
A Network Analytic Approach to Investigating
a Land-Use Change Agent-Based Model

Ju-Sung Lee and Tatiana Filatova

Abstract Precise analysis of agent-based model (ABM) outputs can be a
challenging and even onerous endeavor. Multiple runs or Monte Carlo sampling
of one’s model (for the purposes of calibration, sensitivity, or parameter-outcome
analysis) often yields a large set of trajectories or state transitions which may,
under certain measurements, characterize the model’s behavior. These temporal
state transitions can be represented as a directed graph (or network) which is
then amenable to network analytic and graph theoretic measurements. Building on
strategies of aggregating model outputs from multiple runs into graphs, we devise a
temporally constrained graph aggregating state changes from runs and examine
its properties in order to characterize the behavior of a land-use change ABM, the
RHEA model. Features of these graphs are transformed into measures of complexity
which in turn vary with different parameter or experimental conditions. This
approach provides insights into the model behavior beyond traditional statistical
analysis. We find that increasing the complexity in our experimental conditions can
ironically decrease the complexity in the model behavior.
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1 Introduction

Agent-based models (ABMs) are capable of producing a plethora of complex output
which require sophisticated techniques for analysis and visualization. An overview
of current ABM output analysis and visualization techniques [8] highlights the
breadth of techniques necessary for ABM output analysis. Still, there remain many
advanced approaches that have yet to be commonly employed by ABM researchers.
In this paper, we explore an network analytic approach for investigating ABM
behavior and demonstrate the utility of this approach by applying it to an agent-
based land-use change (LUC) model called RHEA (Risks and Hedonics in an
Empirical Agent-based land market) [3].

1.1 Networked ABM Output

While the interaction of agents in ABMs often constitute networks of varying
modalities (i.e., multiple classes of entities) and topologies (i.e., the shape of the
overall structure), the model’s state transitions from one discrete time period to the
next can also be represented as network, specifically a weighted directed graph, and
then subjected to network analytic methods particularly drawn from graph theory
and social network analysis (SNA). The weights of the edges in such graphs would
represent the number of times the two connected states were traversed in one or more
runs of the simulation. Crouser et al. [2] propose the use of aggregated temporal
graphs (ATGs), the vertices of which encapsulate a unique state configuration of
the model. Multiple model runs are then aggregated into a single graph.

Examination of a smaller, more focused set of unique states would yield fully
connected graphs (or cliques) in which only the edge weights vary, and the
aggregation would lose much of the model’s complexity. For example, a model
that oscillates between two states in a staggered pattern would appear as a small
graph with only two vertices and a set of bidirectional edges while the pattern
of transitions would be lost. To address this limitation, we apply a variant of
this approach in which time is disaggregated in the graph portrayal; we call this
variant temporally constrained aggregated graphs (TCAGs). Each vertex under this
approach is identified uniquely by both its state and time signature. The multiple
edges (or edge weight) between two vertices would then indicate the number of
simulation runs that traverse the states represented by those two vertices at that
specific time interval. While a plot of lines may also be used to portray these state
changes, its visual limitations make it unsuited for our analyses.

While the two aforementioned network analytic approaches bear some resem-
blance to time aggregated graphs [6, 9], their techniques are quite different from the
latter, which entails an aggregation of the edges for a fixed vertex set (of dynamic
social and transportation networks) rather than an aggregation of vertices for graphs
of varying vertex sets.
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1.2 The RHEA Model

The RHEA model simulates a bilateral, heterogeneous housing market in an
empirical landscape. Buyers search for properties in a seaside town where both
coastal amenities and environmental risks of flooding are spatially correlated. A
realtor agent serves as a mediating agent that learns about the current market trend
and willingness to pay for various spatial attributes of properties [3]. At each time
step, sellers of the properties advertise their ask prices while buyers select and offer
bids on properties. Then, the two groups engage in dyadic (pair-wise) negotiations,
which may or may not result in a successful transaction (or trade). The ask prices
are primarily market-driven: sellers (1) consult with a realtor on the appropriate
price given the current trends as estimated by a hedonic analysis of the recent
simulated transactions and (2) adjust the ask price if a property remains too long on
a market. Buyers bid on the single property that brings them maximum utility and
is affordable for their budgets. A buyer’s budget constraints include their income,
preference for amenities, a necessity to pay insurance premiums for flood-prone
properties, and the possibility to activate an annual income growth. Spatial patterns
of price dynamics and intensity of trade are the emergent outputs of the model.
When studying them under various parameter settings, we noticed that the relative
market power of buyers and sellers plays a role. The explanation is twofold. Firstly,
a parcel that is very attractive will most likely receive several bid offers, out of which
its seller chooses the highest, thus driving prices for the most desirable properties
up. Secondly, sellers of the properties that are less desirable may receive only one
or even no bid offers, which can result in their accepting a bid that is below their
ask prices or reducing their ask prices after a number of unsuccessful trades. Thus,
excess demand drives prices up while excess supply pushes them down.

