
The University of Manchester Research

Considering Typestate Verification for Quantified Event
Automata
DOI:
10.1007/978-3-319-47166-2_33

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Reger, G. (2016). Considering Typestate Verification for Quantified Event Automata. In 7th International
Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2016)
https://doi.org/10.1007/978-3-319-47166-2_33

Published in:
7th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2016)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:16. Apr. 2024

https://doi.org/10.1007/978-3-319-47166-2_33
https://research.manchester.ac.uk/en/publications/5a668209-acf9-4fa0-9bcd-cf7f87f31dd1
https://doi.org/10.1007/978-3-319-47166-2_33


Considering Typestate Verification for
Quantified Event Automata

Giles Reger

University of Manchester, Manchester, UK

Abstract. This paper discusses how the existing static analyses developed for
typestate properties may be extended to a more expressive class of properties
expressible by a specification formalism originally developed for runtime verifi-
cation. The notion of typestate was introduced as a refinement of the notion of
type and captures the allowed operations in certain contexts (states) as a subset
of those operations allowed on the type. Typestates therefore represent per-object
safety properties. There exist effective static analysis techniques for checking
typestate properties and this has been an area of research since typestates were
first introduced in 1986. It has already been observed that common properties
monitored in runtime verification activities take the form of typestate properties.
Additionally, the notion of typestate has been extended to reflect the more expres-
sive properties seen in this area and additional static and dynamic analyses have
been introduced. This paper considers a highly expressive specification language
for runtime verification, quantified event automata, and discusses how these could
be viewed as typestate properties and if/how the static analysis techniques could
be updated accordingly. The details have not been worked out yet and are not
presented, this is intended for later work.

1 Introduction

This paper describes preliminary work considering the relationship between the type-
state verification static analysis technique and a specification language for dynamic
analysis (runtime verification). There are two main motivations behind this work:

1. Such static analyses can be used to reduce the amount of work required at runtime
by partially evaluating properties (as shown in previous work [8, 27]); and

2. The considered specification language (originally for runtime verification) can ex-
press properties not currently considered for static analysis and extending these
analyses could strengthen such techniques.

Typestate properties [34] typically take the form of finite state machines attached to
single types. This is also a common form of specification in runtime verification [14]
and the relationship between the two has been explored previously [1, 8].

However, runtime verification typically considers more expressive properties such
as non-safety properties, quantification over multiple objects, arbitrary state and ex-
istential quantification. The extension to multi-object typestates is must common in
runtime verification (e.g. in the JavaMOP work [26]) and has already been explored [8,



27] in the context of typestate analysis. In this work I consider the expressive specifi-
cation language of quantified event automata (QEA) [4] that captures all of the above
mentioned extensions. This is based on the parametric trace slicing [11] approach but
introduces additional language features taking it far beyond what has currently been
considered in typestate analysis.

This paper considers how QEA can be related to typestate and how the related static
analysis techniques from typestate verification could be extended to support these more
expressive properties.

Scope. I restrict my attention to typestate verification and review the relevant related
topics in the next section. Notably I have not yet looked at dependent types [9] which
seem heavily related (this relation is touched on in [13, 25]). Although gradual typ-
ing is discussed briefly. I have also (so far) omitted extensions of JML with temporal
constraints [20, 22, 35]. It seems likely that including these topics, and other automata-
based verification techniques (e.g. [15]), will shed further light on possible ways to
combine static and dynamic analysis for quantified event automata.

Structure. I begin by reviewing typestate verification (Section 2) and the quantified
event automata specification language (Section 3). I then discuss the extensions of type-
state required to support QEA and the possible static analysis extensions to support this
(Section 4). I conclude with a discussion of plans for the future (Section 5).

2 A Review of Typestate Verification

Typestate properties [34] were introduced as a programming language concept. Whilst
the initial work did not consider a language with objects, the notion has become associ-
ated with allowable operations on objects. In general, whilst types restrict the operations
that can be performed on an object of that type, there may be different contexts in which
only a subset of those operations should be allowed. Types are extended with a notion of
state where only certain operations are allowed in each state. Each object of a type has
a typestate with some operations updating the state i.e. a typestate property describes a
finite state machine.

For example, the following typestate for a File type only allows open operations in
the CLOSED state and allows read and close operations in the OPEN state with the
open and close operations changing the state.

