Synthesizing Energy-Optimal Controllers
for Multiprocessor Dataflow Applications
with UPPAAL STRATEGO*

Waheed Ahmad and Jaco van de Pol

University of Twente, Enschede, The Netherlands
{w.ahmad, j.c.vandepol}@utwente.nl

Abstract. Streaming applications for mobile platforms impose high de-
mands on a system’s throughput and energy consumption. Dynamic
system-level techniques have been introduced, to reduce power consump-
tion at the expense of performance. We consider DPM (Dynamic Power
Management) and DVFS (Dynamic Voltage and Frequency Scaling). The
complex programming task now includes mapping and scheduling every
task onto a heterogeneous multi-processor hardware platform. Moreover,
DPM and DVFS parameters must be controlled, to meet all throughput
constraints while minimizing the energy consumption.

Previous work proposed to automate this process, by modeling streaming
applications in SDF (Synchronous Data Flow), modeling the processor
platform, translating both models to PTA (Priced Timed Automata,
where prices model energy), and using UPPAAL CORA to compute energy-
optimal schedules that adhere to the throughput constraints.

In this paper, we experiment with an alternative approach, based on
stochastic hybrid games. We investigate the applicability of UrPPAAL
STRATEGO to first synthesize a permissive controller satisfying a through-
put constraint, and then select a near-optimal strategy that additionally
minimizes the energy consumption. Our goal is to compare the UPPAAL
CorA and UPPAAL STRATEGO approaches in terms of modeling effort,
results and computation times, and to reveal potential limitations.

1 Introduction

Power management. The power consumption of computing systems has increased
exponentially [19]. Minimizing power consumption has become one of the most
critical challenges for these systems. Therefore, over the past years, dynamic
system-level power management has gained significant value and success [8, 19,
32]. Two well-known techniques are DVFS (Dynamic Voltage and Frequency
Scaling) and DPM (Dynamic Power Management). Power consumption of a pro-
cessor scales linearly in frequency and quadratically in voltage. But, frequency
and voltage also have a linear relation, therefore, when the clock frequency de-
creases, the voltage is also reduced, so the power is reduced cubically. Switching
off idle processors saves on static power consumption.

* This research is supported by the EU FP7 project SENSATION (318490).

DVFS [28] lowers the dynamic power consumption of modern processors, by
lowering the voltage and clock frequency, at the expense of the execution time of
a task. DPM switches the processor to a low power state when it is not used, thus
reducing static power consumption in idle mode. Besides the savings in dynamic
and static power usage, one should also take into account the non-negligible
costs of switching between power states [25]. DPM is widely used, for instance
in modern processors by Intel and AMD. Global DVFS is employed in modern
processors such as Intel Core i7 and NVIDIA Tegra 2 [15]. It has been shown [14,
2] that optimal energy savings require a combination of DPM and DVFS.

DVFS can be applied globally, or locally per processor [23]. Clearly, local
DVFS provides more flexibility in choosing clock frequencies and voltage, so it
is potentially more energy-efficient. However, it requires complex logic to imple-
ment many clock domains. To balance energy efficiency with design complexity,
the concept of Voltage and Frequency Islands (VFIs) has been put forward [18].
One VFI consists of a clustered group of processors, running on a common clock
frequency/voltage domain. Recently, some modern multicore processors, such as
IBM Power 7 series, have adopted VFIs [16].

Programming streaming applications. We consider streaming applications for
multi-processor mobile systems, like cell phones and PDAs. These applications
consist of a series of encoding/decoding, signal processing and other computa-
tional tasks. We assume that the task graph has been modeled in Synchronous
Data Flow (SDF [21]). The hardware consists of multiple processors, partly to in-
crease the performance (streaming applications demand an ever higher through-
put), partly since some tasks require specialised hardware capabilities.

Programming streaming applications on heterogeneous multi-processor hard-
ware is difficult. Besides programming the basic functionality, the programmer
must also design a mapping of the computation tasks to appropriate proces-
sors, and schedule them in such a way that all throughput constraints are met.
With the advent of flexible energy management techniques, this becomes even
more complicated: also the DVFS and DPM parameters must be adapted dy-
namically to save energy. Typically, a task should run at the lowest possible
frequency, while still meeting its deadline.

Previous work. In previous work, we proposed to automate this mapping and
scheduling process. First [1], we complemented the SDF application model with
a separate hardware platform model of the heterogeneous multi-processors. This
model specifies on which processors each task can run (processor capabilities),
together with an upper bound on the running time. We also provided a trans-
lation of the SDF graph and processor models to Timed Automata. We used
UPPAAL [6] to compute a mapping/schedule with maximal throughput on a lim-
ited set of processors. This provides a tradeoff between throughput and the used
number of processors, potentially saving energy.

Subsequently [2], the hardware platform model was extended with the DPM,
DVFS and VFI energy management techniques. In particular, it now also de-
scribes the VFI partitioning, the available frequency levels, power usage, switch-
ing costs, and task durations per processor/frequency. That paper provides a

mapping of SDF graphs and the extended platform to Priced Timed Automata
(PTA). We used prices to model the energy usage in various power modes and
frequency levels, and to model the power costs of switching between those modes.
We proposed UPPAAL CORA [7] to synthesize safe energy schedules. In this way,
we computed concrete mappings and schedules that always meet a given through-
put constraint, while minimizing the energy consumption. The translation has
been implemented as a model transformation between SDF metamodels and
UppPAAL metamodels [4], and was applied to an industrial Face Detection and
Recognition application [26].

Recently [3], we extended our work in [2] to systems with batteries. Once the
batteries are out of charge, the processors cannot run anymore. This signifies the
end of system life time. In this work, we considered the concise Kinetic Battery
Model (KiBaM) [22]. We modeled the system as a hybrid automaton [17], and
applied statistical model checking to evaluate its Quality of Service in terms of,
(1) the achievable application performance limited by a given battery capacity;
and (2) the minimum required battery capacity to achieve a required application
performance.

However, all these approaches are pessimistic, since they consider that the
actors require worst-case execution time (WCET). On the contrary, practical
systems have variability in execution time requirements. This variability can be
modeled with stochastic systems, and analysed with statistical model check-
ing, as in UPPAAL SMC [10]. However, UPPAAL SMC does not feature non-
deterministic scheduling decisions. Hence, we model our system as Stochastic Hy-
brid Games, which distinguish controllable and non-controllable actions, which
allows us to consider stochastic execution times and synthesize efficient strate-
gies.

Contribution. In this paper, we derive energy-optimal solutions with a novel
approach, based on stochastic hybrid games. These feature clock variables (used
to model task duration and throughput constraints), continuous variables (used
to model power consumption), controllable choices (used to model mapping and
scheduling decisions), and uncontrollable choices (used for environment actions,
e.g. the exact finishing time of a task). Remaining choices are implicitly resolved
by uniform or exponential distributions. Stochastic hybrid games can be analysed
by the tool UPPAAL STRATEGO [12], which provides synthesis of safe and near-
optimal strategies for stochastic hybrid games, using a combination of symbolic
synthesis, statistical model checking, and reinforcement learning. Here, by near-
optimal we mean strategies which are not optimal because they are computed
using simulations (statistical model checking) instead of classical model checking.
However, as these simulations are run multiple times, they are close to optimal
strategies. Hence, we call them near-optimal.

The second purpose of this paper is to compare the approaches of UPPAAL
CoRA and UPPAAL STRATEGO. In particular, we are interested in the modeling
effort for the transition. We also compared the computed results, since we only
compute near-optimal strategies. We are interested in the potential performance
gain provided by the use of statistical model checking. Finally, we wanted to

reveal potential limitations. We try to answer these questions by repeating a
case study, based on an MPEG-4 decoder, modeled in [27].

Paper organization. Section 2 recapitulates some important notions, in par-
ticular SDF graphs (2.1), our hardware platform model (2.2), and the analysis
of stochastic hybrid games with UPPAAL STRATEGO (2.3). Section 3 offers a
translation from an SDF graph plus hardware platform model to a stochastic
hybrid game; we also describe the steps of our method to compute a safe and
near-optimal scheduler using UPPAAL STRATEGO. Section 4 describes our ex-
periment on an MPEG-4 decoder; we also compare the results with our previous
approach using UPPAAL CORA. Finally, in Section 5 we discuss some related
work and a research perspective.

2 Preliminaries

This section recapitulates Synchronous Data Flow (SDF) graphs to model task
graphs of streaming applications, and hardware platform models including het-
erogeneous processors organized in VFIs, and featuring energy management tech-
niques DVFS and DPM. We also recapitulate the analysis of Stochastic Hybrid
Games with UPPAAL STRATEGO.

2.1 SDF Graphs

Typically, real-time streaming applications execute a set of periodic tasks, which
consume and produce a fixed amount of data. Such applications are naturally
modelled as SDF graph: directed graphs, in which nodes represent actors (tasks)
and edges represent data buffers (communication streams). Individual data ele-
ments are represented by tokens, produced and consumed by actors, and stored
in data buffers.

Definition 1. An SDF graph is a tuple G = (A, D, Tokg) where A is a finite
set of actors, D C A2 xN? is a finite set of dependency edges, and Tokg : D — N
denotes the initial distribution of tokens per edge.

Definition 2. Given an SDF graph G = (A, D, Tokg), the sets of input and
output edges of an actor a € A are In(a) := {(d’,a,p,q) € D | a’ € A,p,q € N}
and Out(a) :={(a,b,p,q) € D | b € A,p,q € N}, respectively. The consumption
and production rate of an edge e = (a,b,p,q) € D are defined as CR(e) := q
and PR(e) := p, respectively.

The execution of an actor is known as an actor firing. Edges connect pro-
ducers to consumers, and serve as token buffers. Actor a can fire if each input
edge (d’,a,p,q) € In(a) contains at least ¢ tokens. If it fires, actor a removes ¢
tokens from each input edge (a’,a,p,q) € In(a) and produces p’ tokens on each
output edge (a,b,p’,q¢’) € Out(a).

Ezample 1. Figure 1 shows the SDF graph of an MPEG-4 decoder [27]. It con-
tains five actors A = {FD, VLD, IDC,RC, MC}, representing tasks performed
in MPEG-4 decoding. For example, the frame detector (FD) determines the
number of macro blocks to decode. By decoding a single frame, FD produces 5
macroblocks (in reality this is an arbitary number between 0 and 99). The other
modeled tasks are Variable Length Decoding (VLD), Inverse Discrete Cosine
transformation (IDC), Motion Compensation (MC), and Reconstruction (RC)
of the final video picture.

To avoid unbounded accumulation of tokens in a certain edge, we require SDF
graphs to be consistent, i.e. an iteration can be defined that does not change the
token distribution.

Definition 3. A repetition vector of an SDF graph G = (A, D,Tokg) is a
function v : A — Nsq such that for every edge (a,b,p,q) € D, the equation
py(a) = qy(b) holds. An SDF graph is consistent if and only if it admits a
repetition vector. In that case, an iteration of G is a multiset of actor firings,
which contains exactly y(a) firings of each actor a € A.

2.2 Hardware Platform Model

The Hardware Platform Model (HPM) models the multi-processor platform on
which the application (modelled as SDF graph) is mapped. Our HPM supports
several features, including (1) heterogeneity: actors can only run on certain pro-
cessors; (2) VFI: a partitioning of the processors in Voltage Frequency Islands;
(3) DVFS: different frequency levels each processor can run on; (4) DPM: power
consumption by a processor at a certain frequency, both when in use and when
idle; (5) power-overhead required to switch between frequency levels; and (6)
best- and worst-case computation times of tasks at a particular frequency level.

