Skip to main content

Energy Efficient Clustering and Beamforming for Cooperative Multicell Networks

  • Conference paper
  • First Online:
Game Theory for Networks (GameNets 2016)

Abstract

Network densification is the most important way to improve the network capacity and hence is widely adopted to handle the ever-increasing mobile traffic demand. However, network densification will make the inter-cell interference severe and also significantly increase the energy budget. Multicell cooperative transmission is an efficient way to mitigate the inter-cell interference and plays an important role in energy efficiency optimization. This paper investigates the energy efficient multicell cooperation strategy for dense wireless networks. Joint cluster forming and beamforming are considered to optimize the energy efficiency (evaluated by bits/Hz/J). The optimization problem is then decoupled into two subproblems, i.e., energy efficient beamforming problem and energy efficient cluster forming problem. The fractional programming and Lagrangian duality theory are used to obtain the optimal beamformer. Coalition formation game theory is exploited to solve the cluster forming problem. The proposed energy efficient clustering and beamforming strategy can provide flexible network service according to spatially uneven traffic and greatly improve the network energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014). doi:10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  2. Apt, K.R., Radzik, T.: Stable partitions in coalitional games. arXiv preprint cs/0605132 (2006)

    Google Scholar 

  3. Haijun, Z., Hui, L., Chunxiao, J., Xiaoli, C., Nallanathan, A., Xiangming, W.: A practical semidynamic clustering scheme using affinity propagation in cooperative picocells. IEEE Trans. Veh. Technol. 64(9), 4372–4377 (2015). doi:10.1109/TVT.2014.2361931

    Article  Google Scholar 

  4. He, S., Huang, Y., Yang, L., Ottersten, B., Hong, W.: Energy efficient coordinated beamforming for multicell system: duality-based algorithm design and massive mimo transition. IEEE Trans. Commun. 63(12), 4920–4935 (2015). doi:10.1109/TCOMM.2015.2496948

    Article  Google Scholar 

  5. Heliot, F., Imran, M.A., Tafazolli, R.: Energy efficiency analysis of idealized coordinated multi-point communication system. In: 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2011). doi:10.1109/VETECS.2011.5956410

  6. Hong, M., Sun, R., Baligh, H., Luo, Z.Q.: Joint base station clustering and beamformer design for partial coordinated transmission in heterogeneous networks. IEEE J. Sel. Areas Commun. 31(2), 226–240 (2013). doi:10.1109/JSAC.2013.130211

    Article  Google Scholar 

  7. Jagannathan, R.: On some properties of programming problems in parametric form pertaining to fractional programming. Manage. Sci. 12(7), 609–615 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lozano, A., Heath, R.W., Andrews, J.G.: Fundamental limits of cooperation. IEEE Trans. Inf. Theory 59(9), 5213–5226 (2013)

    Article  MathSciNet  Google Scholar 

  9. Pantisano, F., Bennis, M., Saad, W., Verdone, R., Latva-aho, M.: On the dynamic formation of cooperative multipoint transmissions in small cell networks. In: 2012 IEEE Globecom Workshops (GC Wkshps), pp. 1139–1144 (2012). doi:10.1109/GLOCOMW.2012.6477739

  10. Qingjiang, S., Razaviyayn, M., Zhi-Quan, L., Chen, H.: An iteratively weighted mmse approach to distributed sum-utility maximization for a mimo interfering broadcast channel. IEEE Trans. Signal Process. 59(9), 4331–4340 (2011). doi:10.1109/TSP.2011.2147784

    Article  MathSciNet  Google Scholar 

  11. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., Başar, T.: Coalitional game theory for communication networks. IEEE Signal Process. Magaz. 26(5), 77–97 (2009)

    Article  Google Scholar 

  12. Somekh, O., Simeone, O., Bar-Ness, Y., Haimovich, A.M., Shamai, S.: Cooperative multicell zero-forcing beamforming in cellular downlink channels. IEEE Trans. Inf. Theory 55(7), 3206–3219 (2009). doi:10.1109/TIT.2009.2021371

    Article  MathSciNet  Google Scholar 

  13. Soret, B., Hua, W., Pedersen, K.I., Rosa, C.: Multicell cooperation for LTE-advanced heterogeneous network scenarios. IEEE Wirel. Commun. 20(1), 27–34 (2013). doi:10.1109/MWC.2013.6472196

    Article  Google Scholar 

  14. Wei, X., Yuke, C., Hua, Z., Li, G.Y., Xiaohu, Y.: Robust beamforming with partial channel state information for energy efficient networks. IEEE J. Sel. Areas Commun. 33(12), 2920–2935 (2015). doi:10.1109/JSAC.2015.2478720

    Article  Google Scholar 

  15. Zengfeng, Z., Lingyang, S., Zhu, H., Saad, W.: Coalitional games with overlapping coalitions for interference management in small cell networks. IEEE Trans. Wirel. Commun. 13(5), 2659–2669 (2014). doi:10.1109/TWC.2014.032514.130942

    Article  Google Scholar 

  16. Zhang, H., Chu, X., Guo, W., Wang, S.: Coexistence of wi-fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun. Magaz. 53(3), 158–164 (2015). doi:10.1109/MCOM.2015.7060498

    Article  Google Scholar 

  17. Zhang, H., Jiang, C., Cheng, J., Leung, V.C.M.: Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wirel. Commun. 22(3), 92–99 (2015). doi:10.1109/MWC.2015.7143331

    Article  Google Scholar 

  18. Zhang, H., Jiang, C., Mao, X., Chen, H.H.: Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Trans. Veh. Technol. 65(3), 1761–1771 (2016). doi:10.1109/TVT.2015.2405538

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China, No. 61271179, the Beijing Municipal Science and Technology Commission research fund project “Research on 5G Network Architecture and Its Intelligent Management Technologies”, No. D151100000115002, and the Fundamental Research Funds for the Central Universities, No. 2014ZD03-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Chen, Y., Wen, X., Lu, Z., Shao, H., Lu, J., Jing, W. (2017). Energy Efficient Clustering and Beamforming for Cooperative Multicell Networks. In: Cheng, J., Hossain, E., Zhang, H., Saad, W., Chatterjee, M. (eds) Game Theory for Networks. GameNets 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-319-47509-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47509-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47508-0

  • Online ISBN: 978-3-319-47509-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics