Skip to main content

Preventing Adaptive Key Recovery Attacks on the GSW Levelled Homomorphic Encryption Scheme

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10005))

Abstract

A major open problem is to protect levelled homomorphic encryption from adaptive attacks that allow an adversary to learn the private key. The only positive results in this area are by Loftus, May, Smart and Vercauteren. They use a notion of “valid ciphertexts” and obtain an IND-CCA1 scheme under a strong knowledge assumption, but they also show their scheme is not secure under a natural adaptive attack based on a “ciphertext validity oracle”.

The main contribution of this paper is to explore a new approach to achieve security against adaptive attacks, which does not rely on a notion of “valid ciphertexts”. Instead, our idea is to generate a “one-time” private key every time the decryption algorithm is run, so that even if an attacker can learn some bits of the one-time private key from each decryption query, this does not allow them to compute a valid private key. We demonstrate how this idea can be implemented with the Gentry-Sahai-Waters levelled homomorphic encryption scheme, and we give an informal explanation of why the known attacks no longer break the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998). doi:10.1007/BFb0055716

    Chapter  Google Scholar 

  2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106. IEEE Computer Society (2011)

    Google Scholar 

  3. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat homomorphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 239–258. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16295-9_13

    Google Scholar 

  4. Chenal, M., Tang, Q.: Key recovery attacks against NTRU-based somewhat homomorphic encryption schemes. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 397–418. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23318-5_22

    Chapter  Google Scholar 

  5. Dahab, R., Galbraith, S., Morais, E.: Adaptive key recovery attacks on NTRU-based somewhat homomorphic encryption schemes. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 283–296. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17470-9_17

    Google Scholar 

  6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–169. ACM Press (2009)

    Google Scholar 

  7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

    Google Scholar 

  8. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  9. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM (1989)

    Google Scholar 

  10. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure somewhat homomorphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 55–72. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28496-0_4

    Chapter  Google Scholar 

  11. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 333–342. ACM (2009)

    Google Scholar 

  13. Peikert, C., et al.: Decade of Lattice Cryptography. World Scientific (2016)

    Google Scholar 

  14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 84–93. ACM (2005)

    Google Scholar 

  15. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7_25

    Chapter  Google Scholar 

  16. Zhang, Z., Plantard, T., Susilo, W.: On the CCA-1 security of somewhat homomorphic encryption over the integers. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 353–368. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29101-2_24

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful advice and comments. This work was supported by the National Natural Science Foundation of China (No.61472097), Specialized Research Fund for the Doctoral Program of Higher Education (No.20132304110017) and International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunguang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Li, Z., Galbraith, S.D., Ma, C. (2016). Preventing Adaptive Key Recovery Attacks on the GSW Levelled Homomorphic Encryption Scheme. In: Chen, L., Han, J. (eds) Provable Security. ProvSec 2016. Lecture Notes in Computer Science(), vol 10005. Springer, Cham. https://doi.org/10.1007/978-3-319-47422-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47422-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47421-2

  • Online ISBN: 978-3-319-47422-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics