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Abstract. Fault Tree (FT) is a standard failure modeling technique that
has been extensively used to predict reliability, availability and safety of
many complex engineering systems. In order to facilitate the formal anal-
ysis of FT based analyses, a higher-order-logic formalization of FTs has
been recently proposed. However, this formalization is quite limited in
terms of handling large systems and transformation of FT models into
their corresponding Reliability Block Diagram (RBD) structures, i.e., a
frequently used transformation in reliability and availability analyses. In
order to overcome these limitations, we present a deep embedding based
formalization of FTs. In particular, the paper presents a formalization of
AND, OR and NOT FT gates, which are in turn used to formalize other
commonly used FT gates, i.e., NAND, NOR, XOR, Inhibit, Comparator
and majority Voting, and the formal verification of their failure proba-
bility expressions. For illustration purposes, we present a formal failure
analysis of a communication gateway software for the next generation
air traffic management system.

Keywords: Higher-order Logic, Fault Tree, Theorem Proving.

1 Introduction

Fault Tree (FT) is used as a standard failure modeling technique in various
safety-critical domains, including nuclear power industry, civil aerospace and
military systems. It mainly provides a graphical model for analyzing the condi-
tions and factors causing an undesired top event, i.e., a critical event, which can
cause the complete system failure upon its occurrence. The preceding nodes of
the FT are represented by gates, like OR, AND and XOR, which are used to
link two or more cause events of a fault in a prescribed manner. Using these FT
gates, a FT model of a given system is constructed either on paper or by uti-
lizing graphical editors provided by FT-based computer simulation tools, such
as Relia-Soft [1] and ASENT [2]. In the paper-and-pencil proof methods, this
obtained FT model is then used for the identification of the Minimal Cut Set
(MCS) of failure events that are associated with the components of the given sys-
tem. This is followed by associating the failure random variables, i.e., exponential
or Weibull, to these MCS failure events. The Probabilistic Inclusion-Exclusion
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(PIE) principle [3] is then used to evaluate the exact probability of failure of the
overall system. On the other hand, the FT-based computer tools can be utilized
to build a FT model by associating appropriate random variables with each com-
ponent of the system. The reliability and the failure probability analysis of the
complete system is then carried out by using computer arithmetic and numeri-
cal techniques on the generated samples from these random variables. However,
both these methods cannot ascertain absolute correctness due to their inherent
inaccuracy limitations. For instance, paper-and-pencil methods are prone to hu-
man errors, especially for large and complex systems, where a FT may consist of
50-130 levels of logic gates [4]. Manually manipulating such a large data makes it
quite probable that some of MCS failure events may be overlooked, which would
in turn lead to an erroneous design [4]. On the other hand, software tools can
efficiently handle the analysis of large FTs but the computational requirements
drastically increase as the size of the FT increases.

To overcome the above-mentioned limitations, a higher-order-logic formal-
ization of some basic FT gates and their corresponding failure probability ex-
pressions [5] has been recently proposed. However, a major drawback of this
formalization is the increase in complexity when analyzing FT of large and com-
plex system. This formalization was primarily based on a shallow embedding
approach, where the notion of each FT gate was explicitly defined on an event
list and then its corresponding failure probability relationship was verified on
the given failure event list. This approach makes the FT gate formalization non-
compositional in nature, i.e., the basic FT gates, such as AND, OR and NOT,
cannot be used to formalize other FT gates that are usually composed from these
basic FT gates. Also, this work [5] utilizes the PIE principle to formally compute
the exact failure probability of the given system, which limits its usability for
complex system due to the involvement of large number of PIE terms. In the
literature, several methods have been used to deal with this inherent complexity
issue of the PIE principle. A tractable solution is to transform the given system
FT to its equivalent Reliability Block Diagram (RBD) [6], which is also a well-
known reliability modeling technique. This transformation considerably reduces
the analysis complexity due to the fact that RBD offers closed form expressions
compared to a FT, which requires unfolding of all the PIE terms.

In order to overcome the above-mentioned scalability issues of the existing
formalization of FT gates [5] and thus broaden the scope of formal FT analysis,
we propose a deep embedding approach to formalize the commonly used FT
gates, such as AND, OR and NOT. This proposed formalization approach is
compositional in nature and can be easily extended to formalize other FT gates,
such as NAND, NOR, XOR, Inhibit, Comparator and majority Voting. It also
enables us to transform the given system FT model to its equivalent RBD model,
without any loss of valuable information. The RBD model can then be formally
analyzed using our recently proposed formal reasoning support for RBDs [7].

To illustrate the practical effectiveness of our proposed approach, we present
a formal failure analysis of a Next Generation (NextGen) Air Traffic Manage-
ment (ATM) gateway system, which is primarily used to enhance the safety and
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reliability of air transportation, to improve efficiency in the air transportation
and to reduce aviation impact on the environment. The FT of the NextGen ATM
gateway, which consists of more than 40 basic failure events including software,
hardware, database update and transmission system is divided into four levels.
The formally verified failure probability expressions of individual levels are then
used to reason about the failure probability of the overall NextGen system. In
addition, we also provide some automated reasoning support for the FT based
failure analysis. This automation allows us to automatically simplify the failure
expression of the NextGen system from the given values of the failure rates.

