arXiv:1608.05893v1 [cs.SE] 21 Aug 2016

Reducing State Explosion for Software Model Checking
with Relaxed Memory Consistency Models

Tatsuya Abé, Tomoharu Ugawa Toshiyuki Maed4, and Kousuke Matsumoto

! {abet,tosh}@stair.center STAIR Lab, Chiba Institute of Technology
2 {ugawa,matsumoto}@plas.info.kochi-tech.ac.jp Kochi University of Technology

Abstract. Software model checking ffers from the so-called state explosion
problem, and relaxed memory consistency models even wdhsgrsituation.
What is worse, parameterizing model checking by memory istercy mod-
els, that is, to make the model checker as flexible as we cavlysdpfinitions
of memory consistency models as an input, intensifies siq@@son. This pa-
per explores specific reasons for state explosion in modsgkéhg with multi-
ple memory consistency models, provides some optimizatiotended to mit-
igate the problem, and applies them to McSPIN, a model cln€fokenemory
consistency models that we are developing. Tifiects of the optimizations and
the usefulness of McSPIN are demonstrated experimentallifying copying
protocols of concurrent copying garbage collection athons. To the best of our
knowledge, this is the first model checking of the concurmagying protocols
under relaxed memory consistency models.

Keywords: software model checking; relaxed memory consistency nsodtdte
explosion; reordering of instructions; integration ofte& concurrent copying
garbage collection

1 Introduction

Modern computing systems are based on concypardllel processing designs for
their performance advantages, and programs thereforeatagsbe written to exploit
these designs. However, writing such programs is quifiecdlt and error-prone, be-
cause humans cannot exhaustively consider the behaviomsgiuters very well. One
approach to this problem is to use software model checkinghich all possible states
that can be reached during a program’s execution are explgiany such model check-
ers have been developed (e.g./[12,18.26125,7,8]).

However, most existing model checkers adstpitt consistencas a Memory Con-
sistency Model (MCM) on shared memories, which only allomtgileaving of instruc-
tion execution, and ignore morelaxed MCMs than strict consistency, which allow
reorderings of instructions. This is not realistic becams@&y modern computer archi-
tectures such as IA64, SPARC, and POWERI[[22,37,20] havetedoplaxed MCMs.
Relaxed MCMs facilitate the performance of parallel-pssieg implementations be-
cause instructions may be reordered and multiple threagi®bserve distinct views on
shared memory while strict consistency, which requireskyonization at each mem-
ory operation, is prohibitively expensive to be implemeima computer architectures.

http://arxiv.org/abs/1608.05893v1

2 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KouMatsumoto

As interest in MCMs has grown, some model checkers havedatred support for
them [24,27,28.29]. However, these have been specific tainedVlICMs, such as Total
Store Ordering (TSO) and Partial Store Ordering (P$SO) \M&.are in the process of
developing a model checker, McSPIN [9], that can handle iplalMCMs [1/2,3,5].
McSPIN can take an MCM as an input with a program to be verifiedas a spec-
ification language that covers various MCMs including TSSOR Relaxed Memory
Ordering (RMO), acquire and release consistency [23]jutarMCM [21], and UPC
MCM [B9]. By using McSPIN, we can easily model checfoeedprogram undevari-
ousMCMs.

However, software model checkingfiers from thestate explosion problenand
relaxed MCMs even worsen this, because the reordering tfizt®ons allowed under
relaxed MCMs enormously increases the number of reachédtiess What is worse,
parameterizing model checking by MCMs, that is, to make thd@hchecker as flexible
as we can supply definitions of MCMs as an input intensifiestate explosion.

This paper explains how model checking with multiple MCMsregmses the number
of reachable states, and clarifies the reasons for statesaplspecific to model check-
ing with multiple MCMs. In addition, some optimizations gmevided that reduce state
explosion, and theirfects are demonstrated through experiments. The ideasdablein
optimizations are simple: Pruning traces, partial ordduotion, and predicate abstrac-
tion are well known to reduce state explosion in convenfiamadel checking[[17]. In
our former papeli[3], we arranged pruning traces and pantgdr reduction for model
checking with relaxed MCMs. In this paper, we arrange pra@iabstraction, and pro-
posestageswhich are integrations of states under relaxed MCMs.

Although the optimization in our earlier work have enabledification of non-toy
programs such as Dekker’s mutual exclusion algorithm {3}ais dificult to apply Mc-
SPIN to larger problems such as verifications of copyinggarols of Concurrent Copy-
ing Garbage Collection algorithms (CCGCs), due to the staptosion. In this paper,
we demonstrated the optimizations above enables McSPINgrify\targer programs;
we checked if a desirable property of CCGCs, “in a singleatrprogram, what the
program reads is what it has most recently written”, are bekdot for several CCGCs
on multiple MCMs. Though we used verifications of GCs as eXamn this paper,
safety of GC is an important issue in the field (elg.J[14,1&hd this achievement is a
positive development. To the best of our knowledge, thikésfirst model checking of
copying protocols of CCGCs with relaxed MCMs.

