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Abstract. A method is proposed for deriving an adaptive checking sequence
for a given deterministic implementation of a nondeterministic Finite State
Machine (FSM) specification with respect to the reduction relation. The
implementation is non-initialized, i.e., there is no reliable reset input. In order to
obtain a sequence of reasonable length, in the proposed technique, we consider
specifications with adaptive distinguishing test cases and adaptive transfer
sequences. In fact, we show how under these considerations we can on-the-fly
derive a checking sequence where the head part establishes the one-to-one
correspondence between states of the implementation and the specification and
if established the second part of the sequence is constructed for checking the
one-to-one correspondence between transitions of the implementation and a
submachine of the specification FSM. The latter construction appropriately
utilizes information from the first part to reach and check intended transitions.
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1 Introduction

Finite State Machine (FSM) based test derivation is widely used when deriving con-
formance tests in many application domains such as sequential circuits, communication
protocols, web-services, etc. There are many approaches for FSM-based test derivation
that are summarized in many surveys such as [2, 4, 20, 24]. In many approaches, such
as in the W-method [3] and its many derivatives, both the specification and imple-
mentation FSMs are assumed to be initialized and thus, tests (input sequences or traces)
are derived from a given initialized specification FSM; these tests are concatenated by a
reliable reset that brings the machine to the initial state. Many other approaches do not
rely on the existence of such possibly expensive resets and derive so-called checking
sequences consisting of one test without resets. The reader may refer to [7–13] for
some approaches and summary of existing work on deriving and reducing length of
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checking sequences for deterministic FSMs. In general, while constructing a checking
sequence for deterministic FSMs, as there are no resets, one may rely on the so-called
synchronizing (or homing) sequence that takes the FSM from any state to the known
state in addition to an input sequence that can distinguish two different states of the
machine.

Nowadays, design and analysis of non-deterministic systems is capturing a lot of
attention. Nondeterminism can occur due to several reasons, such as limited observ-
ability, abstraction, etc. Accordingly, in this paper, we consider the derivation of
checking sequences for observable nondeterministic FSMs. A nondeterministic
machine is observable if for each state and input the machine can have many outgoing
transitions under the input as long as different outputs are produced at these transitions.
Otherwise, the machine is non-observable. We consider observable machines as it is
known that any non-observable specification machine can be transformed into an
observable one with the same behavior.

Petrenko et al. [14] proposed a method for deriving a checking sequence for a
complete nondeterministic FSM with respect to the equivalence relation under appro-
priate assumptions about the specification FSM and the fault domain. The specification
FSM has to have a distinguishing input sequence for which the sets of output responses
at any two different states do not coincide. Since an implementation under test (IUT) can
be nondeterministic, the authors also rely on the all-weather conditions assumption. In
[21] the authors extended the work considering the derivation of a checking sequence
with respect to the reduction relation. Resetting is still used yet only in one phase of the
construction approach. Ermakov [6] presented a method for deriving an adaptive
checking sequence with respect to the reduction relation under the assumption that the
specification has a separating sequence, i.e., an input sequence for which the sets of
output responses at any two different states are disjoint. The specification FSM has also
to be deterministically connected, i.e., each state is deterministically reachable from any
other state while an IUT is a complete deterministic FSM. A checking sequence is
adaptive if the selection of the next input to be applied to an IUT depends on the outputs
produced by the IUT to previously applied inputs. As in the other above approaches, the
approach given in [6] also uses resetting. In this paper, we reduce the limitation con-
sidered in the above papers about the use of resets. Moreover, differently from [6] we
show how to effectively use adaptive transfer and distinguishing sequences when
deriving an adaptive checking sequence as such adaptive sequences can exist when there
are no preset ones; in addition, such adaptive sequences can be shorter [1, 17, 19]. More
precisely, we construct an adaptive checking sequence from a given non-deterministic
observable FSM against a given complete deterministic IUT assuming that the speci-
fication FSM has adaptive transfer sequences as well as an adaptive distinguishing
sequence (a distinguishing test case) of reasonable length. The existence of an adaptive
transfer sequences means that every state of the machine is definitely reachable from any
other state. We show that in this case, when testing with respect to the reduction relation,
each state of the specification FSM is required to be implemented in an IUT. As usual,
we also assume that the behavior of the IUT is not known, we only know that the
number of states of the IUT does not exceed that of the specification. Under the above
assumptions, an IUT is a reduction of the specification machine if and only if the IUT is
isomorphic to a complete submachine of the specification FSM and thus, when testing it
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is enough to establish the one-to-one correspondence between states and transitions of
the IUT and states and transitions of an appropriate submachine in the specification
FSM. In other words, each transition of the IUT has to be traversed and an adaptive
distinguishing sequence has to be applied for verifying the final state of the transition.
This approach allows us to derive checking sequences of reasonable length when an
adaptive distinguishing sequence has polynomial length with respect to the number of
states of the specification FSM.

This paper is organized as followed. Section 2 includes preliminaries with related
definitions. Section 3 includes the considered fault model and Sect. 4 includes the
checking sequence construction method with related propositions and a simple appli-
cation example. Section 5 concludes the paper.

2 Preliminaries

A finite state machine (FSM), or simply a machine, is a 4-tuple S = 〈S, I, O, hS〉, where
S is a finite nonempty set of states, I and O are finite input and output alphabets, and hS
� S × I × O × S is a (behavior) transition relation. FSM S is nondeterministic if for
some pair (s, i) 2 S × I there can exist several pairs (o, s′) 2 O × S such that (s, i, o, s′)
2 hS. FSM S is complete if for each pair (s, i) 2 S × I there exists (o, s′) 2 O × S such
that (s, i, o, s′) 2 hS. FSM S is observable if for each two transitions (s, i, o, s1), (s, i, o,
s2) 2 hS it holds that s1 = s2. FSM S is initialized if it has the designated initial state s1,
written S/s1. Thus, an initialized FSM is a 5-tuple 〈S, I, O, h, s1〉. In the following, we
consider observable and complete FSMs if the contrary is not explicitly stated.

A trace of S at state s is a sequence of input/output pairs of consecutive transitions
starting from state s. Given a trace i1o1 … ikok at state s, the input projection i1 … ik of
the trace is a defined input sequence at state s. For an observable nondeterministic
FSM, if γ = i1o1 … ikok is a trace at a state s, then there exists a unique sequence of
consecutive transitions (s, i1, o1, s1)(s1, i2, o2, s2)…(sk-1, ik, ok, sk). As usual, for state
s and a sequence γ 2 (IO)* of input/output pairs, the γ-successor of state s is the set of
all states that are reached from s by trace γ. If γ is not a trace at state s then the
γ-successor of state s is empty or we simply say that the γ-successor of state s does not
exist. For an observable FSM S, for any string γ 2 (IO)*, the cardinality of the
γ-successor of state s is at most one. Given a subset S′ of states, the γ-successor of S′ is
the union of γ-successors over all states of the set S′.

FSM S is single-input if at each state there is at most one defined input at the state,
i.e., for each two transitions (s, i1, o1, s1), (s, i2, o2, s2) 2 hS it holds that i1 = i2, and S is
output-complete if for each pair (s, i) 2 S × I such that the input i is defined at state s,
there exists a transition from s with i for every output in O. An initialized FSM S is
acyclic if the FSM transition diagram has no cycles. An initialized FSM S is (initially)
connected if each state is reachable from the initial state. Given an input alphabet I and
an output alphabet O, a test case TC(I, O) is an initially connected single-input
output-complete observable initialized FSM T = (T, I, O, hT, t1) with an acyclic
transition graph [22]. Given a complete FSM S over alphabets I and O, a test case TC(I,
O) represents an adaptive experiment with the FSM S [15].
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If | I | > 1 then a test case is a partial FSM. A state t 2 T is a deadlock state of the
FSM T if there are no defined inputs at this state. In general, given a test case T, the
length (height) of the test case T is defined as the length of a longest trace from the
initial state to a deadlock state of T and it specifies the length of the longest input
sequence that can be applied to an FSM S during the experiment. A trace from the
initial state to a deadlock state is a complete trace of a test case [23]. As usual, for
complexity reasons, one is interested in deriving a test case with minimal length. A test
case T is a distinguishing test case (DTC) for an FSM S if for every trace γ of T from
the initial state to a deadlock state, γ is trace at most at one state of S. Sometimes, a
distinguishing test case is called an adaptive distinguishing sequence.