Definition 4. A Hardware Platform Model (HPM) is a tuple
P = (Ha Cv Fa Pidl67 Pocca Pt?"7 Tworst Tbest); COTLSiSting Of

- a finite set of processors II. We assume that IT = {m1,...,m,} is partitioned
into disjoint blocks of voltage/frequency islands (VFIs);

Fig.1: MPEG-4 Decoder

~ a function ¢ : IT — 24 indicating which processors can handle which actors;

a finite set of discrete frequency levels available to all processors denoted by

F={f1,...,fm} such that fi < fo < ...< fm;

— functions Pigie, Poce : II X F' — N denoting the static power consumption (in
idle state) and static plus dynamic power consumption (in operating state)
of a processor w € Il at a certain frequency level f € F,

— a partial function Py : II x F? - N expressing the transition overhead
between frequency levels f1, fo € F for each processor w € I, and

— functions Tyest, Tworst : A X ' — N>1 defining the best- and worst-case exe-
cution times for each actor a € A operating at frequency level f € F.

Note that it is straightforward to refine this
model further, by explicitly introducing processor
types, distinguishing frequency levels per proces-
sor type, and let execution times depend on pro-
cessor types. By incorporating memory elements 1
and buses, it would also be possible to model 9
communication costs. Currently, we assume that
communication times are included in the actor 3 1.10 1221.8

4
5

Level Voltage Frequency

1.2 1400
1.15 1312.2

execution times. 1.05 1128.7
1.00 1032.7

Ezample 2. Exynos 4210 is a state-of-the-art pro-
cessor used in high-end platforms such as Sam-
sung Galaxy Note, SII etc. Table 1 shows its dif-
ferent DVFS levels, and corresponding CPU volt-
age (V) and clock frequency (MHz) [25].

Table 1: DVFS levels of
Samsung Exynos 4210

2.3 Stochastic Hybrid Games and UPPAAL STRATEGO

We review Stochastic Hybrid Games and their analysis in UPPAAL STRATEGO.
Timed Automata [5] have locations, transitions and clock variables. Residence
time in states is constrained by invariants on clocks. Transitions are guarded
by clock constraints as well and can reset a subset of the clock variables. For
convenience, UPPAAL adds discrete variables (that can be used in guards, in-
variants and updates) and allows networks of timed automata that synchronize
by means of handshake or broadcast channels. Hybrid Automata extend Timed
Automata with continuous variables, governed by differential equations. They
generalize Priced Timed Automata, where prices are hybrid variables that cannot
be used in guards. In Stochastic Automata, choices and time delays are governed
by stochastic distributions, like uniform and exponential distributions. Timed
Games distinguish controllable actions (like scheduling choices by the system)
and uncontrollable actions (like inputs or time delays that are determined by
the environment). Finally, Stochastic Hybrid Games combine all features.
UPPAAL STRATEGO [12] supports strategy synthesis for Stochastic Hybrid
Games. It integrates the symbolic algorithms for model checking Priced Timed
Automata (from UPPAAL CORA [7]) and for synthesizing optimal strategies of

Timed Games (from UPPAAL TIGA [9]) with the statistical model checking algo-
rithms for Stochastic Timed Automata (UpPAAL SMC [13]). Moreover, it imple-
ments reinforcement learning to synthesize near-optimal strategies for Stochastic
Hybrid Games [11]. UPPAAL STRATEGO comes with an extended query language,
where strategies are first class objects that may be synthesized, compared, fur-
ther optimized or restricted, and analyzed for correctness and performance. New
symbolic or statistical model checking and synthesis queries on Stochastic Timed
Games can be performed under the constraints of previously synthesized stragies.

We illustrate the features and queries of UPPAAL STRATEGO with a small
example adapted from [29]. Figure 2 models a job with two phases. In the first
phase, the scheduler must choose between two machines, indicated by the loca-
tions A and B. The slow machine A takes up to 100 time-units to finish (indi-
cated by the invariant on clock variable), but consumes less power (indicated
by the differential equation ¢’ == 3 (e.g. 3 kW/h). The alternative machine B is
twice as fast, but consumes considerably more power. In the second phase, the
scheduler must choose between the machines C' and D. The choice of machine
is in both phases controllable by the scheduler (indicated by the solid transi-
tions), while the exact completion time within the specified upperbound is left
to an uncontrollable environment (indicated by the dashed transitions). Implic-
itly, a uniform distribution of the actual computation time is assumed. Next, we
are interested in synthesizing controllers for various objectives. We consider the
following scenarios.

Scenario 1: Safe Strategy. The job in Figure 2 must be completed before 175
time-units. To this end, we generate the most permissive (non-deterministic)
strategy Safe, and compute its expected cost (based on 1000 simulation
runs), using the following two queries. The expected cost (when the choice
for the exact finishing time is resolved uniformly) appears to be 437.317.

strategy Safe = control : A <> Job.End and time <= 175 .
E[<= 175;1000](max : c) under Safe .

Scenario 2: Optimal Strategy. Now we are interested in completing the job
with minimal energy consumption. We compute a near-optimal strategy and

c'==1 && x<=100

c'==8 && x<=50

Fig.2: A job with two phases

visualize it with 10 random simulation runs with the following two queries.

strategy Opt = minE(c) [<= 175] : <> Job.End .

simulate 10 [<= 200]
{Job.A,2 + Job.B,4 + Job.C, 6 + Job.D, 8 + Job.End} under Opt .

UPPAAL STRATEGO employs random simulation and reinforcement learning
to select a strategy that minimizes the expected completion cost, which
is estimated to be 276.661. The 10 random simulation runs are shown in
Figure 3(a). Clearly, in these runs only the cheaper machines (A and C) are
chosen. However, strategy Opt does not always finish within 175 time-units.
Scenario 3: Optimal and Safe Strategy. To find a strategy that both fin-
ishes within 175 time units and minimizes the energy consumption, we query:

strategy OptSafe = minE(c)[<= 200] : <> Job.End under Safe .