For our analyses, which includes an application of the TCAG on RHEA output,
we focus on exploring the dynamics of buyers and sellers count under several key
primary parameter settings. The realtor hedonic parameter is a binary indicator of
whether the realtor agents update their formula based on the evolving market prices
(adaptive) or retain the empirically informed static formula [1]. The insurance
parameter is a binary indicator for whether or not buyers consider flood insurance in
their utility purchase calculation. Engaging the growth income indicator parameter
will allow agents’ incomes, their travel costs, and the insurance premium to rise
over time. Therefore, insurance and income growth directly impact buyers’ utilities
of the properties they consider for purchase.
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2 Methods and Results

2.1 Temporally Constrained Aggregated Graphs

Under TCAG, ABM states are graph vertices, and the edges indicate temporal
transitions and possibly state transitions. For these analyses, we focus on the buyer
and seller population sizes which rise and fall throughout the simulation. In Fig. 1,
we employ TCAG on the first ten time periods (t) across 15 simulation runs.1 These
runs were executed with activation of adaptive realtor hedonics and no activation
for insurance and income growth. In Fig. 1a, we display the TCAG of the changes
in the buyer population, and in Fig. 1b, we jointly track changes in the sizes of both
the buyer and seller pools. Hence, each state represents a positive, negative, or no
change in the population size from the previous time step. When the state consists
of changes in only one measure (buyer count), there are three distinct states. When
both measures are considered, this space grows to 3�3 D 9 distinct states.

In the TCAGs, we can visually observe several features of the model’s behavior.
For example, the initial stages of the model appear to incur fewer distinct states
especially when examining both measures jointly. This feature has implications on
further development of our model. That is, if we wish to further ground the model
events in reality and in real-time, then its behaviors should reflect the fact that the
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Fig. 1 Temporally constrained aggregated graphs of RHEA. Green indicates an increase from the
previous time period; red indicates a decrease; and a gray node indicates no change. In the right
graph, the left and right halves of each vertex, respectively, indicate changes to the buyer and
seller pool counts. The numerical labels indicate the time step (t). The vertices have been sized
by betweenness centrality (explained below). (a) Buyer counts only, tmax D 10. (b) Buyers and
sellers, tmax D 10

1Our analyses here employ a subset of the output as longer and more runs render the current
visualization less effective.
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events occur in a pre-existing market, and at least the count of initial states should
not be so distinct barring the occurrence of exogenous forces such as a major flood
prior to model execution.

We also observe states that serve as gateways through which all or many
trajectories pass. A pure, isolated gateway occurs when there exists a single vertex
for a time step; all trajectories pass through such a vertex. In Fig. 1a, the sole vertices
corresponding to times t D 2 and 4 are pure gateways. That is, all of the examined
simulation runs incur an initial increase in buyer count and a decrease two periods
later. These pure gateways reveal an almost deterministic aspect of the model’s
behavior. In this case, the buyer population will always initially grow and, more
often than not, continue to grow until t D 3 after which point the market always
reacts with a decrease in the buyer pool as indicated by the red, gateway vertex at
t D 4. In Fig. 1b, the only pure gateway also occurs at t D 2 and corresponds to an
initial growth in both the buyer and seller populations. We surmise that there exists
a potential or gradient in these agent populations set forth by the model’s initial
conditions leading to the inevitable growth.

