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Abstract. Model-driven development is being used increasingly in the
development of modern computer-based systems. In the case of cyber-
physical systems (including robotics and autonomous systems) no sin-
gle modelling solution is adequate to cover all aspects of a system,
such as discrete control, continuous dynamics, and communication net-
working. Instead, a heterogeneous modelling solution must be adopted.
We propose a theory engineering technique involving Isabelle/HOL and
Hoare & He’s Unifying Theories of Programming. We illustrate this ap-
proach with mechanised theories for building a contractual theory of
sequential programming, a theory of pointer-based programs, and the
reactive theory underpinning CSP’s process algebra. Galois connections
provide the mechanism for linking these theories.

1 Introduction

Modern complex computer-based systems are often designed using model-based
design techniques, checking models against specified requirements. Many diverse
models may be needed to achieve this, encompassing software control, commu-
nication networking, and physical dynamics, all of which must contribute to
the correct functioning of the system. This multi-paradigm approach involves
different modelling languages and tools, including a wide range of analysis and
simulation techniques. At present, there is neither a universal modelling language
nor a universal tool for managing this diversity. Instead, modelling languages and
tools must be used together cooperatively.

In this paper, we consider one approach to understanding heterogeneity in
modelling and analysis, and how links can be made between different languages
and their tools. We advocate mechanised theory engineering: the computer-
supported development of definitions, axioms, and theorems encapsulating a
particular concept. Theory engineering is the study of a concept in isolation, as
well as exploring relationships between different concepts. The theory engineer
builds coherent theory libraries, giving guidelines for building and adding new
theories in order to support open semantic heterogeneity. We use Isabelle for
this task, mechanising Unifying Theories of Programming (UTP), our chosen
formalism for modelling language semantics [12].



Isabelle is an LCF-style interactive theorem prover: it has a special abstract
type thm for theorems; the inference rules of the logical system are the con-
structors of the abstract type; it is implemented in a strongly typed high-level
language. Logical correctness is enforced in the implementation language: every-
thing of type thm has really been proved. The embedding in a full programming
language allows the user to implement more sophisticated derived rules that
decompose to the primitives without compromising soundness, allowing proof
engineering at a much higher level than a simple proof checker.

Our embedding of UTP in Isabelle currently has three foundational theo-
ries: relations, designs, and reactive processes; further theories are under con-
struction, including the hybrid relations. This allows us to build models of non-
deterministic sequential programs, networks of reactive processes, and hybrid
systems, including robotic and cyber-physical systems. These theories are accom-
panied by formalised and mechanised proofs of relevant properties. The theories
themselves are structured as lattices linked by Galois connections, allowing for
models to be translated between or embedded in different modelling paradigms.

In Sect. 2, we give an overview of UTP, and in Sect. 3, we give a detailed
practical example of a UTP theory of separation logic. In Sect. 4, we consider
the use of UTP in dealing with semantic heterogeneity by embedding the theory
of designs in the theory of CSP processes. In Sect. 5, we draw some conclusions.

2 Unifying Theories of Programming

Unifying Theories of Programming (UTP) [17] is a long-term research agenda
that records the relationship between different programming paradigms, both
practical and theoretical. UTP has been widely used: Hoare & He formalise the-
ories of sequential programming, with assertions; correct compilation; concurrent
computation with reactive processes and communications; higher-order logic pro-
gramming; and theories that link denotational, algebraic, and operational seman-
tics [17]. More recent contributions include: angelic nondeterminism [23]; event-
driven programs [34]; object orientation [25]; references [13]; probabilistic pro-
grams [2, 36]; real-time programs [16, 14]; timed reactive programs [26, 29]; and
transaction processing [15]. Programming language semantics in UTP include: the
hardware description languages Handel-C [21] and Verilog [35]; the multi-paradigm
languages Circus [20] and CML [30]; Safety-Critical Java [7]; and Simulink [6].
A wide variety of programming theories have been formalised in UTP, includ-
ing theories of confidentiality [1], testing [4], and undefinedness [31]. UTP has
been embedded in a variety of theorem provers, notably in ProofPower Z and Is-
abelle [19, 32, 11]. This allows a theory engineer to mechanically construct UTP
theories, experiment, prove properties, and eventually deploy them for use in
program verification. In this paper, we focus on Isabelle/UTP [11].

UTP gives three principal ways to study the relationships between different
programming paradigms. UTP classifies languages according to their computa-
tional model. Common concepts are identified and variations treated separately.
A different categorisation is by level of abstraction within a particular paradigm.



This might range from platform-specific implementation technology at the bot-
tom, and very high-level description of overall requirements at the top end.
Between these, there are descriptions of components and their architectures.
Each level has contractual interfaces, and UTP gives ways of mapping between
these levels based on a formal notion of refinement that provides guarantees
of correctness all the way from requirements to code. The final classification
is by the method chosen to present a language definition. Three widely used
scientific methods are: denotational, algebraic, and operational. As Hoare & He
point out [17], a comprehensive account of a programming theory needs all three
kinds of presentation, and the UTP technique allows us to study differences and
mutual embeddings, and to derive each from the others.

The UTP research agenda has as its ultimate goal to cover all the interest-
ing paradigms of computing, including hardware [21, 37], hardware/software co-
design [3] and component-based systems [33]. But it also presents an opportunity
when constructing new languages, especially ones with heterogeneous paradigms
and techniques. UTP uses an alphabetised version of Tarski’s relational calcu-
lus, presented in a predicative style. Each programming construct is formalised
as a relation between an initial and an intermediate or final observation. The
collection of these relations forms a theory of the paradigm being studied, and
it contains three essential parts: an alphabet, a signature, and healthiness con-
ditions. The alphabet is a set of variable names that gives the vocabulary for the
theory being studied. Names are chosen for any relevant external observations
of behaviour. The signature gives the rules for the syntax for denoting objects
of the theory. Healthiness conditions identify properties that characterise the
predicates of the theory. Each healthiness condition embodies an important fact
about the computational model for the programs being studied.

Example 1 (Nondeterministic sequential programming language). The signature
for designs consists of assignment (x := e), sequential composition (P ; Q),
conditional choice (P 2 b 3Q), nondeterministic choice (P ⊓ Q), and recursion
(P = F (P)). The only observations that can be made are of the program vari-
ables. There are no healthiness conditions for this simple programming language.
The program operators are given the following meanings:

Command Semantics Alphabet
x := e (x ′ = e) ∧ (v ′ = v) {x , v , x ′, v ′}
P ; Q ∃ v0 • P [v0/v

′] ∧ Q [v0/v ] inαP ∪ outαQ
P ⊓ Q P ∨ Q αP ∪ αQ
P 2 b 3Q (P ∧ b) ∨ (Q ∧ ¬ b) αP = αQ ⊇ αb
P = F (P) νF (the strongest fixed point of F ) αP

Example 2 (Hoare logic). Hoare logic is a set of axioms and inference rules for
reasoning formally about the correctness of programs. The central feature of
Hoare logic is the Hoare triple, which describes how the execution of a piece
of code changes the state of the computation. A Hoare triple is of the form
{ p } Q { r }, where p and r are predicates on the program state (the precondition
and the postcondition respectively) and Q is a command build from the signature



of our programming language. Standard Hoare logic provides a way of reasoning
about partial correctness; termination needs to be proved separately. The next
definition defines the denotation of a Hoare triple.

Definition 3 (Hoare triple [17]).

{ p } Q { r } =̂ [Q ⇒ (p ⇒ r ′) ] = (p ⇒ r ′) ⊑ Q

The axioms and inference rules are proved as theorems in UTP, providing the
first link in this paper between different semantics: axiomatic and denotational.

Definition 4 (Hoare logic).