2 Related Work

The COMPASS tool-set [8] supports the dynamic FT analysis specifically for
aerospace systems using the NuSMV and MRMC model checkers. The Interval
Temporal Logic (ITS), i.e., a temporal logic that supports first-order logic, has
been used, along with the Karlsruhe Interactive Verifier (KIV), for formal FT
analysis of a rail-road crossing [9]. A deductive method for FT construction, in
contrast to the intuitive approach followed in [9], by using the Observational
Transition Systems (OTS), is presented in [10]. The formal analysis of this FT
is then carried out using CafeOBJ [11], which is a formal specification language
with interactive verification support. However, the scope of these tools is some-
what limited in terms of handling larger systems, due to the inherent state-space
explosion problem of model checking. Moreover, either some of these approaches
[9,10] do not cater for probabilities or if they do cater for them then the compu-
tation of probabilities in these methods [8] involves numerical techniques, which
compromises the accuracy of the results.

Leveraging upon the high expressiveness of higher-order logic and the inher-
ent soundness of theorem proving, Mhamdi’s formalized probability theory [12]
has been recently used for the formalization of RBDs [7], including series [13],
parallel [14], parallel-series [14] and series-parallel [15]. These formalizations have
been used for the reliability analysis of many applications including simple oil
and gas pipelines with serial components [13], wireless sensor network protocols
[14] and logistic supply chains [14]. Similarly, Mhamdi’s probability theory have
also been used for the formalization of commonly used FT gates, such as AND,
OR, NAND, NOR, XOR and NOT, and the PIE principle [5]. In addition, the
above-mentioned RBD and FT formalizations have been recently utilized for
availability analysis [16]. In this paper, we have formalized the FT gates using
a deep embedding approach to facilitate the analysis of larger FTs. Besides the
existing formalization of FT gates [5], this paper also provides the formalization
of inhibit, 2-bit comparator and Majority voting FT gates. Moreover, we have
combined our existing formalizations of RBDs [13,14,15] to make the formal FT
based analysis more scalable.

3 Probability Theory and Fault Trees in HOL

Mathematically, a measure space is defined as a triple (Ω,Σ, µ), where Ω is a
set, called the sample space, Σ represents a σ-algebra of subsets of Ω, where
the subsets are usually referred to as measurable sets, and µ is a measure with
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domain Σ. A probability space is a measure space (Ω,Σ, Pr), such that the
measure, referred to as the probability and denoted by Pr, of the sample space
is 1. In the HOL4 formalization of probability theory [12], given a probability
space p, the functions space, subsets and prob return the corresponding Ω, Σ
and Pr, respectively. This formalization also includes the formal verification of
some of the most widely used probability axioms, which play a pivotal role in
formal reasoning about reliability properties.

A random variable is a measurable function between a probability space
and a measurable space. The measurable functions belong to a special class of
functions, which preserves the property that the inverse image of each measurable
set is also measurable. A measurable space refers to a pair (S,A), where S
denotes a set and A represents a nonempty collection of sub-sets of S. Now, if S
is a set with finite elements, then the corresponding random variable is termed
as a discrete random variable otherwise it is called a continuous one.

The cumulative distribution function (CDF) is defined as the probability of
the event where a random variable X has a value less than or equal to some value
t, i.e., Pr(X ≤ t). This definition characterizes the distribution of both discrete
and continuous random variables and has been formalized [13] as follows:

` ∀ p X t. CDF p X t = distribution p X {y | y ≤ Normal t}
The function Normal takes a real number as its input and converts it to its
corresponding value in the extended-real data-type, i.e, it is the real data-type
with the inclusion of positive and negative infinity. The function distribution

takes three parameters: a probability space p : (α → bool)#((α → bool) →
bool)#((α → bool) → real), a random variable X : (α → extreal) and a set of
extended-real numbers and returns the probability of the given random variable
X acquiring all the values of the given set in probability space p.

The unreliability or the probability of failure F (t) is defined as the proba-
bility that a system or component will fail by the time t. It can be described in
terms of CDF, known as the failure distribution function, if the random variable
X represent a time-to-failure of the component. This time-to-failure random
variable X usually exhibits the exponential or Weibull distribution.

The notion of mutual independence of n random variables is a major require-
ment for reasoning about the failure analysis of most of the FT gates. According
to this notion, a list of n events are mutual independent if and only if for each
set of k events, such that (1 ≤ k ≤ n), we have:

Pr(

k⋂
i=1

Ai) =

k∏
i=1

Pr(Ai) (1)

It is important to note that mutual independence is a much stronger property
compared to pairwise independence [3], which ensures independence between
two events only. On the other hand, mutual independence makes sure that any
subset of events are independent with each other. Also, we can verify many
interesting properties of independence using the mutual independence property.
For instance, given a list of mutually independent events, say L, we can verify
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that an element h ∈ L is independent with the list L− [h] representing the list
L without element h.

The mutual independence concept is formalized in HOL4 as follows [13]:

` ∀ p (L:α→ bool). mutual indep p L = ∀ L1 (n:num). PERM L L1 ∧
1 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter list p (TAKE n L1)) = list prod (list prob p (TAKE n L1))

The function mutual indep accepts a list of events L and probability space p
and returns True if the events in the given list are mutually independent in the
probability space p. The predicate PERM ensures that its two lists as its arguments
form a permutation of one another. The function LENGTH returns the length of
the given list. The function TAKE returns the first n elements of its argument
list as a list. The function inter list performs the intersection of all the sets
in its argument list of sets and returns the probability space if the given list of
sets is empty. The function list prob takes a list of events and returns a list of
probabilities associated with the events in the given list of events in the given
probability space. Finally, the function list prod recursively multiplies all the
elements in the given list of real numbers. Using these functions, the function
mutual indep models the mutual independence condition such that for n events
taken from any permutation of the given list L, Equation (1) holds.

3.1 Formalization of Fault Tree Gates

The proposed formalization is primarily based on defining a new polymorphic
datatype gate that encodes the notion of AND, OR and NOT FT gates. Then
a semantic function is defined on that gate datatype yielding an event for the
corresponding FT gate. This semantic function allows us to verify the generic
failure probability expressions of the FT gates by utilizing the underlying prob-
ability theory within the sound core of the HOL4 theorem prover. Such a deep
embedding considerably simplifies the FT gate modeling approach, compared
to our previous work [5] (shallow embedding), and also enables us to develop a
framework that can deal with arbitrary levels of FTs, which can be used to cater
for a wide variety of real-world failure analysis problems.

We start the formalization process by type abbreviating the notion of event,
which is essentially a set of observations with type ’a->bool as follows:

type abbrev ("event" , ‘‘:’a ->bool’’)

We then define a recursive datatype gate in the HOL4 system as follows:
Hol datatype ‘gate = AND of gate list | OR of gate list | NOT of gate |

atomic of ’a event‘

The type constructors AND and OR recursively function on gate-typed lists and
the type constructor NOT operates on gate-type variable. The type constructor
atomic is basically a typecasting operator between event and gate-typed vari-
ables. These type constructors allow us to encode the notion of all the basic FT
gates.
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We define a semantic function FTree : α event # α event event # (α event→
real) → α gate → α event over the above-defined gate datatype that can yield
the corresponding event from the given FT gate as follows:

Definition 1: ` (∀ p. FTree p (AND []) = p space p) ∧
(∀ xs x p. FTree p (AND (x::xs)) = FTree p x ∩ FTree p (AND xs)) ∧
(∀ p. FTree p (OR []) = {}) ∧
(∀ xs x p. FTree p (OR (x::xs)) = FTree p x ∪ FTree p (OR xs)) ∧
(∀ p a. FTree p (NOT a) = p space p DIFF FTree p a) ∧
(∀ p a. FTree p (atomic a) = a)

The above function decodes the semantic embedding of a FT by yielding a cor-
responding failure event, which can then be used to determine the failure prob-
ability of a given FT. The function FTree takes a list of type gate, identified by
a type constructor AND, and returns the whole probability space if the given list
is empty and otherwise returns the intersection of the events that are obtained
after applying the function FTree on each element of the given list in order to
model the AND FT gate behaviour. Similarly, to model the behaviour of the OR
FT gate, the function FTree operates on a list of datatype gate, encoded by a
type constructor OR. It then returns the union of the events after applying the
function FTree on each element of the given list or an empty set if the given
list is empty. The function FTree takes a type constructor NOT and returns the
complement of the failure event obtained from the function FTree. The function
FTree returns the failure event using the type constructor atomic.

If the occurrence of the failure event at the output is caused by the occurrence
of all the input failure events then this kind of behavior can be modeled by using
the AND FT gate. The failure probability expression of the AND FT gate can
be expressed mathematically as follows:

FAND gate(t) = Pr(

N⋂
i=2

Ai(t)) =

N∏
i=2

Fi(t) (2)

Using Definition 1, we can verify the above equation in HOL4 as follows:

Theorem 1: ` ∀ p L. prob space p ∧
(∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧ 2 ≤ LENGTH L ∧
mutual indep p L ⇒
(prob p (FTree p (AND (gate list L))) = list prod (list prob p L))