The rest of this paper is organized as follows: Séct. 2 dessiVicSPIN with explor-
ing the reasons for state explosion specific to model chgakith MCMs, and Secf.]3
describes the relevant optimizations we have applied infMESSect[# presents ex-
perimental results using McSPIN onfigirent CCGCs and shows th&eztiveness of
the optimizations. Sedi] 5 discusses related work, andahelgsions and directions for
future work are presented in Sedt. 6.

2 McSPIN

We first briefly review our earlier work [1/2,3] on construngia general model checking
framework with relaxed MCMs and developing and implemeatatin the following,

Reducing State Explosion for Software Model Checking wigteRed MCMs 3

we do not distinguish the framework from its implementator refer to both as Mc-
SPIN. In McSPIN, threads on computers with shared memoryaifermly regarded
as processes that have their own memories. Therefore, wealigrcall threads (in the
usual senseprocessegin McSPIN), while we refer to them as “threads” when infor-
mally explaining behavior on shared-memaory systems.

2.1 Syntax

A program is arN-tuple of sequences of instructions defined as follows:
(Instruction) i=(L AL,
(Raw Instruction) ¢ z=Movert |Loadr X |Store Xt| Jump L ift| Nop,
(Term) te=v|r|t+t|t-t|.---,
(Attributes) A:={a,...,a},

whereN is the number of processes. An instructiosa triple of a label, attributes, and
a raw instruction. A label designates an instruction in a program. An attribute A
denotes an additional label for a raw instruction, has fiieceitself, and are used to
describe constraints specified by an MCM.

Herer is variable local to a process amdly, ..., are shared variables. The raw
instructionMovert denotes the assignment of an evaluated value of atte&raprocess-
local variabler, which does notfdiect other processes. The tesmmlenotes an immediate
value. The termgy + t1,tp — t1,..., denote standard arithmetic expressidsmd r X
represents loadingfrom its own memory and assigning its value t§torext denotes
storing an evaluated value tifo x on its own memoryJumpl ift denotes a conditional
jump toL depending on the evaluated valuet.dfiote that contains no shared values;
to jump toL depending orx, it is necessary to perforiroadr x in advanceNop denotes
the usual no-operation.

Careful readers may wonder why no synchronization indoostsuch asnemory
fenceandcompare-and-swajmstructions appear. In McSPIN, a memory fence is rep-
resented as Hop with attribute fence, and its éfect is defined at each input MCM,
that is, multiple types of fences can be defined. This fleitypinables verification of a
fixedprogram withdifferentMCMs as explained in more detail in S€c.]2.3. Compare-
and-swap (usually an instruction on a computer architegtisr also represented by
compound statements, which can be seen in Appénldix A.

Programs (inputs to McSPIN) have to be written in the assesike modeling
language. Such low-level languages are suitable for hagiCMs that require one to
carefully take into accountfiects on specific computer architectures. However, these
languages may not be practical for writing programs. McSR&N a C-like modeling
language to facilitate programming, but this is beyond ttape of the present paper.

2.2 Semantics

McSPIN adopts trace semantics with states. Executiondrame sequences opera-
tions defined as follows:

(Operation) 0:= Feé pil Isé pil Ex(j] pifv] Re(j] [p=plitv.

4 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KouMatsumoto

One key point in handling fierent MCMs is to consider at most four kinds of opera-
tions for an instruction. For any instruction, its fetch dassue operations are consid-
ered. Load and store instructions have execution opesatftore instructions have re-
flect operations. Anféect of each operation is formally defined in our former pabgr [
In this paper, we roughly explain why such operations amthtced.

Under very relaxed MCMs such as+& [23] and UPC MCM [[39], distinct threads
can exhibit diferent program behaviors; that is, each thread has its ovaugéga trace.
To represent these in one trace, we add a process idemwtifdanoting an observer
process as a subscript of an operation. In addition, McSRHNhandle programs with
loops. To distinguish multiple operations correspondmgr instruction, an operation
has a branch countéithat designates thgh iteration within a loop.

We explain the four kinds of operations by examﬁleé p i denotes fetching an
instructioni from a proces9, which enables the issuance ioBy default, this also
increments the program counter pff i's raw instruction is nofump. If so, the pro-
gram counter is not changed and will be changed whertimg is issued. McSPIN
is equipped with éranch predictiormode that can be switched on df.dn branch
prediction mode, the program counter is non-determirysticcremented or set th
whenJump L iftis fetched. Thus, in order to handle branch predictionhféts to be
distinguished from issue.

Although branch prediction is often ignored in specificati@f MCMs, note that
no branch prediction implicitly prohibits some kinds of rderings across conditionals.
For example, no branch prediction on the process-modeMig&PIN adopts cannot
perform the so-calledut-of-thin-air read [30] in the program in Table 17.6 of Java
language specification [32], althoutgrgal executions under Java MCM are specified
by not using dotal order of operations on such process-model but consisteztayelen
partial orders of operations on threads.

OperationIsé p i denotes the issuing of an instructibto a proces. Effects that
complete inside the register gn(not p's own memory) are performed. For example,
while issuingMove r t indicates assignment of an evaluated valugé tofr, Store x t
implies evaluation of only. In branch prediction mode, a predicted executionetiac
fetchingJump is checked.

OperatiorExé4 pifv denotes execution of an instructibon a procesg. Effects that
complete inside are performed. For example, while the executiohadd r x means
thatv is loaded fromx (at locationf) and assigned to, Store X t represents storing
an evaluated valueof t to x (at locationt) in p's own memory. While an instruction
is issued, its (intra-processifect may not have occur yet. Itanium MCM allows such
situation, by distinguishing issues from executions ofringions.

OperationRe}4 [pPo= p1] i £ v denotes reflects of an instructiorirom processpg
to p1. The reflect ofStore x t means storing an evaluated valuef t to x at £ in
p1's own memory. While a store instruction is executed, thaitéseffect is reflected
to its store bifer, its (inter-process)fiect may not be reflected to other processes yet.
One reflect may be immediately passed, and another reflecbendglayed. Moreover,
processes can observe distinct views a.tha.IRIW tes{11]. Our definition covers
such situations.

Reducing State Explosion for Software Model Checking wigteRed MCMs 5

While the distinction enables delicate handlirffpets of instructions, it intensifies
state explosion since the number of interleavings of op@raincreases.

To handle more relaxed MCMs, it is also necessary to distéfgonultiple opera-
tions that are generated from an instruction in a loop staténmvhereas this is unnec-
essary when queues can be used to handle specific MCMs su@aarid PSO. For
example, in a codeStorexry; Movergrg + 1; JumpO if 1) || Loadrg X, the second fetch
of theStore on the former process may follow the fetch of thead on the latter pro-
cess, while the first fetch of tttore on the former process may precede it. To the best
of our knowledge, no existing method can handle such lowtpmps (across which
instructions may be reordered) in a detailed fashion, wisictecessary for verification
of CCGCs.

2.3 Formalized Memory Consistency Models

MCMs are sets of constraints that control program behaviotke very relaxed seman-
tics that McSPIN adopts and are formally defined as a firsemiaimula as follows:

Pu=Xe =X [Xe <X [m@ 9D ¢ | VX (X)),

wherer denotes one of Variable, Location, Label, Value, InstactiRaw Instruction,
Attribute, Branch Counter, and Operation. Hergepresents metavariables in the syn-
tax of MCSPIN. For example ocation < X ocation &N b€ read as < £’. In addition,<
with respect to Operation identifies the order of executietnieen operations. We use
standard notation such as v, and3 and assign higher precedence+to, v, and>.
Example constraints can be seenliin[1,2,3], and Itanium &@d MCMs are fully
formalized in their journal version[5]. Here we focus onytwo. In Sect 211, we stated
that the &ect of a memory fence can be flexibly defined by an input MCM. Amoey
fence forces evaluation of all the reflects of store instamstthat are fetched before the

memory fence. This is represented as follows:
Feé"] ip < Fe(jf P (Ll, A, Nop)) Reé" [p=> po] io oo < :[S,_%1 P (Ll, Aq, Nop) ,

wherefence € Ay, ig’s raw instruction isStore, and all free variables are universally
quantified. Meanwhile, we can consider another operatianftrces.oad only:

Fe(jf P io < Feél] (Ll, Aq, Nop) D EXéO P io fovg < :[S,_%1 P (L]_, Aq, Nop) ,

wherefence € A; andig’s raw instruction id.oad.

One constraint that fierentiates TSO from PSO withultiple-copy-atomicit{36],
which prohibits two threads from observingt@érent behaviors of write operations that
the two threads do not perform, is whether reflects of stasturtions aratomically
performedn program order This can be represented as follows:

Fegf p ip < Fe(jf p i1 D Regf [pﬁ po] iofovg < Re(jf [pﬂ pl] i1 6101,

whereig’'s andi;’s raw instructions ar§tore instructions. This constraint causagery
reflect ofi; to await completion oéll reflects ofig. Full constraints of TSO, PSO, and
other relaxed MCMs are formalized in McSPIN’s public repasi [9].

6 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KouMatsumoto

2.4 Translation into PROMELA

McSPIN uses the model checker SPIN as an engine and tranglaigrams written
in our modeling language into PROMELA, the modeling langua§ SPIN. The un-
derlying idea is quite simple. McSPIN translates sequeabiapositions of statements
io;i1; ... written in our modeling language into PROMELA loop stateitsess follows:

do

:: (guardgpp) -> (operation of Fe of ip); (epilogueqgp);

:: (guardgp;) -> (operation of Is of ip); (epilogueq;);

:: (guardgyy) -> (operation of Ex of ip); (epilogueqyz);

:: (guardps) -> (operation of Re of ip to pp); (epiloguegs);

:: (guardg(n-1)+3) -> (operation of Re of ip to pn-1); (epiloguegn-1)+3);
: (guard;p) -> (operation of Fe of i;); (epilogue;q);

:: else -> break;
od;

A PROMELA loop statement has multiple clauses with guarde 6f those clauses
whose guards are satisfied is non-deterministicly chosdrpeocessed. Laetlock be
a time counter. Each clause corresponds to performing aatipe as follows:

end_0==0 -> 0; end_oO=clock; clock++;

where the positiveness ehd_o denotes thab has already performed.

Although such a PROMELA code may admit very relaxed behatiat does not
satisfy an input MCM, McSPIN appropriately removes suchcekien traces. Asser-
tions can be written not only at the end of a program, but alsmg place within. This
is important for CCGC verification, because we would likedofirm data consistency
at a certain place and moment. McSPIN modifies assertioanstaits to follow the
input MCM. Lety be an assertion that we wish to verify. McSPIN adds (forneal)z
constraints that an input MCM obligatesgas a conjunct. For example, the constraint
that diferentiates TSO and PSO, as explained in $edt. 2.3, is ttadstao

| (end_{Fel pig}<end_{Fel pi;}) | |end_{Rel [p= polic fovo}<end_{Rel! [p=>py]isf1v1}

and added to the assertignas a conjunct, wheré and | | represent negation and
disjunction in PROMELA, respectively. Thus, executiorctra that violate the MCM
are removed when assertions are checked.

3 Optimizations

Here we provide MCM-sensitive optimization techniquesiduce the problem specific
to model checking with multiple MCMs. The optimizations desed in Sect$. 311 and
[3:2 were introduced in [3]; we briefly review them here in artle make it easy to
understand an optimization introduced in Secil 3.3.

Reducing State Explosion for Software Model Checking wigteRed MCMs 7

3.1 Enhanced Guards: Pruning Inadmissible Execution Trace

As explained in Sedf. 2.4, McSPIN explores all executiooasaand removes traces that
are inadmissible under an input MCM in checking assertidhss is obviously redun-
dant. A straightforward method to prune inadmissible ekeouraces is to enhance
guards for clauses corresponding to operations. A guardighaniformly generated
asend_o0==0 from an operatioro in Sect[2.# is enhanced by an input MCM (details
are provided in[[B]). We explain this using the constrairattifferentiates TSO and
PSO, as set out in SeCi. P.3. The constraint claims thatfltte ofi; must wait for all
reflects ofip, whereip precede$; in program order. McSPIN adds a condition

I (end_{Fel pip}<end_{Fel' pi1})||end_{Rel [p=> po] io Lo vo}>0

corresponding to this claim to the guard of the refledt of

3.2 Defining Predicates: Promoting Partial Order Reduction

As explained in Secf._ 2.4, it is necessary to judge whethexanution trace is admis-
sible to a given MCM. This means that it is also necessaryrteeraber orders between
operations in the execution trace. The most straightfawaethod is to use a time
counter; that is, to substitute a variakeled o (defined at each operation) with the time
at which operatiomm was performed. However, time counters are too concretalioee
state explosion. For example, consider four operatmn®,, 02, 03 under the con-
straintog < 0; D 0, < 0s. If times are substituted for the variablesd_ oy (0 < k < 4,
then the number of combinatioend_0g, end_0;, end_0,, end_03) is 24 (=4!), which
distinguishes states more concretely than the constieijiires.

When considering the constraint rule, itfisces to remember the order of and
01 and ofo, and oz, because nothing else is used to define the constraint. \\e int
duce new variablesrd_0y_0; andord_o0,_03, and call thendefining predicatesf the
constraint or, formally, atomic formulas consisting of {@dicate symbok (or <)
between operations that occur in the constraint. Becawseéefining predicates pre-
serve the order of times at which the operations are perfdyme changend ok to
boolean variables that denote whether the operation haspgeréormed. After all the
operations have been performed (thatisd_ox = 1 (0 < k < 4)), the possible states
are(ord_0g_0;, ord_0,_03) = {{0, 0,0, 1), (1, 1)}, of cardinality 3.

3.3 Stage: Abstracting Programs by MCM-Deriving Predicates

Predicate abstraction [117] is one promising method to redate explosion in model
checking. In this subsection, we show that predicates thastare determined by an in-
put MCM. Such predicates integrate states that do not have separated with respect
to an input MCM. Therefore, the predicate abstractions Imavemission of checking.
To handle the £ects of instructions more delicately, McSPIN has at most kinds
of operationsFe, Is, Ex, andRe for one instruction. However, some MCMs do not
require complete distinction. Assume that an input MCM Hlmctonstraint[sé pi<
0> Exé pify v < 0as calledntegrationin [2]3], which indicates that no operation
can interleave two operatiorlsa pi andExg4 pi ¢y v1. In an earlier version, McSPIN

8 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KouMatsumoto

generated clauses that had guards Waiting:ﬁérp if101 WhenIsé piwas performed.
Such guards control program behaviors in accordance withpart MCM.

In this paper, we promote integration to state level rathanexecution-trace level.
In earlier versions, McSPIN generated one clause at eactatipe that is, at most
3+ N, the cardinality offFe, Is,Ex} U{Re k|0 < k < N}, clauses at each instruction,
whereN is again the number of processes, &k denotes a reflect tk. In the cur-
rent version, McSPIN can accept additional inptéges S= {%, Si,. .., Su-1} for an
input MCM. Formally, stages are partitions {ofe, Is,Ex} U{Rek | 0 < k < N}. We
write fs for the induced mapping from the stages. McSPIN geneitekuses at each
instructioni, whereM is the number of stages oés follows:

do
1 (guardsgfg(sp)) -> (operation of fs(sp) of ip); (epilogueqig(s)) s
11 (guardsgsg(s;)) -> (operation of fs(s)) of ig); (epilogueqig(s;));

11 (guardsgfg(sy)) -> (operation of fs(Sw-1) of ig to Pn-1); (epiloguegig(sy 1))

:: else -> break;
od;

This optimized translation reduces checking space and. iBydoading such a
PROMELA code, SPIN remembers not unintegrated states tieassbut stages. This
implies that state-vector on SPIN is kept small. Memory it tierefore, consumed so
much. This optimization also saves time to check whethersela are executable since
the number of clauses is smaller.