CLOSED OPEN

open

close

read

Typestate properties are safety properties i.e. they define behaviour that should al-
ways happen and can be violated by a finite trace. Importantly, the language described
be a typestate property is prefix closed. A consequence of this is that a violation has a
single witness in the code i.e. an instruction that causes failure.



At this point it is probably worth pointing out that there are two approaches to
typestate verification in the literature:

1. The largest body of work focuses on developing new type systems and program-
ming language concepts

2. Other work focusses on existing languages and programs and considers adding
typestate support to these

Whilst more work has been done in the first area I am more interested in the second.

2.1 Typestate Verification

Verification of typestate properties is straightforward in the sense that one only needs
to construct the control-flow graph (CFG) of the program and track each instance of
an object. Here an instance of an object is introduced wherever an object is created in
the code and that instance is identified by the variable it was assigned to. For certain
classes of typestate properties and programs there exist polynomial time algorithms
for verification [16]. For example, if a program is shallow (pointers are single-level
i.e. allocated objects may not contain pointers) and the property is omission-closed
(omitting an event from a valid trace gives a valid trace) then the problem can be reduced
to a reachability problem over a graph of polynomial size (as in the IFDS framework
[31]).

However, this process becomes non-trivial in the presence of aliasing and in the case
of single-object typestates (see below for an alternative) most of the effort is concerned
with the aliasing issue. The issue is that when objects can be aliased it is not possible
to track a single typestate per object any more. Instead it is necessary to track an ab-
stract object referring to possible objects and their possible states. The soundness of
such techniques depends on the precision of the approach used to disambiguate pointer
references. Note that (in general) typestate verification is undecidable in the presence
of recursive data structures [23, 28]; a further motivation for combination with dynamic
techniques.

There are two general approaches to pointer analysis: alias analysis [3] and points-
to analysis [2, 33]. Alias analysis computes a set of pairs of variables that may or must
point to the same location. Similarly, points-to analysis computes, for each pointer,
the (points-to) set of variables that p may or must point to. Clearly these are similar
techniques. To be useful, approaches generally take the form of whole-program analysis
(i.e. interprocedural analysis) which requires the complete source code. Precision then
depends on whether it is context and flow sensitive i.e. if it considers call-points or
instruction order. Fink et al. utilise a context and flow sensitive analysis for typestate
verification [17]. Requiring the full source code can be restrictive and whole-program
analysis can be expensive. An alternative, modular, approach is to restrict or annotate
aliasing to provide the analysis with enough information to reason about aliased objects
effectively. For example, Bierhoff and Aldrich add a notion of access permissions [7]
to typestates.

An additional concern is subtyping i.e. if a type has an associated typestate what
should we require of its subtypes. This is dealt with by the notion of behavioural sub-
typing [24] which dictates the allowed behaviours of subtypes. This is most easily dealt



1 i n t e r f a c e I t e r a t o r <C : C o l l e c t i o n , k : F r a c t> {
2 s t a t e s a v a i l a b l e , end r e f i n e a l i v e
3

4 boolean hasNext ( ) :
5 pure ( t h i s ) ( ( ( result = t rue ⊗ pure ( t h i s ) i n a v a i l a b l e )
6 ⊗ (result = f a l s e ⊗ pure ( t h i s ) i n end ) )
7 O b j e c t n e x t ( ) :
8 full ( t h i s ) i n a v a i l a b l e ( full ( t h i s )
9

10 void f i n a l i z e ( ) :
11 unique ( t h i s ) ( immutable ( c , k )
12 }
13

14 i n t e r f a c e C o l l e c t i o n {
15 void add ( O b j e c t o ) : full ( t h i s ) ( full ( t h i s )
16 i n t s i z e ( ) : pure ( t h i s ) ( result ≥ 0⊗ pure ( t h i s )
17 / / remove ( ) , c o n t a i n s ( ) e t c s i m i l a r
18

19 I t e r a t o r <t h i s , k> i t e r a t o r ( ) :
20 immutable ( t h i s , k ) ( unique (result )
21 }

Fig. 1. Example of a typestate property with access permissions taken from [7].

with in the case where typestates are built-in to the programming language and there
have been various type systems developed to deal with such cases within the context
of typestate verification [13, 6]. I am not aware of any work that deals with this issue
without introducing a new type system.