Consider FSM S in Fig. 1a. Using the approach proposed in [18] a (adaptive)
distinguishing test case can be constructed for FSM S (Fig. 2).
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Given a complete observable FSM S = (S, I, O, hS), state s′ 2 S is definitely-
reachable (def-reachable) from state s 2 S if there exists a test case Ts,s′ over I and O,
initialized with the singleton {s}, and for every trace γ of Ts,s′ from the initial state to a
deadlock state, the γ-successor of state s is either the empty set or {s′}.

We hereafter refer to such a test case Ts,s′ as a def-transfer test case from state s to
state s′ or as an adaptive def-transfer sequence.

In fact, a def-transfer test case is defined in [23] as an extension of a deterministic
(d-)transfer sequence for states s and s′. All the traces of Ts,s′ take the FSM S from state
s to state s′. When testing with respect to the reduction relation not each state of the
specification FSM, except for the initial state, is required to be implemented in an
implementation FSM P. However, if there exists a def-transfer test case Ts,s′ and state
s is implemented in the reduction P of S then according to [23], state s′ must be
implemented in P.

In [23], necessary and sufficient conditions were established to check if state s′ 2
S is definitely reachable from the initial state of the initialized FSM. Accordingly, when
checking whether state s′ is definitely reachable form state s, the initialized FSM S/
s can be considered. Moreover, in [23] it is shown how a def-transfer test case Ts,s′ can
be derived such that the length of Ts,s′ (if it exists) does not exceed the number of states
of FSM S.

By direct inspection, one can assure that for every two different states s, s′ of
FSM S (Fig. 1a) there exists a def-transfer test case Ts, s′. As an example, consider T1,2

in Fig. 3. If an IUT replies with 1 to the applied input a at state 1 then we know that the
next state of the specification is state 2. If the output 0 is produced by the IUT then the
specification reaches state 3 and we apply the input a again. If the IUT replies with 0 to
the applied input a then we know that the next state of the specification is state 2. If the
output 1 is produced by the IUT then the specification reaches state 4 and we apply an
input b in order to reach state 2.

Consider the FSM in Fig. 1a. For states 2 and 1, 3 and 1, and 4 and 1, there exist
deterministic transfer sequences, namely, state 1 is d-reachable from 2 by input
sequence a, state 3 is d-reachable from 1 by input sequence c b a and state 4 is d-
reachable from 1 by input sequence b a. State 2 is d-reachable from 3 and 4 by input
sequences c b and b correspondingly, state 3 is d-reachable from 2 and 4 by input
sequences b a and a, while state 4 is d-reachable from 2 and 3 by input sequence b. By
direct inspection, one can assure that T1,3 and T1,4 can be easily derived from the
machine in Fig. 3 as states 3 and 4 are deterministically reachable from state 2.

In order to check if there exists a distinguishing test case for the specification
FSM S, we can use the procedures proposed in [16, 17]. If a general procedure is used
then the complexity can become exponential w.r.t. the number of FSM states [5]. The
complexity of the procedure proposed in [16] is polynomial but it can be applied only
for so-called merging free FSMs. A complete observable FSM is merging free if for
each two different states s1 and s2, every input i and every output o, the non-empty
i/o successors of s1 and s2 do not coincide. For a merging free FSM, a distinguishing
test case exists if and only if a distinguishing test case exists for each pair of different
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state of the FSM; the latter can be checked in polynomial time and the length of such
test case is at most n(n − 1)/2 if the FSM has n states. Then a distinguishing test case
for the FSM is derived step by step starting from a single pair and adding a new state
for the set of initial states at each step. In [16], it is shown that the length of such test
case is O(n3). The class of merging-free FSMs is big enough; at least it contains many
deterministic FSMs which are used in practical applications [9].

Hereafter we use S to denote a complete observable nondeterministic specification
machine while P denotes a complete deterministic IUT.

Given complete FSMs S and P, state p of the FSM P is a reduction of state s of the
FSM S, written p ≤ s, if the set of traces of P at state p is a subset of that of S at state s;
otherwise, p is not a reduction of state s, written p ≰ s. FSM P is a reduction of FSM S
if for each state p there exists state s such that p ≤ s.

Given complete FSM S, two different states s1 and s2 and an input sequence α, α is
a separating sequence of states s1 and s2 if the sets out(s1, α) and out(s2, α) are disjoint.
If α separates each pair of different states then α is a separating sequence for FSM S.
For non-deterministic observable machines the tight upper bound on the length of a
separating sequence of two states is known to be exponential with respect to number of
FSM states [25] while for deterministic FSMs the length of an adaptive distinguishing
sequence (a distinguishing test case) is polynomial [26]. Moreover, if there exists a
separating sequence then there exists a distinguishing test case but the opposite is not
necessarily true. When an implementation is deterministic then the observation of
n different replies to a separating sequence immediately means that the IUT has at least
n states. For recognizing states of an implementation, a separating sequence sometimes
can be replaced by state identifiers. An input sequence α is a state identifier of state s of
FSM S if α is a separating sequence for each pair (s, s′), s′ ≠ s. As an example, the b b is
a state identifier for states 3 and 4 of the FSM in Fig. 1a and b a b is a state identifier for
states 1 and 2.

Given a test case TC of a complete observable specification S, a trace that takes TC
from the initial state to a deadlock state is a complete trace; the set CompleteTraces(TC)
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a/0 a/1
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23
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Fig. 3. A def-transfer test case for states 1 and 2 of the FSM in Fig. 1a

144 N. Yevtushenko et al.



is the set of all complete traces of TC. If there exists a distinguishing test case then any
two different states s1 and s2 of FSM S are r-distinguishable and thus, any state of any
complete FSM over alphabets I and O is not a reduction of two different states of
FSM S [22]. The set of input projections of all complete traces of a distinguishing test
case sometimes is called a distinguishing set. In [22], it is shown, that given a state p of
a complete FSM over alphabets I and O, for any two states s1 and s2 of FSM S there
always exists an input sequence of the distinguishing set such that the set of output
responses of P at state p is not a subset of that at both states s1 and s2. Moreover, given
a reduction P of FSM S, not each state of S has to be implemented in P. However,
according to Proposition 1, if S has both a distinguishing test case and a def-transfer test
case for each pair of different states then each state of S has to be implemented in P and
there is the one-to-one correspondence between states and transitions of P and the
corresponding states and transitions of an appropriate submachine of S. The latter
allows the construction of shorter tests and reduces the efforts of checking if a given
FSM P is a reduction of such specification FSM.

Two FSMs over the same input and output alphabets are isomorphic if there exists
one-to-one correspondence between their states and transitions, i.e., if there exists
one-to-one mapping f: S → P such that for any input i and any state s the 4-tuple (s, i,
o, s′) 2 hs if and only if (f (s), i, o, f (s′)) 2 hP.

Proposition 1. Given a complete observable FSM S with n states, let S have a dis-
tinguishing test case and each pair of different states s and s′ of S have a def-transfer test
case Ts, s′. A complete observable FSM P that has at most n states is a reduction of S if
and only if P is isomorphic to a submachine of S.

Proof. If P is isomorphic to a submachine of S then P is a reduction of S.
Let now P be a reduction of S, i.e., for each state p of P there exists state s of S such

that p ≤ s. When there exists a distinguishing test case DTC for S, states of the FSM S
are r-distinguishable and thus, any state of any complete FSM over alphabets I and O is
not a reduction of two different states of FSM S [23]. Moreover, if p ≤ s then a
distinguishing test case DTC has a trace at state p of P that is not a trace at any other
state of S. On the other hand, let state s of FSM S be implemented in P as state p ≤
s. Any state s′ is def-reachable from s and thus also is implemented in P as p′ ≤ s′.
Therefore, each state of S is implemented in P and since P has at most n states, each
state of S is implemented as a unique P state. Correspondingly, we can establish
one-to-one correspondence FDTC: S → P between states of FSMs S and P according to
the given distinguishing test case.