L1 if { p } Q { r } and { p } Q { s } then { p } Q { r ∧ s }
L2 if { p } Q { r } and { q } Q { r } then { p ∨ q } Q { r }
L3 if { p } Q { r } then { p ∧ q } Q { r ∨ s }

L4 { r [e/x ] } x := e { r }
L5 if { p ∧ b } Q1 { r } and { p ∧ ¬ b } Q2 { r }

then { p } Q1 2 b 3Q2 { r }
L6 if { p } Q1 { s } and { s } Q2 { r } then { p } Q1 ; Q2 { r }

L7 if { p } Q1 { r } and { p } Q2 { r } then { p } Q1 ⊓ Q2 { r }
L8 if { b ∧ c } Q { c }

then { c } νX • (Q ; X )2 b 3 II {¬ b ∧ c }
L9 { false } Q { r } and { p } Q { true }

and { p } false { false } and { p } II { p }

Example 5 (Designs). The relational theory is adequate for describing partial
correctness; termination requires a more expressive semantics. The signature of
the programming language introduced in Example 1 is extended with the syntax
of a design, P ⊢ Q , with precondition P and postcondition Q [28]. The alphabet
contains two boolean variables: ok , which is the observation that the program
has started; and ok ′, which is the observation that the program has terminated.
Each of these variables has a corresponding healthiness condition.

H1(P) =̂ ok ⇒ P
H2(P) =̂ P ; J where J = (ok ⇒ ok ′) ∧ (v ′ = v), αP = {v , v ′, ok , ok ′}

H1 ensures that no observation may be made of P ’s behaviour until after the
program has started. H2 says that P is monotonic with respect to the ok ′ vari-
able: one of the behaviours of an aborting program is unexpectedly to terminate.
Both healthiness conditions are monotonic idenpotents. We define H = H1 ◦ H2.
Finally, we define the design P ⊢ Q as the single relation ok ∧ P ⇒ ok ′ ∧ Q .

In advance of our discussion of separation logic, the following example shows the
use of the assignment axiom from Hoare logic.



Example 6 (Programming with assertions). Consider the following outline of a
Java class that keeps track of a bank account where overdrafts are not permitted:

1 class BankAccount {

2 private int balance;

3 { invariant : balance >= 0 }

4 ...

5 deposit(int x){

6 { precondition : x > 0 }

7 // is the invariant preserved?

8 // is balance >= 0?

9 ...

10 }

11 }

We need to prove that deposit preserves the class invariant balance ≥ 0. The
assignment axiom tells us that the precondition for this is that balance + x ≥ 0.
This weaker precondition follows from a stronger one that involves the class
invariant before executing deposit and the precondition stated for the method:
balance ≥ 0 ∧ x > 0 (L3 in Def. 4). Both are valid assumptions.

3 Example Theory: Separation Logic

In this section, we present our basic theory for separation logic [24]. We start
with a motivating example.

Example 7 (Hoare logic is unsound wrt aliasing). Consider the assignment axiom
from Hoare Logic: { [E/x ]P } x := e {P },which represents the fact that the
value of a variable x after executing an assignment command x := E equals the
value of the expression E in the state before executing it. Formally, if P is to be
true after the assignment, then the statement obtained by substituting E for x
in P must be true before executing it. Now consider the following program:

1 x := (new Cell(3,nil ));80

2 y := x;

3 y.head := 4

Perversely, let’s prove that the program makes the variables x and y distinct.
Here, we need the assignment axiom and the proof rules for sequential composi-
tion and consequence (read the proof outline from the bottom to the top):

{true}

{4 > 3}

{4 > (new Cell(3,nil)).head}

x := new Cell(3, nil)

{4 > x .head}

y:=x



{4 > x .head}

y.head := 4

{y .head > x .head}

So, the program always has the postcondition y .head > x .head , even though
x and y point to the same Cell object! We can tell that something is wrong
here, since this doesn’t match the expected semantics. It turns out that it’s the
assignment axiom that’s at fault: it’s unsound in the presence of aliasing.

Example 7 illustrates a classical problem in Computer Science: the aliasing
problem. This comes about from using standard programming features: call-by-
reference parameters and pointer variables. To overcome the soundness problem,
we need more discrimination in our semantic model and inference rules. The
frame problem is familiar elsewhere. In AI, it is the challenge of representing the
effects of action in logic without having to represent explicitly a large number of
intuitively obvious non-effects. More generally, it is about modular reasoning.

