into executable code.

This work builds on a method for code generation that is detailed by one of
the authors in [8,9] and provides the foundation for an integrated development
framework that brings together the world of system modelling and the world of
program verification. The EB2ALL code generation tool [11] can also produce
a program from the PROCESS machine. However, the control variable is not
removed and the resulting code is not structured.

Our experience shows that our approach assists students in developing and
understanding the tasks of software specification and verification. Moreover, we
used the technique in lectures to demonstrate how the proof process can be
made simpler when one uses a recursive program. A recursive program hides
many aspects of the computations which appear to be magic. The fantasy is
obtained by these events modelling recursive calls. The key idea is to use the
call-as-event principle. Since the invariants are easy to discover, the proofs are
also easier even if the main technical questions lie in the specialisation of prover
like arithmetic.

It also makes different forms of formal software development more accessible
to software engineers, helping them to build correct and reliable software sys-
tems. Future work will include the development of further plugins, which will
integrate and facilitate the co-operation between Spec# tools and Rodin tools.
One major component of this work is the reuse of annotations generated during
the refinement of an Event B model to automatically verify iterative algorithms.
Deriving loop invariants using these annotations is our particular interest here.



838 Z. Cheng et al.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie:
a modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
5. Kaufmann, M., Moore, S.J.: Some key research problems in automated theorem

proving for hardware software verification. Revista de la Real Academia de Ciencias
Exactas, F́ısicas y Naturales. Serie A. Matemâticas 98(1), 181–195 (2004)
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