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Abstract. In this article, the feasibility of a unified modelling and pro-
gramming paradigm is discussed from the perspective of large scale sys-
tem development and verification in collaborative development environ-
ments. We motivate the necessity to utilise multiple formalisms for devel-
opment and verification, in particular for complex cyber-physical systems
or systems of systems. Though modelling, programming, and verification
will certainly become more closely integrated in the future, we do not ex-
pect a single formalism to become universally applicable and accepted by
the development and verification communities. The multi-formalism ap-
proach requires to translate verification artefacts (assertions, test cases,
etc.) between different representations, in order to allow for the verifi-
cation of emergent properties based on local verification results estab-
lished with different methods and modelling techniques. It is illustrated
by means of a case study from the railway domain, how this can be
achieved, using concepts from the theory of institutions. This also en-
ables the utilisation of verification tools in different formalisms, despite
the fact that these tools are usually developed for one specific formal
method.

1 Introduction

State of practise. ”Programs are models” - this is a well known slogan of model-
driven development, and it is well-founded, since several modelling formalisms
allow for automated code generation, where the code is just regarded as a less
abstract (textual) model. Refinement relations between abstract and more con-
crete models can be specified with mathematical rigour, so that the code can be
traced back to the original model without any ambiguities. This suggests a uni-
fied approach to constructing models and software code during the development
life cycle, and it also indicates that a comprehensive approach to developing new
modelling formalisms as well as new programming languages should be adopted.

Both ideas, however, cannot be considered as state of practise today. Despite
all efforts to provide a seamless modelling and programming environment, tool
support for high-level modelling is still very heterogeneous and controversially
discussed, with issues such as

– SCADE or Simulink/Stateflow or UML?



– Domain-specific languages or wide-spectrum languages?
– Semi-formal of fully formal modelling semantics?

In contrast to this, we experience a growing consensus about the effectiveness
of programming languages (C++, Java, Haskell) and the usability of integrated
development environments (IDEs), such as Eclipse, Microsoft Developer, or X-
code, all of them offering effective support for software development, debugging,
and various aspects of testing. Last, but not least, powerful re-usable libraries
have been built for supporting efficient software programming, while the higher-
level formalisms only provide very basic packages that can be re-used when
creating models3.

Summarising, we agree with the authors of [7] that it will take another 10
years until graphical high-level modelling tools will have reached a level of per-
fection that is comparable to current state-of-the art IDEs. According to our
understanding, the reluctant acceptance of high-level modelling techniques is
less caused by a reluctance to adopt formal concepts, but simply by the fact
that the user experience is more satisfactory and the feeling of productiveness
is higher when working on the level of software code than when working with
more abstract formalisms.

Advocating the multi-formalism approach. This position paper is less about the
closer integration of modelling, programming, and verification, because this is not
the only problem to be solved: from our perspective, an even more severe problem
consists in the fact that as of today, there is no preferred modelling formalism the
majority of the development and verification communities might be willing to
agree upon. On the contrary, development and verification projects for large and
complex systems involving heterogeneous components, such as cyber-physical
systems or systems of systems [12] suggest that a multi-formalism approach –
supported by collaborative distributed development environments – may become
the preferred solution in the future. This enables development and verification
teams to use optimised methods and tools for developing and verifying specific
system components. While this obviously helps to avoid endless discussions about
which modelling language to choose in a project, the multi-formalism approach
also comes with a down-side: verification results locally obtained for system
components by means of different formalisms need to be translated into other
representations when emergent system properties have to be derived from local
component-specific assertions.

The main message of this paper is that the advantages of the multi-formalism
approach outweigh this translation effort, because systematic methods for trans-
ferring theories and verification results between formalisms exist and can be ef-
ficiently applied. They even help to re-use tools built for one formalism in the
context of another. We expect further that the necessity to translate verification
artefacts between different formalisms will advance the integration of modelling

3 It is interesting to note that the Z specification language already provided extensive
libraries, as can be seen in its early reference books like [16]. This, however, has not
become a standard requirement for designing new formalisms.



and programming, because these translations can only be defined and applied
on the more abstract level of modelling.