2.2 Multi-Object Typestates

Whilst the most common application of typestates remains the augmentation of an ob-
ject type with a notion of state, it has been observed that it can be useful to define
and check multi-object typestates. The above property on files only considered objects
of File type and was therefore single-object. If we want to capture properties of the
relationship between objects then necessarily we must refer to multiple objects. For
example, the property that before reading from a FileReader object associated with a
File we must first check that we have read access to the File. Here there are two objects
related by the fact that the FileReader is associated with a particular File. Checking this
property not only requires us to track the aliasing of each single object but also the rela-
tionships between objects. We will see further examples of these multi-object typestates
later. There are two approaches to handling multi-object typestates.

The first approach is to keep the single-object view and include predicates on re-
lated (referenced) objects. In [7] the concept of access permissions are added to type-
state to additionally indicate (i) how a reference is allowed to modify the referenced
object, and (ii) how the object may be accessed through other references. This concept
is, therefore, tightly related to aliasing. Figure 1 gives such a typestate property for the
well known UnsafeIterator property that states that an iterator created from a collec-
tion should not be used after the collection is updated. Here this is achieved by line 20
which says (roughly) that whilst the collection is read-only (immutable) then the iter-
ator is accessible (only) by the given reference (unique). Therefore, if the collection is



1 t r a c e m a t c h ( I t e r a t o r i , Da taSource ds ){
2 sym c r e a t e i t e r a f t e r r e t u r n i n g ( i ) :
3 c a l l ( I t e r a t o r Da taSource . i t e r a t o r ( ) ) && t a r g e t ( ds ) ;
4 sym c a l l n e x t b e f o r e :
5 c a l l ( O b j e c t I t e r a t o r . n e x t ( ) ) && t a r g e t ( i ) ;
6 sym u p d a t e s o u r c e a f t e r :
7 c a l l (∗ DataSource . u p d a t e ( . . ) ) && t a r g e t ( ds ) ;
8

9 c r e a t e i t e r c a l l n e x t ∗ u p d a t e s o u r c e + c a l l n e x t
10 {
11 throw new C o n c u r r e n t M o d i f i c a t i o n E x c e p t i o n ( ) ;
12 }
13 }

Fig. 2. A tracematch property for the UnsafeIterator property from [1].

updated then the iterator loses its access permission (cannot be used) thus preventing
concurrent modification (the above property). This relates the collection (this) and the
iterator (result) by placing a restriction on the iterator dependent on some property of
the collection. Note the two states available and end on Iterator to indicate when it
is safe to call next (see lines 5, 6 and 8). Clearly this property captures more than the
traditional UnsafeIterator property i.e. it restricts usage of the iterator object further.

The second approach is to specify multi-object typestates as separate entities. The
only existing formalism for this seems to be that of tracematches [1]. These were first
introduced as an extension of the AspectJ AOP system to temporal pointcuts i.e. instead
of matching single points in the code a regular expression was given to match sequences
of points. The semantics is based on slicing (as described later) and is suffix-matching.
Figure 2 gives a tracematch property for the UnsafeIterator property described above.
Lines 2-7 relate abstract events to specific points in the code and line 9 gives a (suffix-
matching) regular expression that captures violation of the property. This is defined
separately from the code, with the matching parts of the code used to identify events,
following the AOP style. Then the tracematches are weaved into the code in a separate
compilation step that adds additional instrumentation and inserts the specified code
fragment wherever a match occurs.

The two main pieces of work in this second area both consider a setting where a
tracematch property will be dynamically checked and static analysis is employed to
remove instrumentation points in the code i.e. the property is partially evaluated stati-
cally. The Clara [8] work implements a number of increasingly precise analyses for par-
tial evaluation. The most effective analysis is a flow-insensitive analysis that computes
the may-point-to sets of variables in each transition statement and removes transition
sequences without overlapping sets, as these would not relate to consistent bindings.
Naeem and Lhotak [27] introduce an updated (operational) semantics for tracematches
making them more suitable for static analysis. They then use this to introduce a tech-
nique for alias analysis to allow flow-sensitive tracking of individual objects along
control flow paths. The final analysis conceptually tracks tracematch states for com-
binations of relevant objects (e.g. each pair of distinguishable collection and iterator
objects). This is then refined to track pairs of over and under-approximations per object
for efficiency reasons.



Fig. 3. Illustration of typestate with state invariants labelling states taken from [13].

2.3 State Invariants and Pre/Post Conditions

There is a relationship between the notion of typestate and the usage of invariants,
although the original work on typestates did not consider this. It is well known that a
combination of object invariants and method pre and post conditions can be used to
specify and verify certain kinds of program behaviour. Clearly a method precondition
captures information about the required state of the object before the method call and
the postcondition captures information about the state of the object after the method
call. This highlights the relationship between a concrete notion of ‘states’ an object can
be in and the abstract notion of state in a typestate property; however, it is not clear to
this author that there can always be a direct mapping.

In [13] typestates and object invariants are combined in an object typestate, a lan-
guage feature where a typestate is defined in terms of what properties hold of an object’s
concrete state. A similar approach is taken in [7] where typestates are mapped to pred-
icates on fields. In both pieces of work they note the need for intermediate states that
exist in the typestate property but do not relate to an existing state invariant i.e. states
that should be passed through within a method body.

Figure 3 shows an illustration from [13] where they discuss how typestates of a web
page fetcher can be defined in terms of invariants on the fields of that object. Note that
they include aliasing information in this invariant.

The example from [7] in Figure 1 shows how they combine logical expressions in
their invariants in the following excerpt:

1 boolean hasNext ( ) :
2 pure ( t h i s ) ( ( ( result = t rue ⊗ pure ( t h i s ) i n a v a i l a b l e )
3 ⊗ (result = f a l s e ⊗ pure ( t h i s ) i n end ) )

It is not clear how such statements are checked in the analysis.
Additionally, the notion of combining runtime verification of state-based proper-

ties with static analysis code annotations has been explored in [12]. Here the temporal



behaviour is checked dynamically whilst the code annotations are checked statically,
representing an alternative combination.

2.4 Gradual Typing

There is an area of type theory that deals directly with the notion of mixing static and
dynamic analysis: gradual typing [32] is the idea that some parts of the program can
be statically type-checked whilst other parts are left to be type-checked dynamically (at
runtime). This concept has been applied to typestate and there exists a body of work that
has now been formulated as typestate-oriented programming [18, 36] which describes
a Gradual Featherweight Typestate system.

3 Quantified Event Automata

Quantified event automata (QEA) [4] (see also [21, 29]) is a highly expressive specifica-
tion language with an efficient runtime verification tool MARQ [30] (developed by the
author). I refer the reader to previous publications for the technical details. Additionally
I will not review the topic of runtime verification and refer the reader to relevant publi-
cations (e.g. [14]). In this section I review the fundamental concepts necessary for this
paper in an example-led fashion.

3.1 The Structures

A QEA consists of an event automata and a list of quantifications. Event automata are
an extended form (i.e. with variables) of finite state machine over data words. The al-
phabet of an event automaton consists of events built from event names and parameters
that are either variables or constants. Additionally, the transitions of an event automa-
ton can include guards (predicates on bindings of variables) and assignments (update
functions on bindings of variables). An event automaton is therefore over zero of more
variables and the quantifier list may quantify zero or more of these variables.

3.2 Examples

Let us consider some examples which will be used later to describe the semantics of
QEA and discuss their role as typestate properties. We will present QEAs graphically
and in this notation shaded states are accepting states, square states have a failing com-
pletion (if no transition can be taken an error occurs) and circular states have a skipping
completion (if no transition can be taken then the event is skipped).

We will use the following properties (illustrated in Figure 4):

a) FileSafety. This is a QEA for the property previously used to introduce typestate
properties on page 2. A file f can be in two states, open or closed, if closed it can
only be opened and if open it can be read or closed.

b) FileGeneral. This adds a non-safety element to the previous property. A file that
has been opened must eventually be closed.