Let us see example stages for TSO and PSO with nelitearch predictionnor
multiple-copy-atomicity36], which prohibits two threads from observindgtdrent be-
haviors of write operations that the two threads do not perf&ince these MCMs al-
low Loads to overtake (inter-processfects ofStores, each member ¢Rek | 0 < k <
N} has to be separated frobx. HoweverFe, Is, andEx do not have to be separated.
Also, Re k does not have to be distinguished fr&a k' (K # k) by multiple-copy-
atomicity. We can therefore introduce the following stages

Fe, Is,Ex} if s=g

~)
S =% 1} fs(s)_{{Rek|Osk<N} ifs=s .

Given a stages (and its mappind's), McSPIN automatically returns PROMELA
code in which clauses are integrated; in particular, guandsepilogues are appropri-
ately generated from an input MCM.

4 Experiments

In this section, we demonstrate thiéeets of CPU: Intel Xeon E5-2670 2.6GHiz
the optimizations introduced in Sei. 3. The |Memory: DDR3-1066 1.5TB
figure to the right shows our experimental [SPIN: 6.4.5

environment, with ample memory. GCC: 5.3.0
The optimizations described in Se¢is]3.1 3.2 have edaslification of relatively

large programs such as Dekker’s algorithin [3]. Here we destnate that the optimiza-
tion described in Sedi._3.3 enables verification of genyileebe programs.

Reducing State Explosion for Software Model Checking wigteRed MCMs 9

4.1 Experimental Setting

We chose CCGCs as examples of large programs. In this sidisese briefly explain
the CCGCs we used.

Garbage collection (GC) is a basic service of modern prograng languages. Its
role is to find garbage, that is, data objects that are no loingese by the application,
and to reclaim the memory that those objects occupy. Coggid@ccomplishes this by
copying live objects, i.e., those that may be used in theréytw a separate space and
then releasing the old space that contains the copied stgect garbage. Concurrent
GC, as the name suggests, runs concurrently with the afipicaVhat is dificult
in designing CCGC algorithms is that the garbage colle¢ttmad and an application
thread may race; the application thread may change the dsndé an object that is
being copied by the garbage collector. This may be the casewith an single thread
application. Because an application thread changes, atewjtthe object, we call it a
mutator. If a mutator writes to the object that is being copied, thikector may copy
a stale value, which means that the latest value gets losbugacopying protocols
have been proposed to provide application programmersre@sonable MCMs, all of
which require the mutators to do some work on every reaad barrier) or write (write
barrier) operation or both, in which the mutator synchronizes whith ¢ollector.

Because such barriers incur overhead for every read or opiteation, one goal of
CCGC algorithms is to design barriers that are as lightweaghpossible. Thus, syn-
chronizations such as compare-and-swap should be mirdmi¥éh relaxed MCMs,
memory barriers should also be minimized. Unfortunatedg $ynchronizations re-
quired for safety depend on the given MCM; it is often the cidwse those synchro-
nizations that are redundant for one MCM are mandatory fottear.

Model. We experimentally checked the safety of concurrent coppimmjocols,in a
single thread program, what the mutator reads is what it hastrecently writtenThis
property is expected to be held in any reasonable MCMs sutheasappens-before
consistency of Java [32]. The complete McSPIN models fockimg this property can
be found in Appendix or the McSPIN public repositdry [9]. idewe briefly explain the
model.

In our model checking, we made some assumptions. We assuah¢htre is a
single mutator thread, i.e., the application is a singledadrprogram. Remark that even
if there is a single mutator thread, there is another thribedgollector thread, and they
may race. We also assume that there is only a single objdtivgingle integer slot in
the heap.

The mutator has a pointer to the object and repeatedly readsdnd write to the
object through the pointer. On write operations, it remeraktige value it wrote.On read
operations, it checks if the read value is equal to the vdllssily wrote. Meanwhile,
the collector copies the object following to the copyingtpowml of each algorithm.
Once it successfully copied, the collector rewrites theatarts pointer to the object so
that the pointer points at the copy.

To cooperate with the collector, the mutator uses the readvaiie barriers re-
quired by the copying protocol on its read and write operetid-or some algorithms,
the mutator also performs so called the checkpoint oper&igtween object accessing

10 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kaislétsumoto

operations, where the mutator polls and answers collecteguests. Some collectors
request the mutator to answer the handshake by settingraygator handshake request
flag. The checkpoint operation clears the flag to let the ctdleknow the mutator has
observed the flag set. In TSO, if a mutator observes the flagt,igb stores preceding
the store setting the flag are guaranteed to be visible to thator.

We created McSPIN models for each CCGC algorithms we desbedow. In the
models, the mutator has an infinite loop, where it reads desence per an iteration.
It also performs a checkpoint operation before and afteh eaad or write. Thus, the
supremum of loop iterations on the mutator limits the nundfemutator’s memory
accesses.

GC Algorithm In this paper, we checked three GC algorithms: Chicken [S#¢c-
cato [31] and Stopless [33]. The details of these algoritbamsbe found in their papers.
Here, we briefly explain their features.

Chicken and Staccato were basically the same algorithmgtihdioey are devel-
oped independently. The onlyftirence is their target MCMs; Chicken is designed
for the MCMs of Intel CPU such as IA64 [22], while Staccato’aimtarget seems to
be POWER MCM|[20]. These algorithms use compare-and-swagatipns to resolve
races between the collector and a mutator. In the 1A64 MCM,abmpare-and-swap
is usually realized by the instruction sequedoek cmpxchg. This sequence implies
memory fences. As for POWER MCM, the manuall[20] shows a sarnmpblementa-
tion of the compare-and-swap operation that does not imgyory fences.

Stopless is a dlierent algorithm from those two. It uses compare-and-swapsep
tions that implies memory fence excessively, hence chasfoemrdering are fewer.

4.2 Hfect of Optimization

In this subsection, we reveal thBectness of thetageoptimization described in SeEt. 8.3.
We verified the models created in Séctl4.1 by using McSPIN aiiid without the op-
timization. We fixed the supremum of iteration on the cotbed¢d 1 and varied that on
the mutator from 1 to 2.

Tab.[1 shows the results of the verification. Note that any MEDA code pro-
duced by McSPIN consumed around 170 MB of memory as constarhead. As
Tab[1 shows, the amounts of memory consumed and elapsexldimmgreatly reduced
in all algorithms compared with those without the optimiaat In particular, when the
supremum of loop iterations on the mutator was set to 2, MdS®ihout the optimiza-
tion often required around 1 TB of memory, which is far frorasenable. However, a
single iteration could not detect any error even for the @flgms that actually work
incorrectly with PSO, i.e., Chicken and Stopless.

Tab[1 also suggests that the more instructions the modettiachore &ective the
stage optimization was. For example, in Chicken and Stacwéh a single iteration,
the net memory consumption was reduced to 3.9-8.8 %, whil8{dpless, it was re-
duced to 3.3 and 4.4 %. This is because the stage optimizatituted the number of
units that are subject to reordering, or clauses of the dp-io the PROMELA code.

To the best of our knowledge, this is the first model checkihthese algorithms
with PSO, due to the optimizations given in this paper.

Reducing State Explosion for Software Model Checking wigteRed MCMs 11

Table 1. Effects of optimization: In TSO, a compare-and-swap instoncimplies memory
fences. In PSO, it does not. Columns labeled with “col.” amdit.” list the number of instructions
of the collector and the mutator, respectively. Column ledbevith “loop” lists the supremum of
loop iterations on the mutator. For verification either wathwithout stages, the first column
shows the resultsy means no error was found asdmeans a violation was found. The follow-
ing columns are the number of state transitions, the amdumemory consumed, and elapsed
times for verification, respectively. Columns labeled witem. ratio” and “time ratio” list the
ratios of memory and time consumption for verification wittthout stages. The column labeled
with “net mem. ratio” lists those that do not count constargrbead.

without stages with stages mem|net memf{time|

MCM |algorithmcol.\mut.{loop| | statd memony time| [statgmemory time| ratio| ratio| ratio|
‘ (K)ET (MB)SW (sec. (K)j (MBﬂ(sec. (%))| (%)

. 1[/] 108 8599 132v| 23] 908 8| 10.§ 8.8 6.2
chicken | 24| 4251715500 546,039 8,637 534 24,960 433 4.6 7550
TSO | 1v] 141 14,914 236/] 26| 1,034 11 6.9 58 4.7
staccato| 32| 46—51713,8891,007,49116,0227| 733 43,434 735 4.0 3.9 46

I[V[90| 28,189 378v| 14| 1,404 19 50 7450

stopless | 33| 87—/ 564 564,635 7,7097| 87| 18,889 585 3.3 33 76

. 1[/| 308 25,204 430v| 65 1,654 28 6.6 5.9 6.6
chicken | 24\ 42511113 264,857 4,248 x| 237 12,190 227 4.6 7553
PSO 1 1[/] 143 15168 243/] 26/ 1,034 11 68 5.7 4.7
staccato | 32| 46— 714,0201,144,60216,0787] 751 44,020 768 3.9 3.9 4.5

I[V| 177 55210 833v| 30| 2,520 46| 4.6 7355

stopless | 33| 87— 45 4541 630 x| 8| 2,149 41 4.7 7.4 66

Table 2. Variants of Staccato

TSO PSO
algorithm |col.|mut.|loop[[statgmemory] time| [statgmemory time
K| vB)|sec) |)| B)|(sec.

| 1|/ 26] 1,034 13|/ 26 1,037 11

staccato | 32| 46— /1733 43,434 735/] 751 44,020 768
1] 25 908 10[/| 25 1,032 10

staccatopso| 31| 44— 717197 38,721 637]/] 755 40,953 703
17/ 28] 1,034 11|/| 35 1,156 14

staccatdoug| 30| 44— 71819 43,184 726 x| 235 12,810 217

4.3 Reducing Memory Fences of Staccato

Because Staccato is designed for the relaxed MCM of POWERe snemory fences
are redundant on a stricter MCM. Thus, we designed and \e#fieariant of Staccato
for a PSO MCM with a compare-and-swap that does not imply ngrfences. In
addition, we created an incorrect variant that lacks mamglé&nces for the PSO MCM.
These variants are labeledaccato_pso andstaccato_bug.