Our thesis is supported further by the growing interest in model-driven sys-
tems engineering [13]: currently, manufacturers in the aircraft, railways, and
automotive domains express considerable interest in a model-based approach to
developing large-scale complex systems or even systems of systems. This interest
is motivated by the desire to analyse executable models for early detection of
conceptual errors and to exchange semantically precise models instead of or in
addition to informal textual documents with suppliers. This general acceptance
of the importance of formalised modelling is expected to accelerate the elabo-
ration of integrated modelling and programming approaches. Moreover, at least
for the avionic domain and for the domain of railway control systems, model-
based systems engineering is always discussed in multi-formalism context, where
tool-supported methods like Simulink/Stateflow, SCADE, SysML, and B are ap-
plied to different modelling, code generation, and verification tasks in large-scale
development projects.

Overview. In Section 2, the necessity for a multi-formalism approach to large-
scale system developments is justified. We analyse the possibilities to apply mul-
tiple high-level formalisms when developing and verifying complex systems in a
collaborative development environment. In Section 3, a case study is presented
that will be used to illustrate the verification of emergent properties in the next
Section 4 using the linking approach which allows to translate assertions elab-
orated in one formalism to equivalent assertions of another. In Section 5, the
linking approach is applied again: it is described how verification tools can in-
teract to support different formalisms with a maximal degree of re-use. As an
example, we consider test strategies for finite state machines with guaranteed
fault coverage and show how the resulting test strategies can be translated to
other formalisms while preserving the fault coverage properties. In Section 6 the
conclusions are presented.

2 A Multi-formalism Approach to Large-scale System
Developments

For large-scale system developments, as needed for complex distributed cyber-
physical systems (CPS) or systems of systems, several modelling formalisms,
and associated development and verification methods with corresponding tool
support are needed. We see the following main reasons for this assessment.

– Sub-components should be modelled, developed, and verified with formalisms
that are optimised for their specific requirements. For CPS, these compo-
nents may be very heterogeneous, from smart sensors to discrete or hybrid
(mixed discrete and time-continuous observables) control components, sup-
ported by database servers and mathematical constraint solvers.



– Different development and verification teams will work on large scale devel-
opments, each group preferring to use their “favourite” methods and associ-
ated tool box.

In a development campaign for an aircraft, for example, hybrid control tasks
might be modelled with Simulink/Stateflow, local synchronous discrete control
with SCADE, and integration aspects (such as asynchronous data exchange be-
tween flight deck and cabin) with SysML. This example shows that the multi-
formalism approach is not so much a vision but more like an established fact
today. What is missing is a systematic approach allowing for mathematically
sound integration of development artefacts and for sound interpretation of local
verification results in the global system context:

– For the verification of emergent properties – these are properties that can
only be derived from the collaborative behaviour of all interacting system
components – it is necessary to take local verification results into account
which have been developed using different formalisms to express the asser-
tions guaranteed by the sub-components.

Apart from this essential prerequisite for developing safe systems using the
multi-formalism approach, there is another, more efficiency-oriented challenge
to be solved:

– Complex automation algorithms available in a tool supporting a specific
formalism need to be made available for other formalisms as well.

Three approaches supporting multi-formalism development and verification. We
see at least three possible major approaches for semantic integration of develop-
ment and verification artefacts based on different formalisms:

1. The linking approach uses mechanisms to translate models and assertions
between different formalisms. It can be based, for example, on the theory of
institutions [5, 4, 6] with its foundations in mathematical category theory, or
on the Unifying Theories of Programming (UTP) [8] which relies on lattice
theory and the equivalence between programming languages and logic.

2. The megamodel approach maps the meta models (i.e. semantic models) of
different formalisms into the same meta-meta model, usually denoted as a
megamodel in the software engineering communities [1]. Megamodels contain
the semantic representations of models elaborated in different formalisms;
moreover, they contain transformations relating elements of the different
models. This allows for verifying emergent properties on the megamodel
representations of all sub-component assertions.

3. The wide-spectrum approach combines multiple “sub-formalisms” in one and
provides a common “heavy weight” semantic meta model.