Alternatively, a non-isolated gateway is defined by the number and pattern of
simulation trajectories that pass through the vertex. One might simply maintain a
tally of passing trajectories, but this measure would fail to capture the bridging
role a vertex plays in the overall set of state changes. A more robust measure
is betweenness centrality, a measure widely used in social network analysis.
Betweenness centrality (CB) measures the extent to which a vertex lies in the
pathways between all pairs of vertices, and thus captures the extent to which a
vertex is a gateway while accounting for the global graph structure.2 In order to
account for higher betweenness for those vertices that receive or emit many edges,
we substitute multiple edges with a single edge having a weight of the count of
edges. These weights are inverted (i.e., 1/weight) so that the weighted edge between
two vertices consecutively traversed in many simulation runs will be considered
a shorter path than if they were traversed by few simulations. Given that CB of
vertices near the extremities will be biased downward, we scale the betweenness
score by the temporal positions of the vertices such that those in the middle of the
time span are penalized:

Ct
B.i/ D CB.i/

.ti � 1/.tmax � ti/
: (2)

2More precisely, betweenness centrality is the sum of the proportions of shortest paths a vertex lies
on between each pair (out of all shortest paths for each pair) [4, 5]. For betweenness centrality,
we identify all the shortest paths in a graph, such that �s;t is the number of shortest paths between
vertices s and t. Betweenness centrality for vertex i then:

CB.i/ D X

s¤i¤t

�s;t.i/

�s;t
(1)

.
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Under this scaling, a simple TCAG with one vertex per time step would exhibit a
Ct

B of 1 for all of the non-terminal vertices. We have sized the vertices in Fig. 1
proportional to Ct

B.
Not surprisingly, the gateway in Fig. 1a at t D 4 has high betweenness partly due

to the expansion of states in the previous periods. Its betweenness would be lower
had there been only one state at t D 3. Thus, the state change at that time plays
a more significant role in the model’s behavior. In Fig. 1b, we observe at t D 8 a
green/green vertex (increase in both buyer and seller counts) as having the highest
relative CB, despite the existence of other states at that time. Multiple vertices at
any time step potentially dilute the betweenness of the vertices in that step so a high
betweenness here is particularly salient. In TCAG, a high CB for a vertex indicates
not only a relatively large number of passing trajectories but also high complexity
in vertices and trajectories before and after itself. Thus, the gateway vertex at t D 8

exhibits high betweenness not simply because many trajectories pass through it but
also because the structure of the subgraphs in the time steps prior to and after itself
has significant heterogeneity. If, on the other hand, the trajectory structure (either
before or after this gateway) was a single sequence, the gateway’s betweenness
centrality would be much lower.

2.2 Measuring Graph and ABM Complexity

Furthermore, the very count of vertices of aggregated states may describe the
complexity of the model given that the states of similarly behaving runs would
aggregate into a single chain of events. A perfectly random, or maximally complex,
model will yield transition pathways that are less aggregable across simulation runs.
The upper bound of vertices would then be .tmax�1/�nstatesC1 vertices where tmax is
the maximum time in the TCAG and nstates is the number of distinct states. While the
upper bound for Fig. 1a is 9�3 C 1 D 28, our TCAG contains only 21 vertices. The
upper bound for Fig. 1b is 9�9 C 1 D 82 while the TCAG contains 34 vertices. The
lowest complexity occurs when all model outputs exhibit identical states at each
step though the state from one period to the next could vary3; the complexity for
such graphs is tmax � 1 D 9. Our vertex complexity score (˛) then is the vertex count
as a proportion of the range defined by these upper and lower bounds:

jV.Gl/j D tmax (3)

jV.Gu/j D .tmax � 1/�nstates C 1 (4)

˛ D jV.G/j � jV.Gl/j
jV.Gu/j � jV.Gl/j (5)

3An alternative formulation would differentiate between a graph comprising homogeneous states
and one with heterogeneous ones.
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where Gl and Gu are graphs corresponding to minimal and maximal complexity,
respectively, and jV.G/j is the count of vertices of some graph G. A naïve inference
would place our model’s complexity as being neither minimally or maximally
complex: the univariate measure (buyers only) yields an ˛ D 0:61 while a bivariate
analysis (buyers and sellers) yields ˛ D 0:33. Hence, depending on the complexity
of the analyzed output measures, the RHEA simulation’s complexity is either 1

3
or

�2
3
.
We also consider the complexity of the sequence of state changes across model

runs using data compression as a benchmark. As a straightforward test, we use the
extent of compression of the output state change data as our secondary measure
of compression: the greater the data compression, the less complex the output. We
base this compression factor on the performance of the Unix utility Gzip which
employs both LZ77 (Lempel–Ziv) and Huffman coding compression schemes
[7, 10]. Specifically, we select the minimum of the compression ratios afforded
by the matrix of states, ordered by time step (row) by simulation run (column),
and its transpose. In Fig. 2, we chart both vertex and Gzip complexities for the
four combinations of activation of two key parameters that impact buyer utility:
insurance and income growth.