1 2

∀f
open(f)

close(f)

read(f)

(a) FileSafety

1 2

∀f
open(f)

close(f)

read(f)

(b) FileGeneral

1 32

∀f open(f, “w′′)open(f, “r′′)

close(f)close(f)

read(f) read(f), write(f)

(c) FileModal

1 2 3 4 5

¬∃m∃c∃i
create(m, c) create(c, i) update(m) use(i)

(d) UnsafeMapIterator

1 2 3

∀c
create(c,max )max>0

size:=0

add(c) count<max
size=size+1

, remove(c) count>0
size=size−1

delete(c)

(e) BoundedCollection

1 2 3

∀pub ∃sub ∀msg

publish(pub,msg) receive(sub,msg)

(f) PublisherSingleSubscriber

Fig. 4. Quantified event automata examples

c) FileModal. This extends the previous file example further; a file can be opened in
one of two modes, read or write, and in read mode it cannot be written to.

d) UnsafeMapIterator. This concerns unsafe iteration over collections constructed from
maps. If a collection c is created from a map m and an iterator i is created from c
then if map m is updated the iterator i should no longer be used. This is related to,
but not the same as, the previously discussed UnsafeIterator property.

e) BoundedCollection. On creation a collection has a maximum size max and can
contain at most max objects. Additionally, it should not be used after deletion.

f) PublisherSingleSubscriber. Every publisher has at least one subscriber that reads
all messages published by that publisher.



3.3 Quantification via Parametric Trace Slicing

Quantification is handled via parametric trace slicing, a quantification ∀f means that
for every value in the domain of f one should consider the (minimal) subtrace men-
tioning that value, called a trace slice. That is, given a binding [f 7→ v] we ask if the
subtrace mentioning only v is accepted by the automaton where f is replaced by v.
For multiple quantified variables one should consider the slice for each combination of
values for the respective variables.

I illustrate this approach using the above FileSafety property. Consider the trace

open(A).open(B).read(A).close(A).open(C).read(B).close(B).open(C)

there are three possible values for f (A,B, and C) and therefore three trace slices

f 7→ A open(A).read(A).close(A)
f 7→ B open(B)read(B).close(B)
f 7→ C open(C).open(C)

each trace slice is evaluated on the automaton where f is replaced by the appropriate
value. In this case we can see that the slice for f 7→ C is not accepted by the automaton
and therefore the whole trace is not accepted (as the quantification was ∀).

In the case of existential quantification (as in the PublisherSingleSubscriber prop-
erty) the semantics is the obvious one; at least one trace slice needs to be accepting.

3.4 Event Automata are Extended Finite State Machines

The parametric trace slicing approach can be parameterised by any mechanism for eval-
uating trace slices. In QEA this mechanism is event automata, which can use variables,
guards and assignments to capture highly expressive properties. This is demonstrated
in the previous formulation of the BoundedCollection property. Two free variables are
introduced: max to store the maximum size and size to track the current size of the
collection. The syntax guard

assignment is used to introduce basic arithmetic predicates and
functions. The only non-obvious part of the semantics for these variables is that they are
updated whenever they match a value in the trace. For example, when create(c,max )
matches with the concrete event create(c, 5) the value 5 is bound to max .

In MARQ (the runtime verification tool for QEA) arbitary code can be introduced as
guards and assignments. This obviously extends expressiveness costing us analysabil-
ity. Here we stick to basic arithmetic guards and assignments. The extension for more
expressive theories is a separate research effort.

3.5 A Finite Trace Semantics with Four Values

Finally, QEA are defined over finite traces, which leads to a decision about what to do at
the end of the trace (a topic that has received attention previously e.g. [5]). The choice
taken here is to use a four-valued semantics. Consider the FileGeneral property on the
two traces

read(A).open(A) and open(A).read(A)



neither trace is correct but they fail for different reasons and we would like to separate
these failures. The first trace breaks the safety requirements whilst the second trace does
not satisfy the reachability requirement. Notice that the second trace can be extended to
a good trace but the first cannot. The four possible verdicts are

– Success. This trace and all extensions will be accepted
– Failure. This trace and all extensions will be rejected
– Weak Success. This trace is accepted but some extension may be rejected
– Weak Failure. This trace is rejected but some extension may be accepted

Clearly safety properties can only have Failure or Weak Success verdicts as once vio-
lated all extensions will also be violating.

4 Towards Typestate-like Verification for QEA

In this section I reflect on how the quantified event automata introduced in the previous
section could be handled (partially in some cases) statically using techniques from type-
state verification. As previously discussed, a large amount of work on typestate analysis
considers the introduction of new programming language concepts. However, I am in-
terested in the other approach which considers existing programs and programming
languages. I make an exception for extensions via additional annotations (e.g. JML) as
they do not alter the behaviour of the underlying program.