The first two assumptions, in Theorem 1, ensures that p is a valid probability
space and each element of a given event list L must be in event space p based on
the probability theory in HOL4 [12]. The function MEM finds an element in a given
list and returns false, if a match does not occur. The next two assumptions guarantee
that the list of events L, representing the failure probability of individual components,
must have at least two events and the failure events are mutually independent. The
conclusion of the theorem represents Equation (2). The function gate list generates
a list of type gate by mapping the function atomic to each element of the given event
list L to make it consistent with the assumptions of Theorem 1. It can be formalized
in HOL4 as: ∀ L. gate list L = MAP (λa. atomic a) L

The proof of Theorem 1 is primarily based on a mutual independence property and
some fundamental axioms of probability theory.
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In the OR FT gate, the occurrence of the output failure event depends upon the
occurrence of any one of its input failure event. Mathematically, the failure probability
of an OR FT gate can be expressed as:

FOR gate(t) = Pr(

N⋃
i=2

Ai(t)) = 1−
N∏
i=2

(1− Fi(t)) (3)

By following the approach, used in Theorem 1, we can formally verify the failure
probability expression OR FT gate, given in Equation (3), in HOL4:

Theorem 2: ` ∀ p L. prob space p ∧ 2 ≤ LENGTH L ∧
(∀x’. MEM x’ L ⇒ x’ ∈ events p) ∧ mutual indep p L ⇒
(prob p (FTree p (OR (gate list L))) =

1 - list prod (one minus list (list prob p L)))

The above theorem is verified under the same assumptions as Theorem 1. The con-
clusion of the theorem represents Equation (3) where, the function one minus list

accepts a list of real numbers [x1, x2, x3, · · · , xn] and returns the list of real numbers
such that each element of this list is 1 minus the corresponding element of the given
list, i.e., [1− x1, 1− x2, 1− x3, · · · , 1− xn].

The NOT FT gate can be used in conjunction with the AND and OR FT gates
to formalize other FT gates. The formalization of these gates is given in Table 1.
The NAND FT gate, represented by the function NAND FT gate in Table 1, models
the behavior of the occurrence of an output failure event when at least one of the
failure events at its input does not occur. This type of gate is used in FTs when the
non-occurrence of the failure event in conjunction with the other failure events causes
the top failure event to occur. This behavior can be expressed as the intersection of
complementary and normal events, where the complementary events model the non-
occurring failure events and the normal events model the occurring failure events. The
output failure event occurs in the 2-input XOR FT gate if only one, and not both, of
its input failure events occur. The inhibit FT gate produces an output failure event
only if the conditional event occurs at the same time when the input failure event
occurs. The HOL4 function inhibit FT gate, given in Table 1, models the behavior
of a 2-input inhibit FT gate by composing the type constructors AND, OR and NOT.
In the comparator FT gate, the output failure event occurs if all the failure events
at its input occur or if all of the them do not occur. In the majority voting gate, the
output failure event occurs if at least m out of n input failure events occurs. This
behaviour can be modeled by utilizing the concept of binomial trials, which are used to
find the chances of at least m success in n trials. The function major voting FT gate

accepts a probability space p, a binomial random variable X and two variables, m and
n, which represent the number of successes and total number of trials, respectively.
It then returns the union of the corresponding events that are associated with the
binomial random variable X, which takes values from the set {x | k ≤ x ∧ x < SUC
n}. The function IMAGE takes a function f and an arbitrary domain set and returns a
range set by applying the function f to all the elements of the given domain set. The
function BIGUNION returns the union of all the element of given set of sets.

The verification of the corresponding failure probability expressions, of the above-
mentioned FT gates, is presented in Table 2. These expressions are verified under the
same assumptions as the ones used for Theorems 1 and 2. However, some additional pro-
visos are required for the verification of majority voting gate as follows: (i) prob space

ensures that p is a valid probability space; (ii) m ≤ n makes sure that the number of
successes of trails m must be less than or equal the total number of trials n; (iii) (λx.
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Table 1: HOL4 Formalization of Fault Tree Gates
FT Gates Formalization

NAND

1

n

k

` ∀ p L1 L2. NAND FT gate p L1 L2 =

FTree p (AND (gate list (compl list p L1 ++ L2)))

NOR
1

n
` ∀ p L. NOR FT gate p L = FTree p (NOT (OR (gate list L)))

XOR
1

2

` ∀ p A B. XOR FT gate p A B =

FTree p (OR [AND [NOT A; B]; AND [A; NOT B]])

Inhibit

2

1

` ∀ p A B C. inhibit FT gate p A B C =

FTree p (AND [OR [A; B]; NOT C]])

Comp
1

2

` ∀ p A B. comp FT gate p A B =

FTree p (OR [AND [A; B]; NOR FT gate p [A; B]])

m

` ∀ p X m n. major voting FT gate p X m n =

BIGUNION (IMAGE (λx. PREIMAGE X {Normal (&x)} ∩ p space p)

{x | k ≤ x ∧ x < SUC n})

PREIMAGE X Normal(&x) ∩ p space p) ∈ ((count (SUC n)) → events p) ensures
that all the corresponding events that are associated with the binomial random vari-
able X are drawn from the events space p; and (iv) (∀x. distribution p X {Normal
(&x)} = (&binomial n x)*(F pow x)*(1 - F) pow (n-x)) guarantees that the ran-
dom variable X is exhibiting the binomial distribution.

3.2 Formalization of Probabilistic Inclusion-Exclusion Principle

In FT analysis, firstly all the basic failure events are identified that can cause the oc-
currence of the system top failure event. These failure events are then combined to
model the overall fault behavior of the given system by using the fault gates. These
combinations of basic failure events, called cut sets, are then reduced to minimal cut
sets (MCS) by using some set-theory rules, such as idempotent, associative and commu-
tative. Then, the Probabilistic Inclusion Exclusion (PIE) principle is used to evaluate
the overall failure probability of the given system based on the MCS events. According
to the PIE principle, if Ai represents the ith basic failure event or a combination of
failure events then the overall failure probability of the given system can be expressed
as follows:

P(

n⋃
i=1

Ai) =
∑

t6={},t⊆{1,2,...,n}

(−1)|t|+1P(
⋂
j∈t

Aj) (4)

The above equation has been formally verified in HOL as follows [5]:
Theorem 3: ` ∀ p L. prob space p ∧ (∀ x. MEM x L ⇒ x ∈ events p) ⇒
(prob p (union list L) =

sum set {t | t ⊆ set L ∧ t 6= {} }
(λt. -1 pow (CARD t + 1) * prob p (BIGINTER t)))

The assumptions of the above theorem are the same as the ones used in Theorem
1. The function sum set takes an arbitrary set s with element of type α and a
real-valued function f and recursively sums the return values of the function f ,
when applied on each element of the given set s. In the above theorem, the set s is
represented by the term {x|C(x)} that contains all the values of x, which satisfy
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Table 2: Probability of Failures of Fault Tree Gates
Mathmatical Expressions Theorem’s Conclusion

FNAND(t) = Pr(

k⋂
i=2

Ai(t) ∩
N⋂

j=k

Ai(t))

=

k∏
i=2

(1− Fi(t)) ∗
N∏

j=k

(Fj(t))

` ∀ p L1 L2. (prob p (NAND FT gate p L1 L2) =

list prod ((list prob p (compl list p L1))) *

list prod (list prob p L2))

FNOR(t) = 1− FOR(t) =

N∏
i=2

(1− Fi(t))
` ∀ p L. (prob p (NOR FT gate p L) =

list prod (one minus list (list prob p L)))

FXOR(t) = Pr(A(t)B(t) ∪A(t)B(t))

= (1− FA(t))FB(t)+

FA(t)(1− FB(t))

` ∀p A B. prob space p ∧ A ∈ events p ∧ B ∈ events p

(prob p (XOR FT gate p (atomic A) (atomic B) =

(1- prob p A)*prob p B + prob p A*(1 - prob p B)

Finhibit(t) = Pr((A(t) ∪B(t)) ∩ C(t))

= (1− (1− FA(t))∗
(1− FB(t))) ∗ (1− FC(t))

` ∀p A B C.

(prob p

(inhibit FT gate p (atomic A) (atomic B) (atomic C) =

(1 - (1 - prob p A) * (1 - prob p B))*(1 - prob p C)

Fcomp(t) = Pr((A(t) ∩B(t)) ∪ (A(t) ∪B(t)))

= (1− (1− FA(t)FB(t))∗
(1− (1− FA(t)) ∗ (1− FB(t)))

` ∀p A B C.

(prob p (comp FT gate p (atomic A) (atomic B) =

(1 - (1 - prob p A * prob p B)*

(1 - (1 - prob p A)*(1- prob p B))

Fm|n(t) = Pr(

n⋃
i=k

{exactly i components are

functioning properly})

=

n∑
i=m

(

(
n

m

)
F i(1− F )n−1)

` ∀p n k X F

(prob p (major voting FT gate p X m n) =

sum (m, SUC n - m)

(λx. (&binomial n x)*(F pow x)* (1- F) pow (n-x)))

condition C. Whereas, the λ abstraction function (λt. -1 pow (CARD t + 1)

* prob p (BIGINTER t)) models (−1)|t|+1P(
⋂

j∈tAj), such that the functions
CARD and BIGINTER return the number of elements and the intersection of all
the elements of the given set, respectively.

3.3 Formalization of Reliability Block Diagrams

Transformation of a system FT to its equivalent reliability block diagram (RBD)
has been proposed as a viable solution to reduce the complexity associated with
finding the failure probability of large systems [17]. The proposed deep embed-
ding based formalization of FT gates allows the establishment of this link and
thus we have used the existing formalization of RBDs [7] to make the formal
analysis of FTs more scalable. In this paper, we only describe the formalization
of the parallel-series RBD configuration because it is required to conduct the
formal failure analysis of ASN gateway system, described in the next section.