The three approaches are illustrated in Fig. 1.
From today’s perspective, we consider the linking approach as the most

promising one, because it has been elaborated in the most thorough way and
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Fig. 1. Three approaches for semantic integration.

exercised – sometimes only heuristically – in practise. The megamodel approach
is still a fairly new research topic, and many investigations are only concerned
with static model semantics, while the linking approach fully supports the trans-
lation of facts about behavioural semantics. Finally, the wide-spectrum approach
(UML/SysML are prominent examples from this class) never seems to cover all
modelling features that people may need in a specific development and verifi-
cation undertaking. Moreover, the integration of sub-formalisms automatically
results in complex semantic models. This can be seen in the UML and SysML
standards published by the Object Management Group, where only the static se-
mantics is fully formalised, while the behavioural semantics of language elements
is only specified in natural language style.

The linking approach is illustrated by means of an example in the paragraphs
below. We use linking techniques based on the theory of institutions. This should
not suggest, however, that we consider this as the preferred linking method; the
UTP-based method seems to be equally well-suited, as can be seen from case
studies like [2].

3 Case Study –
On-board Train Controller for Speed and Brakes

Consider an on-board control system for high-speed trains. This typically com-
prises several controllers communicating over some local bus system. In Fig. 2, a
vital part of the on-board control system is shown, consisting of the ceiling speed
monitor (CSM) and the brake controller (BC). The former compares the train’s
current speed v against the maximal speed vm currently admissible according
to the commands received from the radio block centre. If the speed is too high,
the CSM first sends warning messages to the train engine driver (N = Normal,
O = Overspeed, W = Warning), and then – if the train is speeding even more –
transits to intervention mode (I), where a braking command b := ON is trans-
mitted on the bus. The conditions to release the brakes after an intervention by
the CSM depend on the train’s location; this is reflected by a Boolean parameter
nva (“national value allowing early release of brakes”) sent by the radio block



centre. Its meaning is discussed below when presenting the behavioural CSM
model. We assume that the CSM interface is realised according to the shared
variable paradigm: the inputs are polled regularly, and the output variables are
written to at the end of each processing cycle.

Ceiling Speed 
Monitor  

CSM

Brake 
Controller 

BC

Train Engine Driver

Train BrakesOdometry 
System

Radio Block 
Centre

Train Engine Driver

{release, trigger}

b 2 {OFF, ON}

d 2 {N, O, W, I}

{auto o↵, auto on}

{man o↵, man on}

IM

Interface mapper

vm 2 [0, 500]

v 2 [0, 500]nva 2 B

Fig. 2. Interfaces of the on-board train control system.

For illustrating certain aspects of theory linking, we assume that the BC has
an event-based interface: it receives commands to trigger or release the brakes
from both the CSM and the train engine driver as events auto on, auto off (au-
tomated trigger and release of the brakes) and man on,man off (manual trigger
and release events), respectively. To map the state-based CSM output b to input
events of the BC, an interface mapper (IM) observes changes of b and creates
the corresponding auto on, auto off events for the BC. The IM could be imple-
mented, for example, as a lower software layer of the BC which reads state data
from the communication bus (realised, for example, as a reflective memory), and
creates events for the BC software accordingly.

The CSM behaviour is specified by means of a SysML state machine com-
municating via shared variables, as shown in Fig. 3. Initially, the controller is in
state NORMAL, and the outputs to train engine driver and BC are N and OFF,
respectively. As soon as the actual speed exceeds the maximal speed allowed
(v > vm), the controller changes into state OVERSPEED and changes the indi-
cation to the train engine driver to O. If the actual speed exceeds vm + dW (vm)
(dW is a continuous non-negative function depending on vm), the indication
changes to W. Speeding further until the threshold vm + dI1(vm) is violated
leads to a transition into the first intervention state: the indication changes to
I, and the output b to the BC is set to ON.



Fig. 3. SysML state machine model for the ceiling speed monitor.

In the control states described so far, the controller transits back to NORMAL
and resets both indication and braking command, as soon as the actual speed
is in normal range v ≤ vm again. Further acceleration until v > vm + dI2(vm),
however, enforces a transition into state INTERVENTION 2. There the indication
d = I and the output b = ON remain the same as in INTERVENTION 1, but the
transition back to normal is only allowed when the train has come to a standstill,
or if the country-dependent value nva has been set to true and v ≤ vm holds
again.

The brake controller BC is modelled as a deterministic finite state machine
(DFSM) in Mealy Machine style, as shown in Fig. 4. In initial state RELEASED,
the brakes are released, and repeated auto off,man off events do not change
this. On reception of the man on event from the train engine driver, the brakes
are triggered. In the corresponding DFSM state TRIGGERED, the brakes may
only be released again by the train engine driver: auto off commands from the
CSM are ignored. If however, the CSM also sends a braking command via event
auto on, the DFSM transits into state TRIGGERED AUTO, and now only the
auto off command can release the brakes again. If the BC is in state RELEASED
and gets the command to trigger the brakes from the CSM, it directly transits to
TRIGGERED AUTO. Again, only the CSM command can initiate the release
of the brakes in this situation, and commands from the train engine driver are
ignored.

4 Emergent Property Verification

In the case study introduced above, consider the safety-related verification obli-
gation
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Fig. 4. Finite state machine model of the brake controller.

Whenever the CSM indicates intervention (I) on output d, the emergency
brakes are triggered in the next system state at the latest.

This is an emerging property, because its validity cannot be decided by analysis
of the CSM or the BC alone: the CSM knows about d, but it has no control over
the trigger event to the brakes. On the contrary, the BC knows when the trigger
event has been fired, but doesn’t know about d-indications.

Furthermore, we observe that the CSM and the BC have been modelled with
different formalisms, since the latter has DFSM semantics, while the former is
represented as a SysML state machine with a shared variable interface. The be-
havioural semantics of SysML state machines can be represented conveniently
by Kripke Structures (see [10] for a detailed description of the CSM semantics)
whose states are variable valuation functions and whose atomic propositions have
CSM variables and control state names as free variables. We choose the semantic
variant where outputs changed while passing through transient states are not
observable. Assume, for example, that the CSM is in state NORMAL and re-
ceives a new actual speed value v > vm +dI2(vm). Then it passes through states
OVERSPEED, WARNING, and INTERVENTION 1 until it ends up in INTERVEN-
TION 2 where it becomes stable. Only then the associated outputs d = I, b = ON
become visible. Moreover, input changes only become visible while the CSM re-
sides in a stable state.



We decide to use Kripke Structures to represent the semantics of the complete
system S and specify assertions by means of LTL formulas over variable symbols
of S. The variables of S are the interface variables of the CSM plus auxiliary
Boolean variables aon (if true, the last input event on the IM-BC interface was
auto on, if false, the last input on this interface was auto off), mon (if true, the
last input event to the BC on the train engine driver interface was man on, if
false, it was man off), r (if true, the last output event of the BC was release, if
false, the last output was trigger).

With these variable symbols at hand, the safety property specified textually
above can be formalised as

ϕS ≡ G
(
¬(d = I) ∨X¬r

)
(1)

Let us now assume that local verification activities have already shown that
the CSM implementation conforms to the SysML model shown in Fig. 3, the BC
implementation conforms to the model in Fig. 4, and that the interface mapper
implementation fulfils

ϕIM ≡ G
(
(b = ON)⇔ Xaon

)
(2)

Formula (2) specifies that the IM reacts on a change of CSM output b from OFF
to ON by creating an auto on event which becomes visible to the BC in the next
processing step. Conversely, if the CSM changes the b output from ON to OFF,
the IM generates an auto off event which is reflected by ¬aon holding in the next
processing step.

Using k-induction [14], we can prove by model checking that the CSM model
satisfies the invariant

ϕCSM ≡ G
(
¬(d = I) ∨ (b = ON)

)
(3)

when interpreted in the semantics where intermediate transient processing steps
are not observable.

It remains to establish a suitable LTL assertion for the BC. This is not
straightforward, since the DFSM semantics is represented by the state machine’s
language L(BC), consisting of all finite traces of input/output events that can
be performed by the BC. In contrast to this, LTL formulas are interpreted over
infinite sequences π of sets of valid atomic propositions. We observe, however,
that the violation of every LTL safety property can already be decided on a
finite prefix of π. Conversely, every finite execution prefix not violating a safety
formula can be extended to an infinite execution π which is a model for the safety
formula [15]. Since all LTL formulas which are of interest in our context are safety
formulas, this suggests that the DFSM language L(BC) can be interpreted to
fulfil a safety property, if this property is not violated by any I/O trace of the
language.

This concept will now be realised formally by mapping DFSMs with the
signature of the BC to associated Kripke structures with atomic propositions
aon,mon, r. The construction follows the recipes of the theory of institutions [5,



4, 6]. An institution defines some essential aspects of a logic system: signatures,
sentences (over a given signature), models (over a given signature), and the sat-
isfaction relation between models and sentences of the same signature. Mappings
between two institutions can be defined, by defining maps translating signatures,
sentences and models between the two institutions, respectively. The linking ap-
proach performed in this section, uses this idea to first define a model map µ
translating DFSM models having the signature ΣBC

4 of the BC DFSM to Kripke
models over a corresponding Kripke signature ΣK

5. We can then use this model
translation map to translate the DFSM model of the BC to a corresponding
Kripke model for which we can formulate a suitable LTL assertion. To ensure
that the behaviour of the translated model is consistent with the original model,
we also define a sentence translation map σ from Kripke sentences (LTL asser-
tions) over ΣK to DFSM sentences over ΣBC and prove a satisfaction condition
that expresses that model satisfaction of sentences is “invariant under change of
formalism”. The translation of models and sentences is illustrated in Fig. 5.

ModKripke(ΣK) SenKripke(ΣK)

BC ∈ ModDFSM (ΣBC)

µ

6

SenDFSM (ΣBC)

σ

?

Fig. 5. Model and sentence translation. ModKripke(ΣK) is the set of all Kripke models
over ΣK , ModDFSM (ΣBC) is the set of all DFSM models over ΣBC , SenKripke(ΣK) is
the set of all Kripke sentences over ΣBC , and SenDFSM (ΣBC) is the set of all DFSM
sentences over ΣBC .

Model map. As a first step, the model map µ mapping DFSMs over signature
ΣBC to Kripke Structures over signatureΣK is created. LetM = (Q, q0, ΣI , ΣO, h)
be a DFSM with finite state space Q, initial state q0 ∈ Q, input alphabet ΣI =
{auto on, auto off,man on,man off}, output alphabet ΣO = {release, trigger},
and transition relation h ⊆ Q × ΣI × ΣO × Q. Then µ(M) is defined as the
Kripke Structure µ(M) = (S, s0, R, L,AP ) with

1. Atomic proposition set AP = {aon,mon, r}
2. State space S ⊆ Q× 2AP

3. Initial state s0 = (q0, {r})
4. Labelling function L : S → 2AP ; (q, A) 7→ A
5. Transition relation R ⊆ S × S specified by

4 The signature of a DFSM model consists of its input alphabet and
output alphabet. For the BC model, we have ΣBC = (ΣI , ΣO) =
({auto on, auto off,man on,man off}, {release, trigger}).

5 A Kripke signature consists of those input variables, local variables and output
variables that can be used in a model over that signature. For the corresponding
Kripke signature ΣK it is the variables aon, mon, and r.



R = {((q,A), (q′, A′)) ∈ S × S | (q,man on, release, q′) ∈ h ∧A′ = A ∪ {mon, r}}
∪ {((q,A), (q′, A′)) ∈ S × S | (q,man on, trigger, q′) ∈ h ∧A′ = (A \ {r}) ∪ {mon}}
∪ {((q,A), (q′, A′)) ∈ S × S | (q,man off, release, q′) ∈ h ∧A′ = (A \ {mon}) ∪ {r}}
∪ {((q,A), (q′, A′)) ∈ S × S | (q,man off, trigger, q′) ∈ h ∧A′ = (A \ {mon, r})}
∪ {((q,A), (q′, A′)) ∈ S × S | (q, auto on, release, q′) ∈ h ∧A′ = A ∪ {aon, r}}
∪ {((q,A), (q′, A′)) ∈ S × S | (q, auto on, trigger, q′) ∈ h ∧A′ = (A \ {r}) ∪ {aon}}
∪ {((q,A), (q′, A′)) ∈ S × S | (q, auto off, release, q′) ∈ h ∧A′ = (A \ {aon}) ∪ {r}}
∪ {((q,A), (q′, A′)) ∈ S × S | (q, auto off, trigger, q′) ∈ h ∧A′ = (A \ {aon, r})}

The Kripke Structure created via µ from the BC DFSM is shown in Fig. 6.
The initial state is (RELEASED, {r}). Its reachable states are the pairs (q, A)
of BC states and subsets A ⊆ AP , such that the latter are always consistent
with the latest input events: after an event man on has occurred on DFSM level,
the associated target state in µ(BC) contains atomic proposition mon. If this is
followed by DFSM input auto on, then aon is added to the propositions of the
µ(BC) target state. On a path of state transitions in µ(BC), mon remains in
the set of atomic propositions associated with each state until a state transition
corresponds to a DFSM transition triggered by input man off, whereupon mon

is removed from the propositions of the target state reached by µ(BC).

Initial
(RELEASED,{r})

(TRIGGERED,{m_on})

(TRIGGERED_AUTO,{a_on})(RELEASED,{m_on,r})

(TRIGGERED_AUTO,{m_on,a_on})

Fig. 6. Kripke Structure µ(BC).

Sentence translation map. In the second step of the linking approach, a sentence
translation map σ is created. This is a map allowing us to translate assertions
defined for Kripke Structures into assertions about DFSMs. For the purpose of
this small example we can restrict the sentences of interest to LTL invariants
Gψ, where ψ is a proposition in negation normal form, built from the atomic
propositions of AP = {aon,mon, r}.

On the DFSM level, sentences are predicates over I/O-traces ι, implicitly
quantified over all ι ∈ L(M), where L(M) is the set of all I/O-traces of the



model M under consideration. Again, we restrict these predicates to invariants
that are written in LTL style; more precisely:

1. Sentences over a signature (ΣI , ΣO) are of the form Gα, where α is a pred-
icate in negation normal form using atomic propositions from the set

APM = {x = c | c ∈ ΣI} ∪ {y = e | e ∈ ΣO}

2. The satisfaction relation between models M and sentences Gα consists of
invariant assertions over L(M) for DFSMs models M written in the form
M |= Gα which is interpreted as

M |= Gα ≡ ∀ι ∈ L(M) : Gα(ι)

where Gα(ι) is interpreted as

Gα(ι) ≡ ∀i = 1, . . . , n : α[xi/x, yi/y]

for ι = (x1, y1).(x2, y2) . . . (xn, yn). In this definition, α[xi/x, yi/y] denotes
the proposition α with every occurrence of x replaced by the actual input
event xi, and every y replaced by the actual output yi.

Take, for example, the assertion

BC |= G(¬(x = man off) ∨ (y = release))

This assertion is not fulfilled, because the BC can perform the I/O-trace

(x1, y1).(x2, y2).(x3, y3) · · · = (man on, trigger).(auto on, trigger).(man off, trigger) . . .

Evaluating α[x3/x, y3/y] results in

α[x3/x, y3/y] ≡ ¬(man off = man off) ∨ (trigger = release) ≡ false

Let WK denote the invariant LTL formulas Gψ over Kripke Structures, and
WM the invariant formulas Gα over I/O-sequences of DFSMs. Then the sentence
translation map can be defined as follows.

σ : WK −→WM ; Gψ 7→ G(σ′(ψ))

σ′ : Propositions(AP ) −→ Propositions(APM )

mon 7→ (x = man on)

¬mon 7→ (x = man off)

aon 7→ (x = auto on)

¬aon 7→ (x = auto off)

r 7→ (y = release)

¬r 7→ (y = trigger)

ψ ∧ ψ′ 7→ σ′(ψ) ∧ σ′(ψ′)
ψ ∨ ψ′ 7→ σ′(ψ) ∨ σ′(ψ′)



Satisfaction condition. Having constructed model map and sentence transla-
tion map, the so-called satisfaction condition has to be proven. The satisfaction
condition states in our case that

µ(M) |= Gψ if and only if M |= σ(Gψ)

It is straightforward to see that this follows directly from the way µ and σ have
been constructed. The satisfaction condition is illustrated in Fig. 7.

µ(M)
|= - Gψ

=

M

µ

6

|=- σ(Gψ)

σ

?

Fig. 7. Satisfaction condition for model and sentence translation.

Other conditions. It also to be proven that the model map µ is properly defined
in the sense that it preserves the “natural” morphisms between models. For
DFSMs, these morphisms are arrows indicating I/O-equivalence: M1 −→ M2 if
and only if L(M1) = L(M2), and therefore also an arrow M2 −→M1 exists. On
the level of Kripke Structures, the corresponding morphisms are bisimulations
between Kripke Structures defined over the same atomic propositions. It is easy
to see that µ maps I/O-equivalent DFSMs to bisimilar Kripke Structures, so this
condition is fulfilled. The condition is illustrated in Fig. 8.

µ(M1)
∼bs- µ(M2)

=

M1

µ

6

∼io- M2

µ

6

Fig. 8. The model map µ translates I/O-equivalent DFSMs to bisimilar Kripke Struc-
tures. ∼io denotes the io-equivalence relation and ∼bs denotes the bisimulation relation.

Proof of emergent property. Having established the satisfaction condition, we are
now in the position to represent properties of the BC by means of LTL invari-
ants over atomic propositions from AP , and every invariant that can be shown



for µ(BC) is ensured by the BC itself, just in the slightly differing syntactic
representation of WM -formulas.

Analysing the transition graph of µ(BC) in Fig. 6, it can be immediately
deduced that the invariant

ϕBC ≡ G
(
¬aon ∨ ¬r

)
(4)

is fulfilled. Collecting now the assertions established in (2), (3), and (4), it is
easy to see that together they imply the desired safety property specified in (1).
�

The example above illustrated the application of the theory of institutions
in a linking approach to verify emergent properties in a large scale system de-
velopment, where different formalisms are used for modelling different system
components. In the next section, another application of this approach will be
described: the cooperation of tools, each of them fulfilling verification tasks for
specific formalisms.

5 Collaborative Development and Verification
Environments – Next Generation

Large scale system developments require collaborative development environments
(CDEs), where geographically distributed development teams can work locally
on their specific components and cooperate on integration tasks. We expect that
the CDE paradigm will become even more popular in the future, because it
will also enable collaboration of tools, with the objective to support the multi-
formalism approach. This might be particularly beneficial for verification tools.

Complete DFSM test strategies. To illustrate this point, let us consider a model-
based test automation tool available for DFSMs, that applies so-called complete
test strategies: this means that a test suite generated from a reference model M

1. accepts every implementation M ′ fulfilling the given conformance relation
M ′ ≤M (soundness), and

2. rejects every implementation M ′ violating M ′ ≤ M by letting at least one
test case fail (exhaustiveness).

For black-box testing, completeness is always defined in relation to a fault
domain. For DFSMs with I/O-equivalence as conformance relation, for example,
complete test strategies usually depend on the fault domain D(ΣI , ΣO,m) con-
taining all DFSMs over signature (ΣI , ΣO), whose minimised equivalent DFSM
contains at most m states. For this fault domain, several practically imple-
mentable test strategies exist [3, 17, 11].

Complete test strategies for the CSM. Suppose that the model-based DFSM
testing tool was available and could be applied for testing the brake controller
BC. The superior test strength of complete test suites suggests to investigate



whether such a strategy might also be available for the ceiling speed monitor
CSM. This requires some consideration, since the CSM has inputs v, vm which
are of floating point type. Therefore it is infeasible to enumerate all possible
input combinations during a test suite, so we cannot simply represent the CSM
as another DFSM. It is possible, however, to construct input equivalence classes
for the SysML state machine, because only the CSM inputs cannot be enumer-
ated, but the internal states and its outputs are finite. The construction of these
classes has been elaborated in [10], and it has been shown that this enables an
abstraction of the SysML state machine to a DFSM with a signature ΣCSM ′

having input equivalence classes as inputs and with an output alphabet corre-
sponding to the finite value assignments to the CSM outputs d and b. In the
light of the linking approach, this result can be re-phrased as follows and as
illustrated in Fig. 9.

ModDFSM (ΣCSM′) TC(ΣCSM′)

CSM ∈ ModKripke(ΣCSM )

T

6

TC(ΣCSM )

T ∗

?