Separation logic is one of a number of approaches that solve this problem
of unsoundness. It was developed by Reynolds and O’Hearn, based on some
early work by Burstall. It helps a programmer to reason about programs that
manipulate pointer data structures. More generally, it helps with modular rea-
soning about ownership of resources and virtual separation between concurrent
processes. Our theory of separation logic (utp_seplog) in mechanised in Is-
abelle/UTP and builds upon the theories of utp_designs and utp_invariants.

We introduce three uninterpreted datatypes: Var , the set of program vari-
ables names (ranged over by x and y); Loc, the set of heap addresses (ranged
over by l); and Val , the set of values manipulated by a program. As well as
program variables, the following observations made be made of a program.

1. fp : FLoc The footprint of the program, a finite set of heap addresses.
2. st :: Var 7 7→ Val ∪ Loc The store: the denotations for variables, a finite

function from variable names to values or heap addresses.
3. hp :: Loc 7 7→ Val ∪Loc The heap: the contents of the heap addresses, a finite

function from heap addresses to values or further heap addresses.

3.1 Healthiness conditions

Predicates in the theory of separation logic satisfy four healthiness conditions.
(i) Nothing changes outside the footprint. (ii) The footprint contains only heap
addresses. (iii) A program is independent of the heap outside its footprint.
(iv) Every address used in the store or on the heap is itself a heap address (no
dangling pointers). These conditions are formalised in the following definition.

Definition 8.

SL1(P) =̂ OIH((fp′ −⊳ hp′ = fp′ −⊳ hp))(P)

SL2(P) =̂ OSH(fp ⊆ dom hp)(P)



SL3(P) =̂
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •
hp :=D hp \ hp0 ; P ; hp :=D hp ∪ hp0

SL4(P) =̂ OSH(∀ l | l ∈ ran(st) ∪ ran hp • l ∈ dom hp)(P)

where OIH(I )(P) = P ∧ (ok ∧ ¬ P f ⇒ I )
OSH(q)(P) = P ∧ (ok ∧ ¬ P f ∧ q ⇒ q ′)

OIH imposes an operation invariant and OSH output-state healthiness [7].

Theorem 9. SL1–4 are monotonic idempotents that mutually commute.

The next theorem is important in reasoning about heap predicates. First, an
enabling lemma.

Lemma 10 (Contraction). For dom hp∩dom hp0 and that dom hp0∩ fp′ = ∅.

hp :=D hp \ hp0 ; P ; = hp :=D hp ∪ hp0

New heap addresses added by P lie in fp′ \ fp, and the hp0’s contribution is

(fp′ \ fp) ∩ dom hp0

which is empty, since dom hp0 ∩ fp′ is empty by assumption. Disposed heap ad-
dresses lie in the set fp \ fp′. So, the new heap addresses (dom hp′) are

((dom hp) \ (fp \ fp′)) ∪ (fp′ \ fp)

which is clearly disjoint from dom hp0, since (dom hp)\(fp\fp′) ⊆ dom hp, which
is disjoint from dom hp0 by assumption. SL3’s following assignment is

(P1 ⊢ P2) ; hp :=D hp ∪ hp0

= { definition: design assignment }

(P1 ⊢ P2) ; (true ⊢ hp := hp ∪ hp0)

= { design composition, simplification }

(P1 ⊢ P2 ; hp := hp ∪ hp0)

= { relational assignment }

(P1 ⊢ P2 ; (hp′ = hp ∪ hp0) ∧ (st ′ = st) ∧ (fp′ = fp))

= { from above, dom hp ∩ dom hp0 = ∅ }

(P1 ⊢ P2 ; (hp = hp′ \ hp0) ∧ (st ′ = st) ∧ (fp′ = fp))

= { relational calculus }

(P1 ⊢ P2[hp′ \ hp0/hp
′])

= { assumption: hp′ not free in P1, substitution shorthand }

Php′\hp0

Now consider the leading assignment too:

hp :=D hp \ hp0 ; Php′\hp0

= { design calculus: leading assignment }

P
hp′\hp0

hp\hp0



Theorem 11 (Contraction). If P is SL3-healthy, then for all hp0, such that
hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅

P ⊑ P
hp′\hp0

hp\hp0

Proof. SL3(P) is a greatest lower-bound and Lemma 10.

3.2 Signature

We add five atomic heap assignment commands to the signature of the nonde-
terministic sequential programming language introduced in Example 1.

C ::= x := y | [x ] := v | [x ] := y | x := [y ] | x := ref y

The following definitions explain the semantics of each of these assignments.

Definition 12 (vv-assign). The variable-variable assignment x :=s y assigns
to the variable x the denotation of y, namely st(y), which must be well defined.

:=s : Var ↔ Var

x :=s y = y ∈ dom(st) ⊢ st := st ∪ {x 7→ st(y)}

Definition 13 (pc-assign). The pointer-constant assignment [x ]c :=s v up-
dates the heap location pointed to by the denotation of x , namely st(x ), to hold
the value v. This command’s footprint is exactly the location st(x ). The denota-
tion st(x ) must be well defined and its valuation st(x ) must be current.

[ ]c :=s : Var ↔ Val ∪ Loc

[x ]c :=s v =




x ∈ dom(st) ∧ st(x ) ∈ dom hp
⊢

hp, fp := hp ∪ {st(x ) 7→ v}, fp ∪ {st(x )}




Definition 14 (pv-assign). The pointer-variable assignment [x ] :=s y updates
the heap location pointed to by the denotation of x , namely st(x ), to hold the
value denoted by the variable y, namely st(y). The footprint is exactly st(x ).
Both st(x ) and st(y) must be well defined and st(x ) must be a heap address.

[ ] :=s :: Var ↔ Var

[x ] :=s y =




x ∈ dom(st) ∧ y ∈ dom(st) ∧ st(x ) ∈ dom hp
⊢

hp, fp := hp ∪ {st(x ) 7→ st(y)}, fp ∪ {st(x )}




Definition 15 (vp-assign). The variable-pointer assignment x :=s [y ] assigns
to the variable x the denotation of the location of y. The footprint of this com-
mand is exactly st(y), which must be well defined and be a heap address.

:=s [ ] :: Var ↔ Var

x :=s [y ] =




y ∈ dom(st) ∧ st(y) ∈ dom hp
⊢

st , fp := st ∪ {x 7→ hp(st(y))}, fp ∪ {st(y)}






Definition 16 (vr-assign). The variable-reference assignment x :=s ref y as-
signs to x a fresh reference on the heap pointing to the denotation of y. Freshness
means that the new reference is not on the current heap. The denotation st(y)
must be well defined. The footprint is exactly the new reference.

:=s ref :: Var ↔ Var

x :=s ref y = ∃ l •




y ∈ dom(st)
⊢

l /∈ dom hp


st
hp
fp


 :=




st ∪ {x 7→ l}
hp ∪ {l 7→ st(y)}
fp ∪ {l}







The vv-assignment command is healthy.

Theorem 17 (x :=s y is SL healthy).

(x :=s y) is SL1 ◦ SL2 ◦ SL3 ◦ SL4

We prove the third part of the theorem.

Lemma 18 (x :=s y is SL3).

(x :=s y) is SL3

Proof.

SL3(x :=s y)

= { x :=s y def , SL3 def }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

hp :=D hp \ hp0 ; (y ∈ dom(st) ⊢ st := st ∪ {x 7→ st(y)}) ; hp :=D hp ∪ hp0

= { leading, following assignment }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

(y ∈ dom(st) ⊢ (st := st ∪ {x 7→ st(y)})[hp \ hp0/hp] ; hp := hp ∪ hp0)

= { substitution }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

(y ∈ dom(st) ⊢ st , hp := st ∪ {x 7→ st(y)}, hp \ hp0 ; hp := hp ∪ hp0)

= { assignment composition: x := e ; x := f (x ) = x := f (e) }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

(y ∈ dom(st) ⊢ st , hp := st ∪ {x 7→ st(y)}, (hp \ hp0) ∪ hp0)

= { lemma: hp0 ⊆ hp ⇒ (hp \ hp0) ∪ hp0 = hp }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ • (y ∈ dom(st) ⊢ st := st ∪ {x 7→ st(y)})

= { lemma: (
d

x | P • Q) = Q , providing ∃ x • P and x not free in Q }

y ∈ dom(st) ⊢ st := st ∪ {x 7→ st(y)}



= { x :=s y def }

x :=s y

The vr-assignment is healthy.