1 N

M

OI

Fig. 1: Parallel-Series Reliability Block Diagrams
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In a parallel-series RBD configuration, as shown in Fig. 1, the reserved sub-
systems are connected serially and it can be considered as the nested form of
series RBD in a parallel RBD configuration. If Aij(t) is the event corresponding
to the reliability of the jth component connected in a ith subsystem at time t,
then parallel-series RBD configuration can be expressed as:

Rparallel−series(t) = Pr(

M⋃
i=1

N⋂
j=1

Aij(t)) = 1−
M∏
i=1

(1−
N∏

j=1

(Rij(t))) (5)

The HOL4 formalization of the above equation is as follows [7]:

Theorem 4: ` ∀ p L. prob space p ∧ (∀z. MEM z L ⇒ vNULL z) ∧
(∀x’. MEM x’ (FLAT L) ⇒ x’ ∈ events p) ∧
mutual indep p (FLAT L) ⇒
(prob p (rbd struct p ((parallel of (λa. series (rbd list a))) L)) =

(1 - list prod (one minus list) of (λa. list prod (list prob p a))) L)

where the function rbd struct is defined on a recursive datatype rbd and can
take any combination of type constructors series and parallel. It then yields
the corresponding event of the given RBD configuration constituted by these
type-constructors. The function rbd list serves similar functionality as that of
the function gate list. The assumptions are quite similar to the ones used for
Theorems 1 and 2. The conclusion models Equation (5) and the infixr function
of connects two rbd type-constructors by using the HOL4 MAP function.

4 Formalization of the NextGen ASN Gateway System

NextGen is supported by the nation-wide Aviation Simulation Network (ASN),
which is an environment including simulated and human-in-the-loop (HIL) real-
life components, e.g., pilots and air traffic controllers. The Real Time Distributed
Simulation (RTDS) application suite [18] is used to facilitate the ASN by provid-
ing low and medium fidelity en-route simulation capabilities. An ASN gateway
software system acts as an intermediary between RTDS and ASN by provid-
ing logic for data translation, two-way communication and transfer messages
among them. The overall NextGen ASN gateway FT can be viewed as a four
level FT [19]. The first or top level of the ASN gateway FT models an avia-
tion accident caused by the lack of appropriate control, equipment, internal and
external malfunctions. The internal failure event opens up to a second level of
the ASN gateway FT, which comprises of failures related to the flight function
mishap and transmissions. The flight mishap failure is caused by the failure of
the Auto Pilot (AP) or Flight Director (FD) along with the failure not mitigated
in time (FF1). The Transmission failure event captures the failure events due
to data/message not correctly transmitted (A), failure to display (NotShown),
and not performing transmission in a timely manner (RT). The third level of the
ASN gateway FT is composed of several sub-FTs, given in Table 3, representing
the RT and failure event A. The RT failure event occurs if the delay is too long
for the transmission to meet its deadline (Time) and a latency problem occurs
related to either the application (AL), serialization (SL), propagation delay (PD)
or any other relevant sources. Similarly, the failure event A represents a failure
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to correctly transmit a message and consists of two events. i.e., B1: failure to
transfer a message from ASN to RTDS and B2: failure to transfer a message
from RTDS to ASN of the communication link. The FT of the events B1 and
B2 are given at the fourth level of the ASN gateway FT [19]. The overall ASN
gateway FT consists of 47 basic failure events that are related to messages trans-
mission failures, propagation delays, software and hardware equipment failures,
database update failures and human mistakes.

4.1 Formal Fault Tree Models for ASN Gateway System

The formal definitions of FT gates [5] along with Definition 1 can be utilized
to formally represent the FT of the ASN gateway in terms of its failure events.
We systematically present the formalization of the ASN gateway FT by starting
from the fourth level, i.e., the formalization of B1 sub-FT:
Definition 2: ∀p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21.

B1 FT p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21 =

(OR [OR [atomic (fail event p D1 t);

AND [OR (gate list (fail event list p [E1; E2] t));

atomic (fail event p E21 t)];

OR (gate list (fail event list p [E3; E4; E5] t))];

OR [atomic (fail event p D4 t);

AND [OR (gate list (fail event list p [E6; E7] t));

atomic (fail event p E21 t)];

OR (gate list (fail event list p [E8; E9; E10] t))]])

Where the random variables D1, D4, E1 − E10 and E21 model the time-to-
failure of the communication process ASN to RTDS. The diagram of B1 FT is
similar to B2 FT, which can be seen in Table 3. Additionally, the cut-set failure
events in the above definition is already minimal, i.e., there are no combination
of redundant failure events to be removed [19]. Therefore, the cut-sets and MCS
for B1 sub-FT, in this case, are equivalent.

Similarly, other sub-FTs, such as B2-FT, A-FT, RT-FT and Internal-FT,
which are at the fourth, third and second level of the ASN gateway FT can be
formalized in HOL4 as shown in Table 3. It is important to note that the formal
definition of the top level or first level FT, in Table 3, builds upon the formal
definitions of all the other sub-FTs and models the complete ASN gateway FT.

We consider that the random variables, associated with the failure events of
the ASN gateway FT, exhibit the exponential distribution:
Definition 3: ` ∀ p X l. exp dist p X l =

∀ x. (CDF p X x = if 0 ≤ x then 1 - exp (-l * x) else 0)

The function exp dist guarantees that the CDF of the random variable X is
that of an exponential random variable with a failure rate l in a probability space
p. We classify a list of exponentially distributed random variables as follows:
Definition 4: ` ∀p L. list exp p [] L = T ∧
∀p h t L. list exp p (h::t) L = exp dist p (HD L) h ∧ list exp p t (TL L)

The function list exp accepts a list of failure rates, a list of random variables
L and a probability space p. It guarantees that all elements of the list L are
exponentially distributed with the corresponding failure rates, given in the other
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Table 3: ASN Gateway FT Levels with their HOL Formalizations
ASN Sub-FTs Formal Definitions of Sub-FTs in HOL
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list, within the probability space p. For this purpose, it utilizes the list functions
HD and TL, which return the head and tail of a list, respectively.

4.2 Failure Assessment of NextGen ASN Gateway System

We now present the formal verification of all the sub-FTs, such as B1-FT, B2-FT,
A-FT, RT-FT and Internal-FT. The formally verified results of these sub-FTs
are then used to reason about the failure probability of overall ASN gateway
communication system. Using the closed form expression of parallel-series RBD
configuration, given in Equation (5), the failure probability of the B1-FT can be
expressed mathematically as follows:

FB1(t) = (1− e−(c1+c2+c3+c4)t) ∗ (1− (1− e−CE1t)(1− e−CE21t))(1− (1− e−CE2t)

(1− e−CE21t))(1− (1− e−CE6t)(1− e−CE21t))(1− (1− e−CE7t)(1− e−CE21t))

(6)

To verify Equation (6), we first verify a lemma that transforms the B1 sub-FT
to its equivalent parallel-series RBD model as follow:

Lemma 1: ` ∀ p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21.

FTree p (B1 FT p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21) =

(rbd struct p ((parallel of

(λa. series (rbd list (fail event list a)))) [[D1];[D4];[E1;E21];

[E2;E21]; [E3];[E4];[E5];[E6;E21];[E7;E21];[E8];[E9];[E10]]))

Now, using the formal definition of B1-FT and Lemma 1, the failure proba-
bility of B1 sub-FT can be verified in HOL4 as follows:

Theorem 5: ` ∀ p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21 C E1 C E2

C E6 C E7 C D1 C D4 C E3 C E4 C E5 C E8 C E9 C E10 C 21.

time positive t ∧ prob space p ∧
in events p (fail event list p [D1;D4;E1;· · · ;E10;E21] t) ∧
mutual indep p (fail event list p [D1;D4;E1;· · · ;E10;E21] t) ∧
list exp p [C D1;C D4;C E1;· · · ;C E10;C E21] [D1;D4;E1;· · · ;E10;E21] ⇒
(prob p (B1 FT p t D1 D4 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E21) =

1 - exp(-(t * list sum [C D1;C D4;C E3;C E4;C E5;C E8;C E9;C E10])) *

list prod(one minus exp prod t

[[C E1;C E21];[C E2;C E21];[C E6;C E21];[C E7;C E21]]))

The function exp represents the exponential function. The function list sum

is used to sum all the elements of the given list of failure rates, the function
one minus exp accepts a list of failure rates and returns a one minus list of expo-
nentials and the function one minus exp prod accepts a two dimensional list of
failure rates and returns a list with one minus product of one minus exponentials
of every sub-list. For example, one minus exp prod[[c1; c2; c3]; [c4; c5]; [c6; c7; c8]]
x = [1 − ((1 − e−(c1)x) ∗ (1 − e−(c2)x) ∗ (1 − e−(c3)x)); (1 − (1 − e−(c4)x) ∗ (1 −
e−(c5)x)); (1− (1− e−(c6)x) ∗ (1− e−(c7)x) ∗ (1− e−(c8)x))]. The first assumption
ensures that the variable t models time t as it can acquire positive integer values
only. The next assumption ensures that p is a valid probability space based on
the probability theory in HOL [12]. The next two assumptions ensure that the
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events corresponding to the failures modeled by the random variables D1, D2,

E1 to E10 and E21 are valid events from the probability space p and they are
mutually independent. Finally, the last assumption characterizes the random
variables D1, D2, E1 to E10 and E21, as exponential random variables with
failure rates C D1, C D2, C E1 to C E10 and C E21, respectively. The conclusion
of Theorem 5 represents the failure probability of the communication process
between ASN to RTDS in terms of the failure rates of the components involved
during the communication process. The proof of Theorem 5 is primarily based
on Theorem 4 and some fundamental facts and axioms of probability.

Similarly, the failure probabilities of other sub-FTs, i.e., B1-FT, B2-FT, A-
FT, RT-FT and Internal-FT, are verified in HOL4 [20]. These theorems are
verified under the same assumptions as the one used in Theorem 5.

Now, using the formal definitions of ASN gateway sub-FTs, given in Table 3,
and their verified failure probability results [20], we formally verified the failure
probability of the complete ASN gateway system as follows:

Theorem 6: ` (prob p (ASN gateway FT p t FD AP FF1 D1 D4 D7 D10 E1 · · ·
E21 C5 C6 C7 C8 notshw AL SL PD Others time ED EQ1 EN1 · · · EN4 human) =

1 - (list prod(one minus exp prod t [[C ED;C EQ1];

[C EN1;C EN2;C EN3;C EN4];[C E6;C E21]])) *

exp (-(t*C human)) * exp -(t*C notshw) *

1 - (list prod(one minus exp prod t [[C FD;C FF1];[C AP;C FF1]]) *

1 - (1 - exp(-(t*list sum [C D1;C D4;C E3;C E4;C E5;C E8;C E9;C E10])) *

list prod(one minus exp prod t [[C E1;C E21];[C E2;C E21];

[C E6;C E21];[C E7;C E21]])))*

1 - exp(-(t*list sum[C D7;C D10; C E13;C E14;C E15;C E18;C E19;C E20])) *

list prod(one minus exp prod t

[[C E11;C E21];[C E12;C E21];[C E16;C E21];[C E17;C E21]])) *

list prod(one minus exp prod t [[C C5;C C8];

[C C6;C C8];[C C7;C C8]]))))))*

list prod(one minus exp prod t [[C AL;C time];

[C SL;C time];[C PD;C time]; [C other;C time]]))))

The assumptions of the above theorem are similar to the ones used in Theorem
5 and its proof is based on Theorem 4 and some basic arithmetic lemmas and
probability theory axioms. The proof of Theorems 5 and 6 and the formalization
of sub-FTs, presented in Table 3, with their corresponding probability of failure
took more than 2500 lines of HOL codes [20] and about 125 man-hours.

In order to facilitate the use of our formally verified results by industrial
design engineers for their failure analysis, we have also developed a set of SML
scripts to automate the simplification step of these theorems for any given failure
rate list corresponding to the NextGen ATM system components. For instance,
the output of the auto ASN gateway FT script [20] for the automatic simplifica-
tion of Theorem 6 is as follows:

` (prob p (ASN gateway FT p t FD AP FF1 D1 D4 D7 D10 E1 · · · E21 C5 C6 C7

C8 notshw AL SL PD Others time ED EQ1 EN1 · · · EN4 human) =

1 − (1 − (1 − e(−5/2)) ∗ (1 − e(−3/2))) ∗ ((1 − (1 − e(−1/2)) ∗ ((1 − e(−2))∗
((1 − e(−3/2)) ∗ (1 − e(−4))))) ∗ e(−9/2)) ∗ ((1 − (1 − e(−7/2)) ∗ (1 − e(−3)))∗
(1 − (1 − e(−4)) ∗ (1 − e(−3))) ∗ (e(−4) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
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((1 − (1 − e(−1/2)) ∗ (1 − e(−3))) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
(1 − (1 − e(−1/2)) ∗ (1 − e(−3)))))) ∗ (e(−321/20) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
((1 − (1 − e(−1/2)) ∗ (1 − e(−3))) ∗ ((1 − (1 − e(−1/2)) ∗ (1 − e(−3)))∗
(1 − (1 − e(−1/2)) ∗ (1 − e(−3))))))) ∗ ((1 − (1 − e(−3/2)) ∗ (1 − e(−2)))∗
((1 − (1 − e(−1/2)) ∗ (1 − e(−2))) ∗ (1 − (1 − e(−1/2)) ∗ (1 − e(−2)))))) ∗ e(−1)∗
((1 − (1 − e(−7/2)) ∗ (1 − e(−3))) ∗ ((1 − (1 − e(−3/2)) ∗ (1 − e(−3)))∗
((1 − (1 − e(−1/2)) ∗ (1 − e(−3))) ∗ (1 − (1 − e(−5/2)) ∗ (1 − e(−3)))))))

With a very little modification, these kind of automation scripts can facilitate
industrial design engineers to accurately determine the failure probabililty of
many other safety-critical systems.

5 Conclusion

The accuracy of failure analysis is a dire need for safety and mission-critical ap-
plications, like the avionic ASN gateway communication system, where a slight
error in the failure analysis may lead to disastrous situations including the death
of innocent human lives or heavy financial setbacks. In this paper, we presented
a deep embedding based formalization of commonly used FT gates, which fa-
cilitates the transformation of a FT model to its equivalent RBD model. The
transformation considerably reduces the complexity of the FT analysis com-
pared to our earlier FT formalization [5]. For illustration, the paper presents
the formalization of each level of ASN gateway FT and then building upon this
formalization the failure probability of overall ASN gateways communication
system is verified.
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