Fig. 9. Model translation T and test case translation T ∗. ΣCSM is the signature of the
CSM model (including the input variables nva, v, and vm, and the output variables
b and d) and ΣCSM′ is the corresponding DFSM signature. ModKripke(ΣCSM ) is the
set of all Kripke models over the signature ΣCSM , ModDFSM (ΣCSM′) is the set of all
DFSM models over ΣCSM′ , TCKripke(ΣCSM ) is the set of all Kripke test cases over
ΣCSM , and TCDFSM (ΣCSM′) is the set of all DFSM test cases over ΣCSM′ .

T (S)
pass2- U

=

S

T

6

pass1- T ∗(U)

T ∗

?

Fig. 10. Satisfaction condition for model and test case translation.

1. Every deterministic Kripke Structure S with infinite input domains but fi-
nite internal state values and finite outputs can be mapped by the model
translation map T to a minimised DFSM. This DFSM take input equivalence
classes of S as inputs and operates on the same outputs as S.

2. The model translation map T respects I/O-equivalence as conformance re-
lation: if Kripke Structure S ′ conforms to the reference model S, then the
DFSM T (S ′) conforms to the reference DFSM T (S), as illustrated in Fig. 11.



T (S ′)
≤2- T (S)

=

S ′

T

6

≤1 - S

T

6

Fig. 11. Model translation preserves conformance relation.

3. Sentences in this scenario are test cases and the sentence translation map
is the test case map T ∗ which translates DFSM test cases into test cases
running against implementations with Kripke Structure semantics.

4. Satisfaction relations are now of the form “FSM M passes a test case” or
“Implementation S passes a test case”.

5. The diagram in Fig. 10 commutes; this implies that (T, T ∗) fulfil the satis-
faction condition: the DFSM abstraction T (S) of implementation S passes
a DFSM test case U , if and only if the implementation S also passes the
translated test case T ∗(U) on Kripke Structures.

6. The satisfaction condition now implies that complete test strategies derived
from reference DFSM T (S) are translated via T ∗ to likewise complete test
strategies for implementations with Kripke Structure semantics. This shows
that not only assertions about specific models, but also whole theories can
be transferred from one institution to the other.

As a result of these theoretical considerations (they have been elaborated in
more detail in [9]), we can construct a tool for testing implementations against
SysML state machine models similar to the CSM model as follows.

1. Input reference model S.

2. Calculate DFSM abstraction T (S).

3. Send DFSM T (S) to the DFSM testing tool to calculate the associated
complete DFSM test suite TS(T (S)).

4. Receive TS(T (S)) from the DFSM testing tool and translate it to a complete
test suite T ∗(TS(T (S))) that can be executed against implementation S ′.

In [2], a similar approach to re-using tools in different formalisms is described;
this is based on the Unifying Theories of Programming UTP. The role of the
morphisms and co-morphisms between institutions is taken on by Galois con-
nections between lattices in UTP.

6 Conclusions

In this contribution, the aspect of using multiple formalisms in large-scale system
developments with collaborative development environments has been discussed.



For the domain of cyber-physical systems, we consider the multi-formalism ap-
proach as essential for such undertakings, because special methods and associ-
ated modelling techniques are needed to optimise the development and verifica-
tion of system components possessing a considerable structural and behavioural
variety – from smart sensors via mechatronics controllers to database servers.
We have argued that the multi-formalism approach requires some theoretical
support for verifying emergent system properties and re-using verification tools
in the context of different formalisms. This has been illustrated by means of a
case study for an on-board train control system, where the theory of institutions
has been applied as one possibility for showing how assertions can be translated
between different semantic domains and how test suites with guaranteed fault
detection properties can be translated from one domain into another.

These considerations suggest that there is no single “best” unified modelling,
programming and verification paradigm to be expected in the future. Instead,
system development and verification according to the multi-formalism approach
will become more and more natural. The examples show that this trend will
automatically foster the integration between modelling and programming: the
transfer of verification artefacts between different formalisms requires a level
of abstraction which is significantly higher than that of typical programming
languages.

Nevertheless, considerable work is still necessary to achieve a degree of us-
ability and integration for modelling and verification techniques that is already
available today for “conventional” programming in integrated development en-
vironments. In particular, it cannot be expected that the institution morphisms
and co-morphisms together with their satisfaction conditions will be elaborated
manually from scratch for every new large scale system development. Instead,
a library of existing inter-formalism transformations is needed, and the (usually
routine) proofs of satisfaction conditions need to be mechanised.
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