Moreover, since P is a reduction of S the following holds. If there is a transition p –

i/o - p′ where p = FDTC(s) and p′ = FDTC(s′) then S has a transition s – i/o - s′. □

Let S have a distinguishing test case DTC, each pair of different states s and s′ of S
have a def-transfer test case Ts, s′ and the number of states of FSM P does not exceed
that of S. FSM P is DTC-compatible with S if there exists one-to-one correspondence
F: S → P such that for each state s 2 S it holds that the intersection of Tr(S/s) \
Tr(P/p) \ CompleteTraces(DTC) is not empty if and only if p = F(s).
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Proposition 2. Given the specification FSM S that has a distinguishing test case DTC,
let a deterministic complete FSM P be DTC-compatible with S, each pair of different
states s and s′ of S have a def-transfer test case Ts, s′ and the number of states of FSM P
does not exceed that of S. For each state p of P, the distinguishing test case DTC has a
complete trace α/β that is a trace at state p; moreover, α is a state identifier of state p in P.

Proof. In fact, if there exists one-to-one correspondence between states of S and P
according to the distinguishing test case DTC, then for each two states s and s′, s′ ≠ s,
there exists a prefix of an input sequence of some complete trace α/β of DTC such that
output responses at corresponding states p = F(s) and p′ = F(s′) are different. As DTC is
a distinguishing test case of S and FSM P is complete and deterministic, the latter means
that a corresponding input projection of trace α/β is a state identifier of state p. □

3 Fault Model for Deriving an Adaptive Checking Sequence

In FSM-based testing, it is assumed that the specification FSM describes the reference
behavior while the fault domain FD contains each possible implementation FSM of the
specification. In our case, the specification FSM S is complete and observable,
moreover, S has a distinguishing test case and there exists a def-transfer test case for
each pair of different states of S. The conformance relation is the reduction relation
while any IUT of the FD is complete and deterministic and the number of its states does
not exceed that of the specification FSM. In other words, we implicitly assume that the
nondeterminism of the specification is implied by the optionality where a designer
selects a better option according to some criteria. We do not rely on machines for
having a reset; moreover, if the machines have a reset we still check if it is implemented
correctly.

An implementation P conforms to the specification S if P is a reduction of S;
otherwise, P is a nonconforming implementation. According to Proposition 1 the
former means that P is isomorphic to some complete submachine of S.

An adaptive sequence is an input sequence when the next input of the sequence is
selected based on the output of the IUT to the previous inputs. In fact, an adaptive
checking sequence is a test case; however, the total length of this test case is big
enough and for this reason, we do not talk about the complete test case and usually
consider only a part of it that is appropriate for the implementation at hand. Corre-
spondingly, similar to [23], we propose a technique for testing an IUT P on-the-fly but
with a single input sequence; the algorithm yields the verdict pass if P is a reduction of
a given specification FSM S and the verdict fail if P is not a reduction of S. Our
proposed technique has two procedures. The former checks if P has the same number
of states as S and establishes, based on a distinguishing test case, the one-to-one
correspondence between the states of P and S if such a correspondence exists. We
underline that when such correspondence can be established then an appropriate trace
of the distinguishing test case is identified as a state identifier of the corresponding state
in P (Proposition 2). The second procedure checks that there is one-to-one corre-
spondence between the transitions of P and an appropriate submachine of S.
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4 Deriving an Adaptive Checking Sequence

This section includes two procedures for on-the-fly constructing a checking sequence
for a given IUT P from the specification FSM S with respect to the reduction relation.
Given a distinguishing case DTC for the FSM S, Procedure 1 returns the verdict fail if
P is not DTC-compatible with S; otherwise, it computes the set “state_identifier”. For
each state s of S, this set includes the trace of DTC executed by the IUT at the state of P
corresponding to s and it also includes the state of S reached after this trace. Then
Procedure 2 starting from information obtained from Procedure 1 continues deriving
the checking sequence where it focuses on checking the one-to-one correspondence
between transitions of P and some submachine of S.