This learns a new sub-strategy OptSafe under the constraints of the strategy
Safe derived in Scenario 1. Figure 3(b) shows 10 random runs according
to OptSafe. One sees that in this case sometimes machine D is used: If
machine A finishes its job early, the slower but cheaper machine C' can be
utilized in the second phase. However, if the machine A takes longer, only
the faster, more expensive machine D can be selected, or we would miss the
deadline. The expected completion cost of OptSafe appears to be 316.738,
which is higher than Opt, but better than Safe. Note that, opposed to Opt,
the strategy OptSafe will always finishes within the deadline of 175 time-
units, thus being guaranteed safe and near-optimal.

3 Energy-optimal schedules under throughput constraints

3.1 Translating SDF Graphs to Stochastic Hybrid Games

In our framework [1,2], the input consists of separate models of an SDF task
graph, the hardware platform model, and a throughput constraint. In this way,
we split the problem statement of optimal energy management in terms of tasks
and resources. In this section, we describe a systematic translation of an SDF
graph along with a hardware platform model into a Stochastic Hybrid Game.
Subsequently, we summarize our method of using UPPAAL STRATEGO for com-
puting an energy-optimal strategy under the given throughput constraint.

Given an SDF graph G = (A, D, Tokg) mapped on a hardware platform
model (I1,¢, F, Pigic, Pocey Piry Tworsts Thest), We generate a parallel composition
of stochastic hybrid games:

Ac||Processori]|, . . ., || Processory || Scheduler .

Here Ag encodes the SDF task graph G, keeping track of the number of tokens
in all buffers. Processor; models 7; € II, keeping track if it is idle or occupied,

Simulations (10)

s || RTEN

8.0

7.0

6.0

5.0 — iy | EJob.A
g [| [T T T | || | |2k
= 4.0 Ed 4 +10b.C

EJ6 +Job.D

3.0 E3 8 + Job.End

2.0

T L

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

time
(a) Runs under Opt

Simulations (10)

9.0

i | I T[] |

7.0

& [FRER|| |

5.0 i TR e S :] Job.A
L [T 11 | | SHY
=240 T 1 1 1 EJ4 +Jeb.C
= E36 +Job.D

3.0 E38 + 1ob.End

20

1.0

: NI

0 10 20 30 40 50 80 70 80 50 100 110 130 130 140 150 160 170 180 180 200
time

(b) Runs under OptSafe

Fig.3: UPPAAL STRATEGO simulations for Opt and OptSafe Controllers

and of the current frequency level for DVFS. The task of the Scheduler is to
synchronize frequency switches between all processors in the same voltage and
frequency island (VFI).

Translating the SDF graph. The automaton Ag has a single location and no
clocks. Figure 4 illustrates Ag for the MPEG decoder in Figure 1. For each
edge (a,b,p,q), it contains an integer variable buff_a2b containing the num-
ber of buffered tokens in this edge. It also counts the number of times a has
fired in a variable counter_a for later querying. Initially, counter.a = 0 and
buff_a2b = Toky(a, b, p,q). Moreover, for each processor m; € II, the automa-
ton Ag reads a boolean variable Pbusy[i]. This variable ensures that the actors
in the SDF graph G are only mapped on the processor m; € II when it is free.
This extra administration is needed because UPPAAL STRATEGO only supports
broadcast communication, but not blocking handshake communication. Further-
more, UPPAAL STRATEGO requires that each location must either be urgent,

10

committed, have an exponential rate or carry an invariant. Therefore, we have
5 as a Rate of Exponential in location Initial.

There are two parametrized actions in Ag namely, fire![i][a] and end?]i][a]
to communicate between Ag and Processor;, representing the start and end
of executing actor a on processor m;. For each a € A, we add two edges in
Ag. The controllable transition labeled fire![i][a] consumes ¢ tokens from buffer
buff_b2a, for each input edge (b, a,p,q) in G (specified by an auxiliary function
consume(buff_b2a, q) not detailed here). The uncontrollable transition labeled
end?[i][a] produces p tokens into buffer buff_a2b, for each output edge (a,b,p, q)
in G (specified by auxiliary function produce(buff_a2b, p)).

Translating the hardware platform model. For each m; € II, C II, we in-
troduce an automaton Processor;. See Figure 5 for a part of this automaton.
It maintains two variables, to properly synchronize with the Scheduler (only
needed since UPPAAL STRATEGO doesn’t support handshake synchronization).
Variable freq_lev]y] counts the number of currently occupied processors in the
VFI II,, and curr_freq[y] determines the current frequency level of all m; € II,,.
Initially, freq_lev]y] = 0 and curr_freqly] = m, where f,,, = max{F}. The counter
freq_lev[y] is incremented and decremented by one on each fire?[i][a] and end![i][a]
transition.

Processor; has location Idle_f for each f € F, and for each a € A an addi-
tional location InUse_a_f. The edges between these states both synchronize with
Ag. The worst-case execution time Tyopst(a, f) is encoded in the invariant of
InUse_a_f. The best-case execution time Tpest(a, f) is encoded as the guard. In
this paper, we assume that the execution time of the actor is determined stochas-
tically by the environment, uniformly in the interval [Tpest (a, f), Tworst(a, f)]. The
power consumption P;g. at each frequency f € F and P, for each actor a € A
are encoded as a differential equation in the invariant in ldle_f and InUse_a_f, re-
spectively, using the hybrid variable cost]. As required by UPPAAL STRATEGO,
we have 5 as a Rate of Fxzponential in all locations Idle_f.