In the following I discuss possible directions for typestate-like verification for QEA
motivated by the examples presented in the previous section.

4.1 Single Object Properties

Clearly the FileSafety property is a standard typestate property. However, the QEA does
not contain enough information to perform typestate analysis as there is no link between
the abstract QEA property and the concrete program. Traditionally, typestates annotate
programs like types. But a QEA is a separate object. This is also the case in trace-
matches, but in that instance the link to the program is built-in i.e. events are specified
as pointcuts. However, in QEA the assumption is that some separate instrumentation
will create the link between concrete program event and abstract specification event.

There are two alternatives here. One could provide pointcut instrumentation (as in
tracematches) and this seems the most natural approach. However, it would also be
possible to add annotations to the code that indicate what the event is. This would allow
for more fine-grained associations as the AspectJ approach requires events to relate to
method calls.

Once this has been sorted then the previously discussed techniques could be used to
statically (partially) evaluate a QEA. The partial part is, of course, due to the possibly
imprecise nature of reference disambiguation. In a setting where the starting point is
dynamic analysis, any imprecision should be dealt with at runtime i.e. if a violation
is detected due to an over or under approximation then the runtime checks must be
preserved.



4.2 Non-Safety Properties

In the FileGeneral property there is a non-safety element. When the typestate is in the
open state there are two problematic behaviours to consider:

– The program can be shown to possibly terminate
– The program can be shown to possibly diverge

In either case the bad state is not left and this constitutes a violation. Note that this
relates to the finite trace semantics discussed earlier. In QEA it is assumed that a trace
is finite, however during static analysis one can consider the possibility of divergence. I
discuss the two cases separately.

Early Termination. To detect such errors statically one would need to detect the pos-
sibility of (ordinary1) termination. As a rather trivial example consider the following
piece of code.

public void writeSetToFile(Set<Integer> set, String name){
File file = new File(name);
file.open();
for(Integer i : set){
if(i==0){

System.out.println(‘‘Error’’);
System.exit(0);

}
file.write(i);

}
file.close();

}

There is a path leading to termination between open and close and therefore the
property is (statically) violated. In the analysis one should label exit points of the pro-
gram and consider their reachability. The issue is then whether certain paths in the
control-flow graph are realisable by real executions. As before, the level of precision
achieved will depend on whether the analysis is interprocedural and if it is context-
sensitive.

This notion of termination is perhaps strange when considering the standard runtime
verification approach. In the runtime verification literature it is (generally) assumed that
we detect program termination without knowing which part of the monitored system
this termination originates from. Or it is detected by monitoring the exit point of the
main method/functional block. Therefore, there is no discussion of using static analysis
to remove instrumentation points, as (usually) none are added. In this analysis it may
be that the violation occurs in a part of the code that would not be instrumented.

Note that there may be different kinds of termination, for example we may wish
to allow exceptional termination. This could be achieved by (automatically) extending
the automaton as in Figure 5. Now one must search for paths to termination that do not
contain a close or fileException event.

1 One cannot reason about abnormal termination such as the machine being switched off!



1 2 3

∀f
open(f)

close(f)

read(f)

fileException(f)

Fig. 5. Adding exceptional termination to FileGeneral property.

Divergence. To show that it is possible that the program may never reach the next state
transition it would be necessary to establish divergence. For example, via a possibly
non-terminating loop. Clearly this is undecidable in general. However, there exists a
lot of work [10, 19] on showing that a particular program either always terminates or
may possibly never terminate. This particular analysis appears more complex than the
previous one and, perhaps, less fruitful.

4.3 Multi Object Properties

The UnsafeMapIterator property is a standard case of a multi-object typestate which
has been dealt with in previous work. As previously discussed, there are currently two
existing approaches [8, 27] to multi-object typestate verification. As discussed in [27],
the analyses are complementary. A starting point for multi-object typestate verification
for QEA would be to extend either approach, possibly also combining them. As [27]
is flow-sensitive and the later discussions demand such an analysis, it would seem that
starting with this work would be sensible.