As an application example of Procedure 1, consider the implementation FSM P in
Fig. 1b and assume that at the beginning of testing P is at state C. After applying DTC
(in Fig. 2a) we observe a trace b b/0 0 which is a trace of state 3 of S. Accordingly,
s = s1 = 3, σ = γ. After applying DTC again (at Step 1), we observe η = b b/0 0 which
is a trace of state C of P. Thus, σ becomes b b b b/0 0 0 0, s2 = 3, s′ = 3 as the starting
state of S where η is a trace of DTC, and the tuple <3, b b/0 0, 3> is added to the
(initially empty) set “state_identifier”, s = 3, γ = η = b b/0 0, and then we go to Step 2
as the tuple <3, b b/0 0, 3> is in “state_identifier”.

Let snew = 4, then s = 4, we then apply the transfer sequence c, observe 1, and thus
have η = c/1. Then after applying the b b of DTC to P, we observe b b/0 1. As σ = b b
b b c b b/0 0 0 0 1 0 1 is a trace at s1, then we go back to Step 1 where we apply b a of
DTC and observe 1 0, then s2 becomes 1, s′ = 2, and we add the tuple <4, b b/0 1, 2> to
“state_identifier”. Similarly, afterwards, s = s′ = 2, γ: = η = b a, at Step 1, we apply b
a b of DTC, the trace b a b/1 1 1 is observed and the tuple <2, b a b/1 0 1, 1> is added
to the set “state_identifier”.

Then, at Step 2, snew = s = 1, after applying T2,1 (input sequence a) we observe 0
and then after applying again the input sequences b a followed by b b of DTC the traces
b a/1 1 followed by b b/1 1 are observed and accordingly the tuple <1, b a /1 1, 2> is
added to “state_identifier”. We stop as the set “state_identifier” is complete and the
specification FSM reaches state 2 after the observed trace. Table 1 represents the set
“state_identifier”.

Table 1. The set “state_identifier” for the FSM in Fig. 1b according to the distinguishing test
case in Fig. 2.

Current state of S
(corresponding state in IUT)

State
identifier

Output
response

Next state of S
(corresponding state in IUT)

1 (A) b a 1 1 2 (B)
2 (B) b a b 1 0 1 1 (A)
3 (C) b b 0 0 3 (C)
4 (D) b b 0 1 2 (B)
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According to Proposition 1, if P is a reduction of S then each state p of P has to
have a corresponding state s in S such that the set of complete traces of DTC executed
at state s has a trace executed at state p, i.e., the following proposition holds.
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Proposition 3. If a trace σ observed when executing Procedure 1 is a trace of the
specification FSM S, i.e., Procedure 1 does not return the verdict fail, then the IUT P is
DTC-compatible with S. □

If the verdict fail is produced by Procedure 1 then the IUT P is not a reduction of S.
Otherwise, P is DTC-compatible with S and for each state s of S the set “state_iden-
tifier” includes the trace of DTC executed by the IUT at the state corresponding to s and
it also includes the state of S reached after this trace.

Moreover, if P is DTC-compatible with S, then due to Proposition 2, the input
projection of a trace observed at state p of P is a state identifier of this state.
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Proposition 4. Let the IUT P be DTC-compatible with S, i.e., there exists one-to-one
correspondence F: S → P such that for each state s 2 S it holds that the intersection of
Tr(S/s) \ Tr(P/p) \ CompleteTraces(TC) is not empty if and only if p = F(s). Given a
tuple <s, γ, s′> of the set “state_identifier”, the input projection of trace γ is a state
identifier of state F(s) while s′ is the state of S reached by γ. □

Proposition 5. The verdict pass is produced by Procedure 2 if and only if the IUT P is
a reduction of S.