Theorem 19 (x :=s ref y is SL healthy).

(x :=s ref y) is SL1 ◦ SL2 ◦ SL3 ◦ SL4

Again, we prove the third part of the theorem.

Lemma 20. Proof.

SL3(x :=s ref y)

= { vr assign }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

hp :=D hp \ hp0 ; ∃ l •




y ∈ dom(st)
⊢

l /∈ dom hp


st
hp
fp


 :=




st ∪ {x 7→ l}
hp ∪ {l 7→ st(y)}
fp ∪ {l}







; hp :=D hp ∪ hp0

=

{
lemma: x :=D e ; (q1 ⊢ Q2) = (q1[e/x ] ⊢ Q2[e/x ]),
lemma: (p1 ⊢ P2) ; x :=D f = (p1 ⊢ P2 ; x := f )

}

d
hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •




y ∈ dom(st)
⊢

l /∈ dom(hp \ hp0)


st
hp
fp


 :=




st ∪ {x 7→ l}
(hp \ hp0) ∪ {l 7→ st(y)}
fp ∪ {l}


 ; hp := hp ∪ hp0




= { assignment composition }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •




y ∈ dom(st)
⊢

l /∈ dom(hp \ hp0)


st
hp
fp


 :=




st ∪ {x 7→ l}
(hp \ hp0) ∪ {l 7→ st(y)} ∪ hp0
fp ∪ {l}







= { lemma: hp0 ⊆ hp ⇒ (hp \ hp0) ∪ hp0 = hp and commutativity of ∪ }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •




y ∈ dom(st)
⊢

l /∈ dom(hp \ hp0)
(st , hp, fp) := (st ∪ {x 7→ l}, hp ∪ {l 7→ st(y)}, fp ∪ {l})






= { l ∈ fp′ ∧ dom hp0 ∩ fp′ = ∅ ⇒ l /∈ dom hp0 }
d

hp0 | hp0 ⊆ hp ∧ dom hp0 ∩ fp′ = ∅ •

∃ l •




y ∈ dom(st)
⊢

l /∈ dom hp
(st , hp, fp) := (st ∪ {x 7→ l}, hp ∪ {l 7→ st(y)}, fp ∪ {l})




= { lemma: (
d

x | P • Q) = Q , providing ∃ x • P and x not free in Q }

∃ l •




y ∈ dom(st)
⊢

l /∈ dom hp ∧ (st , hp, fp) := (st ∪ {x 7→ l}, hp ∪ {l 7→ st(y)}, fp ∪ {l})




= { vr assign }

x :=s ref y

SL-healthy predicates support sound modular reasoning about pointer programs.
Next, we describe the essential part of separation logic that achieves this.

3.3 Separating conjunction

Two disjoint heaplets can be joined compatibly:

Definition 21 (Compatible join).

st ⊛ (s1, s2) =̂ dom s1 ∩ dom s2 = ∅ ∧ st = s1 ∪ s2

The binary operator ∗ (pronounced “star” or “separating conjunction”) asserts
that the heap can be split into two disjoint parts where its two arguments hold.

Definition 22 (Separating conjunction).

p ∗ q =̂ ∃ h1, h2 • hp ⊛ (h1, h2) ∧ ph1
∧ qh2

In order to be able to give a meaning to exceptional faulting states, our theory
of separation logic will be a subset embedding of our theory of designs. This
means that we must revise our notion of Hoare logic for total correctness.

Definition 23 (Hoare triple revisited).