Encoding frequency switches. See Figure 6 for the Scheduler. It triggers fre-

End_FD |

end[w][FD]?
, produce(buff_FD2IDCT,5),
) produce(buff_FD2MC,1),
i produce(buff_FD2RC,1),
produce(buff_FD2VLD,5),
counter_FD++

buff RC2FD>=1&!Pbusy[w]
fire[w][FD]!
consume(buff_RC2FD,1)

Initial

Fig.4: UrPPAAL STRATEGO model Ag for SDF graph G

11

InUse_FD_f1 InUse_FD_f2
x<=3&&cost0'==18 x<=2&&cost0'==46

x>=1
freq_lev[vfi_id]-=1,
x:=0,
Pbusy[p_id]=false

fire[p_id][FD]? i
i
| end[p_id][FD]!
|
|
|
|
|

x:=0,
freq_lev|[vfi_id]+=1,

fire[p_id][FD]?
x:=0,

x:=0, freq_lev[vfi_id]+41,

Pbusy[p_id]=true freq_levvfi_id]-=1, flag_act = true,
Pbusy[p_id]=false Pbusy[p_id]=true
fiump_12[vfi_id]?
curr_freq[vfi_id]=2
Idle_f1 Idle_f2
5 ©) 5
cost0'==4 flump_21[vfi_id]? cost'==1

curr_freq[vfi_id]=1

Fig.5: UPPAAL STRATEGO model Processor for process p-id in VFI vfi_id
(restricted to frequencies fi, fo and transitions for actor FD)

quency switches from fp to fi (for & = ¢ £ 1). It synchronizes with Processor;
for all m; € II,, that are in the same VFI y, through the parameterized broadcast
action fjump_lk[y]. The automaton Scheduler checks whether all processors in
the switched VFI y are in the idle location (this excludes switching frequencies
in the middle of a task execution), and are running at the same frequency. This
is done by testing the global counters freq_lev]y]=0 and curr_freq[y]=¢.

To avoid traces with infinite switching between ldle locations (Zeno behavior),
we needed some extra restrictions. We defined that each processor starts in the
highest frequency (by setting the initial location in Processor). We further ensure
that a processor can only switch frequencies after firing an actor (at the highest
frequency, using flag_act). Furthermore, to switch frequencies, the scheduler must
wait for 2 time units (denoted by & >= 2 where « is a local clock). We also have
5 a Rate of FExponential in location Initial .

3.2 Learning and Optimization using UPPAAL STRATEGO

Recall the repetition vector v, which captures the number of actor firings in a
single iteration. Usually, one is interested in a periodic cycle, which consists of a
number of iterations. In this paper, we restrict to the execution of one iteration.
So for each actor a € A, v(a) denotes the number of times a must fire. For
example, the repetition vector v of the example SDF graph given in Section 3
is y((FD, VLD, IDC,RC,MC)) = (1, 5,5, 1,1). We capture the states after firing
according to the repetition vector v by predicate Q:

Q= /\ {counter_a = y(a)}

acA

12

fred:_lev[ﬂ== freq:_lev[f]==0

&&curr_freq[f]==2 &&curr_freq[f]==
&&flag_act=true &&flag_act=true
&&x>=2 &8&x>=2
fjlump_21[f]! flump_12[f]!
x:=0 x:=0

5 Initial

Fig.6: UPPAAL STRATEGO model for the Scheduler

We now summarize our method to synthesize an energy-optimal controller

from an SDF graph G and a HPM P with n processors that meets the throughput-
constraint 7" using UPPAAL STRATEGO, by the following steps:

1.

Generate stochastic hybrid games from G and P according to the translation
in Section 3.1, resulting in Ag||Processori|| ... || Processory||Scheduler. This
network of timed automata forms the input to UPPAAL STRATEGO.
Synthesize the most permissive safe strategy that finishes one iteration within
time T, by running the following query, where clock variable time is never
reset, but just used to observe the overall time progress.

strategy Safe = control : A <> (Q and time <=T)
Obtain a near-optimal strategy with respect to energy consumption that

finishes within time 7', by running the following query:

strategy OptSafe = minE : (Z cost;) [<=T] :<> (Q) under Safe

To get an impression of the minimal energy needed when the throughput
constraint would be ignored, one may optionally run the following query:

strategy Opt = minE : (Z cost;) [<=T]:<> (Q)
i €11

For all strategies S € {Safe, OptSafe, Opt} one can compute the average
energy consumption from a number of simulation runs (say 100) by the
following query:

E[<=T;100] (max : Z cost;) under S
i €N

A number of 10 simulations for executing actor a, b, ... € A under the strategy
S can be visualized with the query

simulate 10 {counter_a, 2 + counter_b, ...} under S

13

Voltage(V) Frequency(MHz) ‘Pidle (W) Pocc (W)

1.2 1400 0.1 4.6
1.00 1032.7 0.4 1.8

Table 2: Platform description

4 Experimental Evaluation via MPEG-4 Decoder

4.1 Modeling the MPEG-4 Decoder

Let us consider the example of an MPEG-4 decoder capable of processing five
macroblocks as shown in Figure 1, mapped on Exynos 4210 processors II =
{m1,...,m}. Table 2 shows two DVFS levels (MHz) {f1, fo} € F taken from
Table 1 and corresponding experimental power consumption. We assume that
the (best/worst) execution times of all actors a € A at lower frequency level, i.e.,

f1 are rounded to the next integer. As f1 = 0.738 X fa, Tpest(a, f1) = [M]

0.738
and Tyorst(a, f1) = [%g;fz)w

The UPPAAL STRATEGO models of this example are shown in Figures 4, 5
and 6. For easier understanding, the models are shown with respect to one actor
only, i.e., FD € A. Figure 4 shows the automaton Ag which models the ac-
tor FD, and its incoming In(FD) and outgoing Out(FD) edges. The automata
Processory, ..., Processor,, model the processors I = {my,...,7,}, as shown
in Figure 5. Figure 6 presents the automaton of Scheduler. As clocks in Up-
PAAL STRATEGO can only take integer values, all power consumption values are
multiplied by 10 in Figure 5.