The result of verification is shown in TdH. 2. The verificatisonducted with the
stage optimization. The result staccato_bug shows that McSPIN detected an error
if we reduced fences too much.

The variants of Staccato demonstrate the usefulness of McS¥hen we modify
a GC algorithm for a machine with some MCM that isfeient from the one that the
GC is originally designed for, we add or remove some syndbations. However, the
modified model often lacks synchronizations. McSPIN caredesuch errors in the
variant with a reasonable memory consumption. This enaitsés check the GC when
we are performing modifications.

12 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kaislétsumoto

active proctype main() { proctype mem() {

run mem(); endmemn:

run proc0Q); do

e ::atomic{COMMIT_WRITE(queue_proc®);}
} ::atomic{COMMIT_WRITE(queue_procl);}
proctype proc®() { e

WRITE(x0,0); od;

WRITE(x1,1);
} inline WRITE (var,val) {...}

inline COMMIT_WRITE (queue) {...}

Fig. 1. Hand-written code
Table 3. Comparison between McSPIN and hand-coding

TSO PSO
McSPIN hand-written McSPIN hand-written
statgmemory| time| statgmemory time| statgmemory| time| statdmemony time
(MB)|(sec. (MB)|(sec. (MB)| (sec. (MB)|(sec.

25 0.00§ 0.0 19| 0.004 0.01 25/ 0.00§ 0.02 19| 0.003 0.01
52| 0.017 0.02 60/ 0.009 0.00 65/ 0.021 0.02 79| 0.017 0.01
116/ 0.053 0.02 149 0.029 0.00 2411 0.11J 0.05 337 0.095 0.01]
241 0.153 0.04 313 0.064 0.02 977 0.619 0.200 1,405 0.504 0.02
457] 0.391] 0.08 585 0.143 0.01] 3,985 3.40§ 0.98 5,749 2.50(0 0.07|
800, 0.897) 0.181,004 0.274 0.01] 16,145 18.107 6.13 23,269 11.894 0.31]]
1,312 1.882 0.351,61§ 0.493 0.01] 65,041 93.290 34.0§ 93,637 54.294 1.66
2,041 3.659 0.612,469 0.829 0.02261,137468.199171.10375,689246.497 8.28

[N U] B W] N =

4.4 McSPIN vs. Hand-Coding

In this subsection, we compare PROMELA codes generated HyRii¢ with codes
written by hand and confirm how close McSPIN is to an ideal enpntation.

Whereas McSPIN generates uniform PROMELA codes that conaiiables to
remember orders between operations, etc., to suppdeteint MCMs, some variables
are essentially unnecessary for verifications specific t® 88d PSO. Because TSO
never reorders store instructions, queues (for all shaseidhbles) at each thread to
buffer effects of write instructions dfice for verifications under TSO as shown in [Elg. 1.
The twoWRITES put(x0, 0) and(x1, 1) into the queue in order. Reflects from the queue
to shared memory are performed 6QMMIT WRITES on a processem. We omit the
implementation details. For PSO, one queuesathshared variable is enough to reorder
the dfects of write instructions to distinct shared variables.

Tab.[3 compares PROMELA codes generated by McSPIN with thoigten by
hand where the constant overhead is removed. The progransiaple, consisting of
multiple store instructions (without loops). Verified pesfies are fixed to be true. Each
column is similar to Tali.]1. The digits in the names of the sadienote the number of
store instructions at each thread, respectively. The numbgtates almost coincides.
Slight differences appear to derive from the current implementati@PoRN, because
we observe that SPIN returns fewer states for a PROMELA catteanoop statement
and control variables (such as code generated by McSPIM)ahather PROMELA
code with a sequential composition of statements (like hartien code). However,
we have not investigated this in detail.

McSPIN consumes more memory and time. This is a result ofiles ®f the state
vectors and is inevitable, because McSPIN defines moreblasito determine program
structures than hand-written codes, as explained in thimhieg of this subsection.

Reducing State Explosion for Software Model Checking wigteRed MCMs 13

5 Related Work

There exists no work, which is directly compared with our kyaf model checking to
take multiple MCMs in a uniform way. Therefore, we can find nark/for its optimiza-
tion has been studied.

Jonsson’s seminal work discovered the potential of SPINofogram translation
toward model checking with relaxed MCMs_|24]. However, haldonot conduct a
large number of experiments, because his program tramshatis not completely auto
matic and optimized. This paper has addressed the problernie left open. McSPIN
supports various MCMs and takes an MCM as an input, and itgraro translation is
automatic. McSPIN is greatly optimized and enables vetificaof larger concurrent
algorithms such as copying protocols of CCGCs.

Linden et al. [27,28,29] tackled the state explosion pnwble representing store
buffers as automata. However, they handled relatively strietxeel MCMs such as
TSO and PSO, unlike McSPIN. It is an open issue to extend thpiesentation so as
to handle more relaxed MCMs and apply it to McSPIN.