{ p } Q { r } = (p ⇒ r ′) ⊑ Q [ p ⇒ fv(Q) ⊆ dom st ]

The proviso formulation is due to Reynolds: p ensures Q cannot abort due to
dangling pointers. Essentially

[ p ⇒ fv(Q) ⊆ dom st ∧ (Q ⇒ r ′) ]

Now we augment Hoare logic with separation logic’s Frame Rule. This states
that if Q can execute safely in a local state satisfying p, then it can also execute
in any larger state satisfying p ∗ s. This idea will be familiar from the semantics
that we have presented so far. The footprint for an SL=healthy predicate P is an
observation that describes a sufficiently large heap for P to execute satisfactorily.
The minimal footprint adds necessity, but any larger heap will do. In what
follows, we use the following shorthands pe = p[e/hp] Q f

e = Q [e, f /hp, hp′].



Theorem 24 (Frame Rule). Suppose that Q is SL and that Q’s use of the
store is no wider that that of the precondition p. This inference rule is valid:

{ p } Q { r }
[ use(Q) ∩ use(s) = ∅ ]

{ p ∗ s } Q { r ∗ s }

Proof.

{ p } Q { r } ⇒ { p ∗ s } Q { r ∗ s }

= {Def. 3 (Hoare triple) }

{ p } Q { r } ⇒ [ p ∗ s ∧ Q ⇒ (r ∗ s)hp′ ]

⇐ { predicate calculus: ∀-I, arbitrary hp and hp′ }

{ p } Q { r } ∧ (p ∗ s) ∧ Q ⇒ (r ∗ s)hp′

= {Def. 22 (separating conjunction) }

{ p } Q { r } ∧ (∃ hp1, hp2 • hp ⊛ (hp1, hp2) ∧ php1
∧ shp2

) ∧ Q ⇒ (r ∗ s)hp′

⇐ { predicate calculus: ∃-E, arbitrary hp1 and hp2 }

{ p } Q { r } ∧ hp ⊛ (hp1, hp2) ∧ php1
∧ shp2

∧ Q ⇒ (r ∗ s)hp′

⇐ {Q is SL3, Theorem 11 (Contraction) }

{ p } Q { r } ∧ hp ⊛ (hp1, hp2) ∧ php1
∧ shp2

∧ Q
hp′\hp2

hp\hp2

⇒ (r ∗ s)hp′

= {Def. 3 (Hoare triple) }

[ p ∧ Q ⇒ rhp′ ] ∧ hp ⊛ (hp1, hp2) ∧ php1
∧ shp2

∧ Q
hp′\hp2

hp\hp2

⇒ (r ∗ s)hp′

⇐ { predicate calculus: ∀-E, hp \ hp2, hp
′ \ hp2/hp, hp

′ }

(php\hp2
∧ Q

hp′\hp2

hp\hp2

⇒ rhp′\hp2
) ∧ php1

∧ shp2
∧ hp ⊛ (hp1, hp2) ∧ Q

hp′\hp2

hp\hp2

⇒ (r ∗ s)hp′

⇐ { lemma: hp ⊛ (hp1, hp2) ⇒ hp1 = hp \ hp2 }

∧ (php\hp2
∧ Q

hp′\hp2

hp\hp2

⇒ rhp′\hp2
) ∧ php\hp2

∧ shp2
∧ Q

hp′\hp2

hp\hp2

⇒ (r ∗ s)hp′

⇐ { propositional calculus: ∧-E }

rhp′\hp2
∧ shp2

⇒ (r ∗ s)hp′

= {Def. 22 (separating conjunction) }

rhp′\hp2
∧ shp2

⇒ ∃ hp′
1
, hp′

2
• hp′

⊛ (hp′
1
, hp′

2
) ∧ rhp′

1
∧ shp′

2

⇐ { predicate calculus: ∃-I, (hp′ \ hp2), hp2/hp
′
1
, hp′

2
}

rhp′\hp2
∧ shp2

⇒ hp′
⊛ (hp′ \ hp2, hp2) ∧ rhp′\hp2

∧ shp2

= { lemma: hp′
⊛ (hp′ \ hp2, hp2) }

rhp′\hp2
∧ shp2

⇒ rhp′\hp2
∧ shp2

= { propositional calculus: tautology }

true

This proof is the longest in this paper. The key step is Theorem 11 (Contraction).