Initially, all processors Processory, ..., Processor,, are in the idle location at
the highest frequency level, Idle_f2. The idle power consumption P;g.(m, fa) =
0.4 W is annotated as an invariant in the location Idle_f2.

Let us consider that the MPEG-4 Decoder in Figure 1 is mapped on 4 Exynos
4210 Processors. For the constraint of finishing an iteration within 15 ms (67
frames per second (fps)), Figure 7 shows 10 random runs for each controller, i.e.,
Safe, Opt, and OptSafe respectively. Figure 7a shows the strategies that achieve
67 fps without optimising energy consumption. Whereas, Figure 7b shows the
strategies having minimal energy consumption without any constraint on the
throughput. In particular, Figure 7c shows the strategies that after learning the
strategy Safe, guarantee to be both energy-optimal and achieve 67 fps.

We also generated various strategies for the MPEG-4 decoder on a varying
number of processors. For the constraint of 67 fps, the evaluation of the energy
consumption under different controllers explained in subsection 3.2 are sum-
marised in Table 3. If we analyse the OptSafe strategy in Table 3, we observe
that achieving the same number of frames per second at fewer processors low-
ers the energy consumption. The reason is the high slack at the higher number
of processors, and therefore the processors stay idle for most of the time. As a

14

e M I |

- I

o HH LTI 1 |

7.0

5.0 | ‘ “ ||.|‘_| E3 1 + counter_FD
. || IJ_I E3 9 + counter_McC
2 50 il E3 7 + counter_RC
= E3 5 + counter_IDCT

4.0 = E 3 + counter_vLD

3.0

2.0

ol

a 1 2 3 4 5 5 7 3 9 10 11 12 13 14 15

time
(a) Runs under Safe

10,0
9.0
8.0 |
L
7.0 |
o ‘ E 1 + counter_FD
5 H" E 5 + counter_IDCT
g SO 3 + counter_WD
) E3 7 + counter_RC
= i E3 9 + counter_MC
3.0
2.0
1.0 —M
0 1 2 3 4 5 [7 8 9 10 it 12 13 14 15 6 17 18 19 20
time
(b) Runs under Opt
10.0
9.0
8.0 |, ||
5 [
s [| I E 1 + counter_FD
||| || E 3 + counter_vLD
=0 M E3 5 + counter_IDCT
E 35 + counter_mc
i il E 7 + counter_RC
3.0
2.0
1.0 —M

(¢) Runs under OptSafe

Fig.7: UPPAAL STRATEGO simulations for MPEG-4 decoder under Safe, Opt,
and OptSafe Controllers

result, the static energy surpasses the dynamic energy. For instance, the energy
consumption is decreased by 5.4%, when moving from 5 to 4 processors. Since
the strategy Opt is not guaranteed to finish within the deadline, we will not
consider it in the rest of the paper.

15

Processors| Safe Opt OptSafe

42.76 41.64 4221
40.87 39.79 39.94
39.61 38.39 38.57
38.57 37.08 37.31
36.96 35.21 3547

=N W e Ot

Table 3: Energy estimations with adaptive execution times

Processors Safe OptSafe|Optimal

5 67.26 59.7 55.4
4 66.9 58.01 53.8
3 63.83 56.2 53.4
2 62.41 54.5 54.5
1 64.07 63.4 63.4

Table 4: Comparison of energy estimations with worst-case execution times

4.2 Comparison with UppAAL CORA

In this subsection, we compare the approach presented in this paper (stochastic
hybrid games) with the priced timed automata based approach in [2]. The work
in [2] like us, computes the energy-optimal schedules for SDF applications run-
ning on multiprocessor platforms. However, in comparison to our approach of
using stochastic hybrid games, the problem of finding the schedules is encoded as
a reachability property over priced timed-automata models. This is then checked
by the model checker UpPAAL CORA [7]. For comparison, we take the example
of the MPEG-4 decoder in Figure 1. We assume that the SDF graph is mapped
on Exynos 4210 processors.

First, we removed the stochastic features in our stochastic hybrid models by
considering worst-case execution times of the actors only. For the constraint of
67 fps, columns 2-3 in Table 4 show the energy consumption (mWs), calculated
using the approach of this paper, against the varying number of processors given
in column 1. The results are given for the strategies Safe and OptSafe. For the
same throughout constraint, column 4 shows the energy consumption calculated
using the approach presented in [2]. Note that the optimal results from CORA
are slightly better than the near-optimal results from STRATEGO.

As said earlier, the biggest strength of UPPAAL STRATEGO is the ability to
handle uncertainty in the environment, and to compute an adaptive strategy.
We utilized this feature by having best- and worst-case execution time in our

16

Processors Adaptive Time Worst-Case Time
Safe OptSafe |Safe OptSafe|Optimal

5 4276 4221 |67.26 59.7 55.4
4 40.87 39.94 66.9 58.01 53.8
3 39.61 38.57 |63.83 56.2 53.4
2 38.57 3731 (6241 54.5 54.5
1

39.69 3547 |64.07 63.4 63.4

Table 5: Comparing adaptive with worst-case execution times

Processors Safe OptSafe Optimal

Memory Time |[Memory Time |Memory Time

2622.06 50354.44|2660.15 75831.63| 71.13 144.52
634.14 5911.04 | 695.42 8487.192| 29.46 7.27
165.86 327.85 | 224.75 505.09 | 21.46 0.71
86.6 5.32 123.21 18.38 19.75 0.31
79.28 0.02 115.55 1.96 19.62 0.09

=N W e Ot

Table 6: Comparing time and memory consumption of the STRATEGO and CORA-
tools

UPPAAL STRATEGO model. On the other hand, UrPPAAL CORA considers worst-
case execution times only. Table 5 compares this strength of UPPAAL STRATEGO
with UpPPAAL CORA, by combining Table 3 and 4. In Table 5, columns 2-3
shows the energy consumption, when having best- and worst-case (adaptive)
execution times. Columns 3-5 copy the results from Table 4, considering worst-
case execution times only. Clearly, the adaptive strategy saves energy.