Firstly, we notice the inclusion of insurance and income growth markedly
decreases the complexity of the model in its initial phase while the complexities
are less variable in the later stages. This pattern appears to hold, though somewhat
diminished, in the bivariate analysis. Furthermore, the data compression (Gzip)
complexity roughly produces similar trends as the vertex complexity. However,
further investigation into how and why they are different is warranted.

We visually confirm the effect of the insurance and income growth parameters on
simplifying the graphs in Fig. 3. While the graphs in Fig. 3 appear similar to those
of Fig. 1, there are differences particularly in the initial time steps, which now incur
fewer vertex states. Furthermore, this decrease in complexity is accompanied by
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Fig. 2 Complexity of TCAGs. The black and red lines, respectively, denote the complexities
for the first ten periods and the last ten periods (50–60) of the simulation run. The solid and
dashed lines denote the vertex and Gzip complexities, respectively. (a) Univariate (buyers only).
(b) Bivariate (buyers and sellers)
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Fig. 3 Temporally constrained aggregated graphs of RHEA for insurance and income growth
conditions. (a) Univariate (buyers only). (b) Bivariate (buyers and sellers)
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Fig. 4 Complexity of TCAGs for Static Hedonics. The black and red lines, respectively, denote
the complexities for the first ten periods and the last ten periods. The solid and dashed lines denote
the vertex and Gzip complexities, respectively. (a) Univariate (buyers only). (b) Bivariate (buyers
and sellers)

fewer gateway vertices indicated by the lack of largely sized vertices in both Fig. 3a
and b. In fact, higher betweenness centrality scores can only occur in more complex
TCAGs. Given that the betweenness measure for a given vertex scales with both the
trajectories that pass through it and possibly the count of vertices that occur before
and after itself, the measure itself encapsulates some portion of vertex complexity.

In the outputs above, we had activated another key parameter: the use of adaptive
realtor hedonics to determine market prices. So next, we examine the effect of a
market price determination through static hedonics on RHEA’s graph complexity.
In Fig. 4, we plot the various complexities in the univariate and bivariate cases.

The impacts of the static hedonic condition are modest. While the initial TCAG
complexity for the univariate graph decreases here as it does for the adaptive hedonic
setting, the magnitude of the decline (due to activation of both insurance and income
growth) is smaller. Secondly, the TCAG based on the final stages of the model runs
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exhibits an increase in complexity through the activation of the two parameters;
earlier, we observed no distinct trend in the final stages for the adaptive realtor
hedonic condition. The bivariate situation departs from the declining trend: a mild
increase is visible (Fig. 4b). All this points to the subtle interaction between the
market evolution (or lack thereof) and complexity in the buyer utility function.

3 Discussion

The portrayal of aggregated state transitions in the RHEA ABM offers an alternative
view of its behavior from traditional methods of visualization (e.g., line graphs) and
statistics (e.g., regression models); this approach may provide additional insights.
The application of network analytic methods to understand the complexity of a
model (here, RHEA) at various stages further develops our understanding of the
model’s subtle behavior particularly in reaction to varying parametric conditions. In
fact, we can associate these conditions to the complexity in the model’s behavior.

This approach warrants further development. Specifically, the metrics employed
offer more information for subsets of the model’s time span rather than in its entirety
due to the limited heterogeneity in the outputs imposed by a small number of states.
Naturally, we would need to next adapt the measurements to allow for a larger
number of states. Furthermore, accounting for the heterogeneity of states across time
(e.g., oscillation vs. homogeneous sequences) can lead alternative, possibly more
robust, complexity measures. The betweenness centrality measure may be further
exploited for these purposes as it accounts for some aspect of vertex complexity
in exposing key, gateway states. Alternative scaling for the betweenness measure
is worth investigating. For example, scaling not just by the temporal position but
also by the vertex counts before and after the measured vertex would allow the
measure to be strictly based on the structural features of the trajectories. Finally, the
complexity induced by graphs drawn from random state sequences would be quite
informative, allowing us to assess if our analyzed outputs have some equivalence to
noise or not.
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