4 Heterogeneous Semantics

In this section, we describe the mechanism that we use to connect heterogeneous
semantics coherently: the Galois connection.

Definition 25 (Galois connection). (L,R) is a Galois connection between
lattices S and T iff the following three conditions hold:

1. L and R are both monotonic.
2. L ◦ R ⊒ idT (strengthening).
3. idS ⊒ R ◦ L (weakening).

If L ◦ R = idT (or L is surjective or R is injective), then (L,R) is a retract. If
R ◦ L = idS (or R is surjective or L is injective), then (L,R) is a coretract.

To illustrate the use of Galois connections in heterogeneous semantics, consider
the UTP theory of CSP processes [8]. We start with the theory of reactive
processes.

Definition 26 (Reactive processes). A reactive process has the following ob-
servations: (i) A trace tr of events that have occurred up to the moment of
observation. (ii) A boolean flag wait that signals when the process is stable and
waiting for interaction with its environment. (iii) A set ref of events that the
process is refusing during its wait state. There are three healthiness conditions
on these observations, but we concentrate on just one:

R1(P) =̂ P ∧ tr ≤ tr ′

This monotonic idempotent function requires the history to be unchanged.

Definition 27 (CSP processes). CSP processes are reactive processes with
two additional healthiness conditions that mirror those for designs; but note the
significant difference in the first condition.

CSP1(P) =̂ R1(¬ ok) ∨ P

CSP2(P) =̂ P ; J

Theorem 28 (CSP-design coretraction). (H,CSP ◦ R1) is a coretract.

Proof. We begin by proving that CSP ◦ R1 ◦ H(P) = P, for a CSP process P:

CSP ◦ R1 ◦ H(P)

= { definition: H }

CSP ◦ R1 ◦ H1 ◦ H2(P)

= { lemma: (P = R1(P)) ⇒ CSP1(P) = R1 ◦ H1(P) }

CSP ◦ CSP1 ◦ H2(P)

= { definition: CSP2 }

CSP ◦ CSP1 ◦ CSP2(P)



= { assumption: P is CSP-healthy }

P

Next, we prove that H ◦ CSP ◦ R1(D) ⊒ D:

H ◦ CSP ◦ R1(D)

= { definition: CSP1 }

H2 ◦ H1 ◦ CSP1 ◦ CSP2 ◦ R1(D)

= { lemma: H1 ◦ CSP1(P) = H1(P) }

H2 ◦ H1 ◦ CSP2 ◦ R1(D)

= { lemma: H1–H2 commute }

H1 ◦ H2 ◦ CSP2 ◦ R1(D)

= { lemma: H2 ◦ CSP2(P) = H2(P) }

H1 ◦ H2 ◦ R1(D)

⊒ { lemma: H monotonic }

H1 ◦ H2(D)

= { assumption: D is H-healthy }

D

5 Conclusions

We have shown how UTP can be used to construct semantic theories for partic-
ular programming paradigms. The main example that we presented, designs, is
a contractual theory of total correctness for a nondeterministic sequential pro-
gramming language with an embedded subtheory underpinning separation logic.
In Sect. 4, we introduced two further theories for reactive processes and for CSP
processes, and showed that CSP is a coretraction of the theory of designs.

The benefit that arises from this embedding of designs in the CSP world is
that it imports the assertional reasoning technique from sequential programming
into concurrent programming in CSP. Every CSP process can be expressed as
a reactively healthy design R(P ⊢ Q). Hoare logic can now be defined in reac-
tive theories as { p } Q { r } = R(p ⊢ r ′) ⊑ Q . The standard rules of Hoare
logic, augmented perhaps by those for separatin logic, can now be extended to
all elements of the signature of the theory of CSP. This includes rules for rea-
soning about concurrency, nonterminating recursive processes, renaming, hiding,
prefixing, input, output, etc.
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