Proof. If FSM P passes Procedure 1 then P is strongly connected, since each state of P
is traversed when executing Procedure 1. For this reason, if at Step 1, the reached state
has no unchecked transitions then at Step 2, in the set “Transitions” that has only
already checked transitions, there is a path to a state with an unchecked transition.
Procedure 2 establishes the one-to-one correspondence between transitions of FSM P
and an appropriate submachine of S, since all P transitions are executed and checked
for a conforming output and corresponding final state (according to DTC). Therefore,
FSM P passes Procedure 2 if and only if P is isomorphic to some submachine of S and
the proposition holds according to Proposition 1. □

As an application example, consider the FSM in Fig. 1a, after applying Procedure 1,
we obtain s1 = 3, the trace σ, and state s2 = 2 (reached after applying σ); in addition,
the set “state_identifier” = {<1, b a /1 1, 2>, <2, b a b/1 0, 1>, <3, b b/0 0, 3>, <4, b b/
0 1, 2 >}. As s = s2 = 2 and the set “Transitions” is empty, at Step 1, apply the input
b at s2 followed by b a b of DTC and observe the trace b b a b/1 1 0 1 that reaches state
1 of the FSM S. Add (2, b, 1, 2) to “Transitions”, σ becomes that of Procedure 1
concatenated with the trace b b a b/1 1 0 1, and the reached state s2 = 1 according to
the tuple <2, b a b/1 0 1, 1> of the “state_identifier”. We go-back to Step 1, apply the
input a followed by b a b of DTC and observe 1 1 0 1, reach state s2 = 1, add (1, a, 1,
2) to “Transitions”, append σ as usual, and proceed again to Step 1. At s2 = 1 apply b,
then apply b a of DTC and observe 1 1 1; add (1, b, 1, 1) to “Transitions” and reach
state s2 = 2. Again at Step 1, apply a followed by b a and observe 0 1 1, add (2, a, 0, 1)
to “Transitions”. Then at the reached state s2 = 2, apply c followed by b b of DTC,
observe 1 0 1, add (2, c, 1, 4) to “Transitions” and reach state s2 = 2. Now, as all (2, b,
1, 2), (2, a, 0, 1), (2, c, 1, 4) are in the set “Transitions”, at Step 2, we consider s = 4
such that from the reached state s2 = 2 there is the checked trace η = c/1 from 2 to 4
and for some input i there is no transition (4, i, o, s′) in the set “Transitions”. We
transfer to state 4 from state 2 by applying the input c, now s2 becomes the reached
state 4. We go-back to Step 1 where we select to apply the input a followed by
applying the sequence b b of DTC, observe 1 0 0, add (4, a, 1, 3) to “Transitions” and
reach state s2 = 3. We proceed as above till the set “Transitions” is full. The verdict
pass is produced after completing the set “Transitions” and thus, FSM P is a reduction
of the specification FSM S.

As the length of a transfer sequence when checking a new input is less than the
number n of states of the FSM S, the length of a checking sequence returned by
Procedure 2 is proportional to the length of a distinguishing test case. If this length is
polynomial with respect to the number of S states as it happens for merging-free FSMs
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then the length of an adaptive checking sequence is O(n3), i.e., the length evaluation is
almost similar to that for deterministic FSMs [10].

5 Conclusion

In this paper, we have proposed an adaptive strategy for testing a deterministic
implementation FSM against nondeterministic observable specification FSM with
respect to the reduction relation. Similar to deterministic FSMs, the strategy can be
applied under appropriate restrictions upon the specification FSM and fault domain.
However, we show that the requirement of the existence of a separating sequence can
be replaced by the requirement of the existence of a distinguishing test case. This is
useful as the existence of a distinguishing test case is more likely than that of a
separating sequence and generally, the length of a distinguishing test case is less than
that of a separating sequence (when both exist). In addition, the construction uses
adaptive transfer sequences that reduce the length of an applied input sequence. We
note that in this paper, we do not discuss any optimization procedure for deriving
adaptive checking sequences; this is left for the future work. Another possible direction
of a future work is the extension of the proposed work for testing nondeterministic
non-initialized implementations. It could be also interesting to apply a proposed
approach for deriving checking sequences for I/O automata, for example, with respect
to the widely used ioco conformance relation that is very close to the reduction relation
between FSMs.
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