Table 6 compares the computation time (sec) and the memory consumption
(MB), of both methods, when having worst-case execution times. As we can see,
for our running example, UPPAAL CORA is more efficient in terms of memory
and time, in particular when analysing systems with more cores.

5 Conclusion

5.1 Discussion

We set out an alternative method to map and schedule streaming applications
specified in SDF onto heterogeneous multi-processor hardware. We conducted an
experiment in UPPAAL STRATEGO, and compared it with a previous approach

17

in UPAAL CORA. We will discuss some limitations and strengths of the approach
with UPPAAL STRATEGO.

The most important issue is that UPPAAL CORA provides a concrete schedule
(in the form of a timed trace), from which a concrete implementation can be
derived. This is clearly not possible in UPPAAL STRATEGO, since it deals with
stochastic systems. However, apart from the visualization, we have found no
way to retrieve the computed strategy in a form that can be used to synthesize
real controller code. In [1,2] we used the traces also to find out the number of
iterations needed to get into the periodic phase of the schedule. This would be
needed to really compute the long-term throughput of streaming applications
like an MPEG-4 decoder.

Next, we found some limitations in the input language of UPPAAL STRATEGO.
Some of them are inherent due to the use of statistical model checking engine.
In particular, the absence of handshake synchronization led us to add more and
more global variables and guards, in order to keep the components synchronized
despite using broadcast communication only. Another issue is that we could not
add discrete jumps in costs on transitions. This means that we couldn’t model
the costs of switching between frequencies (as specified by Py.), as we do in our
original CORA models. Another consequence is that we had to modify the model
to avoid Zeno-runs between infinitely switching frequencies in idle mode, which
now happen “for free”.

We also compared the results of CORA’s optimal schedule, and STRATEGO’s
near-optimal strategies. The good news is that the estimated near-optimal re-
sults by STRATEGO are quite close to those computed by CORA (at most 10%
deviation). We also had hoped that STRATEGO would be faster, due to the use
of statistical model checking and learning, but this was not the case. Actually,
the computations in STRATEGO took considerably longer time than in CORA.

We want to stress that the several drawbacks that we encountered are inher-
ent due to the stronger capabilities of STRATEGO. Using STRATEGO, we can han-
dle uncertainty in the environment, and compute an adaptive strategy based on
the actual behavior so far. We already exploited this by distinguishing the best-
and worst-case execution time of the actors in the MPEG-4 decoder. STRATEGO
assumes that the actual time is distributed uniformly in this interval.

This feature shows the distinguishing power of STRATEGO and it provides an
enormous potential for energy savings compared to the traditional approach. The
traditional approach will always take into account the worst-case execution time,
even when this is not realistic at all. This could result in an over-dimensioning
of the system, leading to idle-time intervals. This is energy-inefficient, because
those intervals could have been used to lower the clock frequency in the busy
intervals. A truly adaptive strategy would thus make more efficient use of the
same resources.

5.2 Related Work

The state-of-the-art method of applying DVFS on SDF graphs is proposed in [24,
31]. These papers consider dynamic power usage, but they ignore static power

18

usage, which is non-negligible in modern processors. The work in [24] requires
the expensive transformation of SDF graphs to equivalent Homogeneous SDF
(HSDF) graphs, which we avoid in our approach. Also, their work is not appli-
cable to platforms with a limited number of processors. The approach in [31]
considers that each task is executed as soon as it is enabled, unlike real-life ap-
plications where this is not possible due to limitations on the available number
of processors. A recent stochastic approach [20] introduces exponential Scenario-
Aware SDF models, which add mode switches and exponential delays to SDF
graphs. They compute minimal and maximal expected values, but cannot derive
concrete schedules. Another direction [29] takes into account strategies for bat-
tery schedules, in order to minimize battery wear and optimize for a system’s
life time. In [3], we integrated task scheduling on heterogeneous hardware with
battery strategies, as an approach to energy-self-supporting systems. Finally, an
interesting alternative is to use mean-payoff games to synthesize a controller
for resource- and scenario-aware SDF graphs, which reacts to environment be-
havior [30]. They use policy iteration algorithms to optimize for throughput, in
contrast to our approach, where the goal is to optimize for energy consumption.

5.3 Research Perspectives

In this paper, we have presented a method of synthesizing energy-optimal con-
trollers for dataflow applications mapped on heterogeneous platforms using Up-
PAAL STRATEGO. We further have compared this approach with an approach
with UPPAAL CORA, in terms of modeling effort, results and computation times.
For deterministic systems, currently UPPAAL CORA provides a more expressive
input language, faster algorithms, and ready to use results in the form of a
concrete schedule, when compared to UPPAAL STRATEGO. However, UPPAAL
CORA cannot handle environment uncertainty, which leads to assuming worst-
case behavior everywhere, and potentially energy-wasteful schedulers. UPPAAL
STRATEGO provides the means to compute adaptive schedules, optimizing for
energy in an uncertain environment.

A future research direction is to carry on from the results achieved in this
paper and explore the possibilities of battery-aware scheduling of SDF graphs. As
real-life batteries are hybrid in nature, UPPAAL STRATEGO is a natural choice
to model them. Then using the combination of symbolic synthesis, statistical
model checking, and reinforcement learning, we can synthesize battery-aware
controllers.

Acknowledgement

The authors are grateful to Jakob Haahr Taankvist and Peter Gjgl Jensen for
their valuable help to understand UPPAAL STRATEGO. The authors would also
like to thank the anonymous reviewers for their helpful and constructive com-
ments that greatly contributed to improving the final version of the paper.

19

References

1.

10.

11.

12.

13.

14.

15.

16.

W. Ahmad, R. de Groote, P. K. F. Holzenspies, M. Stoelinga, and J. van de
Pol. Resource-constrained optimal scheduling of synchronous dataflow graphs via
timed automata. In Proceedings of 14th International Conference on Application
of Concurrency to System Design, (ACSD), pages 72-81, 2014.

. W. Ahmad, P. K. F. Holzenspies, M. Stoelinga, and J. van de Pol. Green com-

puting: Power optimisation of VFI-based real-time multiprocessor dataflow appli-
cations. In Proceedings of 18th Euromicro Conference on Digital Systems Design
(DSD), pages 271-275, 2015.

W. Ahmad, M. Jongerden, M. Stoelinga, and J. van de Pol. Model checking and
evaluating QoS of batteries in MPSoC dataflow applications via hybrid automata.
In Proceedings of 16th International Conference on Application of Concurrency to
System Design (ACSD), pages 114-123, 2016.

W. Ahmad, B. M. Yildiz, A. Rensink, and M. Stoelinga. Ewvaluating the Tools on
the Face Detection and Recognition Case Study, chapter 2, pages 4-6. FP7 EU
Project SENSATION, Deliverable D1.4, 2016.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In Formal
Methods for the Design of Real-Time Systems, volume 3185. 2004.

G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review, 32(4):34-40,
2005.

L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design techniques for
system-level dynamic power management. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 8(3):299-316, 2000.

F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR 2005 - Concurrency
Theory, volume 3653. 2005.

A. David, D. Du, K. G. Larsen, A. Legay, M. Mikucionis, D. Bggsted Poulsen, and
S. Sedwards. Statistical Model Checking for Stochastic Hybrid Systems. ArXiv
e-prints, 2012.

A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime, M. G. Sgrensen, and
J. H. Taankvist. On time with minimal expected cost! In Automated Technology
for Verification and Analysis, volume 8837, pages 129-145. 2014.

A. David, P. G. Jensen, K. G. Larsen, M. Mikuéionis, and J. H. Taankvist. Uppaal
Stratego. In Proceedings of 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 206-211. 2015.

A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen. Uppaal SMC
tutorial. International Journal on Software Tools for Technology Transfer, 17(4),
2015.

V. Devadas and H. Aydin. On the interplay of voltage/frequency scaling and
device power management for frame-based real-time embedded applications. IEEE
Transactions on Computers, 61(1):31-44, 2012.

M. E. T. Gerards, J. L. Hurink, and J. Kuper. On the interplay between global
DVFS and scheduling tasks with precedence constraints. IEEE Transactions on
Computers, 64:1742-1754, 2014.

J. J. Han, X. Wu, D. Zhu, H. Jin, L. T. Yang, and J. L. Gaudiot. Synchronization-
aware energy management for VFI-based multicore real-time systems. IEEE Trans-
actions on Computers, 61(12):1682-1696, 2012.

20

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

T. Henzinger. The theory of hybrid automata. In Proceedings of Eleventh Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 278-292, 1996.

S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency scaling in
chip-multiprocessors. In Proceedings of ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED), pages 38-43, 2007.

S. Irani and K. R. Pruhs. Algorithmic problems in power management. ACM
SIGACT News, 36(2):63-76, 2005.

J.-P. Katoen and H. Wu. Exponentially timed SADF: compositional semantics,
reductions, and analysis. In Proceedings of 14th ACM/IEEE International Con-
ference on Embedded Software (EMSOFT), pages 1:1-1:10, 2014.

E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In Proceedings of the
IEFEE, volume 75(9), pages 1235-1245, 1987.

J. F. Manwell and J. G. McGowan. Lead acid battery storage model for hybrid
energy systems. Solar Energy, 50(5):399 — 405, 1993.

J. L. March, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato. A new energy-aware
dynamic task set partitioning algorithm for soft and hard embedded real-time
systems. The Computer Journal, 54(8):1282-1294, 2011.

A. Nelson, O. Moreira, A. Molnos, S. Stuijk, B. T. Nguyen, and K. Goossens. Power
minimisation for real-time dataflow applications. In Proceedings of 14th Euromicro
Conference on Digital System Design (DSD), pages 117-124, 2011.

S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. Accurate
modeling of the delay and energy overhead of dynamic voltage and frequency
scaling in modern microprocessors. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 32(5):695-708, 2013.

T. D. ter Braak, K. Sunesen, W. Ahmad, M. Stoelinga, J. van de Pol, J.-P. Katoen,
and H. Wu. Evaluating the Tools on the Face Detection and Recognition Case Study,
chapter 2, pages 6—23. FP7 EU Project SENSATION, Deliverable D4.4, 2016.

B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk. A
scenario-aware data flow model for combined long-run average and worst-case per-
formance analysis. In Proceedings of 4th ACM/IEEE International Conference on
Formal Methods and Models for Co-Design (MEMOCODE), pages 185-194, 2006.
M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU
energy. In Proceedings of 1st USENIX Conference on Operating Systems Design
and Implementation, 1994.

E. R. Wognsen, B. R. Haverkort, M. Jongerden, R. R. Hansen, and K. G. Larsen. A
score function for optimizing the cycle-life of battery-powered embedded systems.
In Proceedings of 13th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS), pages 305-320, 2015.

Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal. Playing games with
scenario- and resource-aware SDF graphs through policy iteration. In Proceedings
of Design, Automation and Test in Europe (DATE), pages 194-199, 2012.

J. Zhu, 1. Sander, and A. Jantsch. Energy efficient streaming applications with
guaranteed throughput on MPSoCs. In Proceedings of 8th ACM/IEEE Interna-
tional Conference on Embedded software (EMSOFT), pages 119-128, 2008.

S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Survey
of energy-cognizant scheduling techniques. IEEE Transactions on Parallel and
Distributed Systems, 24(7):1447-1464, 2013.