4.4 Guarded Transitions

In the FileModal property there is a check on the value of a method call with different
values leading to different states. At this point we note that the variables present in the
QEA are not necessarily in correspondence with variables in the program (a common
misconception) and it might be that the value expected in the QEA would need to be
extracted during instrumentation (for example via a method call). In general, it may be
necessary to rewrite the program to make such values explicit.

To understand how to statically analyse this property let us consider the following
piece of code that satisfies the property.

Set values = getValues();
boolean output = values.size() > 0;
File file = output ? new File(name,‘‘w’’) : new File(name,‘‘r’’);
String line = null;
Set seen = new Set();
while((line = file.readLine()) != null){
seen.add(line);

}
for(String value : values){
if(!seen.contains(value)){ file.write(value); }

}



Every path containing write necessarily starts with new File(name,‘‘w’’) as
if the values set has no elements then the iterator containing the write will not
execute. To check this statically one could carry predicates on program state with the
object abstraction i.e. in this case at the point a file is created there are two abstractions
that file could refer to: a file in state read-only with predicate output = false and a
file in state read/write with a predicate output = false . These predicates can be used to
determine which paths the abstract object may take, in this case the abstraction where
output = false would not enter the final for loop. In other words, we could perform
some form of symbolic computation. In more complex scenarios (e.g. numeric guards)
some form of abstraction would be required.

Where the guard differentiates between valid and invalid behaviour the guard could
be added as a precondition or assertion to be checked by standard methods (e.g. deduc-
tive verification). But in the general case where future behaviours are determined by the
guard, or the property is non-safety, this would not be sufficient.

4.5 Statefull Typestates

In the BoundedCollection property there is a need to track and update the values of two
specification variables i.e. the typestate has some persistent state. Let us consider the
following incorrect code for this property.

Collection fill(int value){
Collection c = new Collection(value);
for(int i=0;i<=value;i++){
c.add(i);

}
return c;

}

There is an out-by-one error in the loop. To check this property we should add the
information held by the specification into the code. This could simply be achieved by
adding ghost variables to track the values in the specification. For example:

Collection fill(int value){
Collection c = new Collection(value);

//added code
int max = value;
int size = 0;

for(int i=0;i<=value;i++){
c.add(i);

//added code
assert(size+1 < max);
size++;

}
return c;

}



Here single variables are added, but in general these would need to exist per object
(or collection of objects) i.e. if there were two collections here there would need to be
two copies. This could become complicated in the presence of aliasing.

Once these variables are added then the symbolic computation of the previous step
could check the guard (added explicitly here).

This example indicates a further complexity of the analysis, often met in static anal-
ysis, that of loops. Here, to establish that a violation occurs it would be necessary to
establish (automatically) the relationship between the loop counter and the size vari-
able and to conclude that size=max and size+1 < max is inconsistent.

4.6 Existential Quantification

In the PublisherSingleSubscriber property we have alternating quantification. Previ-
ously, it was necessary for all abstract objects (or collections of objects in the multi-
object case) to satisfy the given property. This changes with existential quantification
and alternation.

For a single existential quantifier there needs to be a single object across the whole
program that satisfies the property. However, this object does not need to satisfy the
property on all control paths as each path represents a different execution trace and the
requirement is just that there exists an object per execution. Therefore, one object might
satisfy it in one control-flow and another in a different one. With multiple quantifiers
there is now a relation between the objects and it may be necessary to find an object of
one type per an object of another, as in the PublisherSingleSubscriber example.

It would seem that some of this could be handled by post-processing of detected
violations i.e. analysing which paths contain violations and whether there exists an
object with the necessary non-violating paths. But in general it is not clear how to
effectively deal with this feature.

5 Conclusion

In this paper I have reviewed typestate verification and the QEA specification language
and discussed how the former could be applied to the later. My next step will be to
attempt to do this concretely.

As mentioned previously, a starting point will be to take the existing work on multi-
object typestate analysis [8, 27] and see if this can be extended. The source code for
Clara [8] is available online and there is already support for extending the framework
to new tools, and the original authors already did this for JavaMOP. I have obtained the
source code for [27] from the authors.

An alternative approach would be to take a tool for (single-object) typestate veri-
fication and extend this to add the notions of symbolic computation discussed in the
previous section. This is not something I have fully explored yet.
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