Modex [19], a model extractor of SPIN that is guided by a wd&fined test-harness,
translates C codes into PROMELA codes. However, Modex iemoelaxed MCMs.
Although revising Modex so as to handle relaxed MCMs is suosle approach, we
have developed McSPIN in order to show the potential of m@ogtranslation toward
model checking with relaxed MCMs with no restriction dedvieom the existing tool.

Travkin et al.[40] developed a similar tool that translgiesgrams into PROMELA
codes and uses SPIN as the engine for model checking, denamasterifications of
linearizability of concurrent algorithms under TSO, andrpied to tackle PSO. How-
ever, their translator, which generates codes that aréesitnihand-written PROMELA
code as introduced in SeEi. #.4, cannot be immediately eghjpdi relaxed MCMs be-
yond PSO. Unlike their approach, ours supports relaxed MGyAgrtue of construct-
ing a base that allows such relaxed behaviors and then d&liG&ss as constraints on
the base. Although an issue of our approach is addressirgjdteeexplosion problem,
this paper has presented optimizations for the problem.

Dan et al.[[13] reported high utility of predicate abstrant in model checking with
relaxed MCMs by verifying some programs with predicate iesions under TSO and
PSO. They proposed the notion of prediettapolationto abstract a boolean program
for an input program. Although the stages introduced in plaiger can be regarded as
predicate abstractions, there is #@elience in usage: McSPIN considers at most four
kinds of multiple states at one instruction to support vagsiMCMs beyond TS@®SO.
Although it is necessary to handle the worst case under trst rataxed MCM, this is
not always the case. Stages are states that are integrapeeidiyates that are uniformly
generated by an input MCM. Therefore, abstractions by tleeipates never leak out
of checking. Dan et al.’s technique of extrapolating pratis seems to be compatible
with stages, and its combination with stages is an open.issue

Theorem proving in program logic is also one promising apphato program ver-
ification with relaxed MCMs|[35,15,414,6]. Formal verifimams of GC algorithms
with relaxed MCMs using theorem provers have recently aggued 6]. However, fully
automated verification by model checking is usually prdflrdo manual (or semi-
automatic) construction of proofs in theorem proving.

14 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kaislétsumoto

6 Conclusion and Future Work

We have explained the reasons for the state explosion pnapecific to model check-
ing with multiple MCMs, presented optimizations modifiedrfr pruning execution
traces, partial order reduction, and predicate abstmactiod applied them to McSPIN,
our model checker with MCMs. We have also shown tfieativeness of the optimiza-
tions through experiments of verifications of copying poais of CCGCs, which are
larger programs.

There are four future directions for this work. Although werified copying pro-
tocols of CCGCs as examples of large programs in this papeerification of GC
algorithm is itself subject of our interest. Our future wadrcludes verifications of
wide range of GC algorithms and other properties such asfregtiom for Chicken,
which the authors designed as a wait-free CCGC [34]. Thesfcations may require
more complicated settings including pointers amdnultiple mutators, which need still
larger models. The second is to show a verification of comeurcopying protocols
with MCMs that are more relaxed than PSO. An advantage of M¢$#its ability to
support various MCMs. The third is to show more realisticdienark programs, e.g.,
SV-COMP benchmarks [38]. The fourth is further optimizatiaf McSPIN to verify
even larger programs.

Acknowledgmentd he authors thank the anonymous reviewers for several corisme
to improve the final version of the paper. This research yparted computational re-
sources under Collaborative Research Program for Yourengsits provided by Aca-
demic Center for Computing and Media Studies, Kyoto Uni¢grghis work was sup-
ported by JSPS KAKENHI Grant Numbers 25871113, 25330080 16#21335.

References

1. Abe, T., Maeda, T.: Model checking with user-definable mgntonsistency models. In:
Proc. of PGAS, short paper. (2013) 225-230

2. Abe, T., Maeda, T.: A general model checking frameworkvemious memory consistency
models. In: Proc. of HIPS. (2014) 332-341

3. Abe, T., Maeda, T.: Optimization of a general model chegramework for various mem-
ory consistency models. In: Proc. of PGAS. (2014)

4. Abe, T., Maeda, T.: Concurrent program logic for relaxesimory consistency models with
dependencies across loop iterations. Journal of Infoon&rocessing (2016) To appear.

5. Abe, T., Maeda, T.: A general model checking frameworkvemious memory consistency
models. International Journal on Software Tools for Tetbgy Transfer (2016) To appear.

6. Abe, T., Maeda, T.: Observation-based concurrent prodogic for relaxed memory con-
sistency models. In: Proc. of APLAS. (2016) To appear.

7. Abe, T., Maeda, T., Sato, M.: Model checking with user+tiflie abstraction for partitioned
global address space languages. In: Proc. of PGAS. (2012)

8. Abe, T., Maeda, T., Sato, M.: Model checking stencil cotafians written in a partitioned
global address space language. In: Proc. of HIPS. (2013)338b

9. Abe, T., Maeda, T., Ugawa, T.: McSPIhlttps://bitbucket.org/abet/mcspin/.

10. Adve, S., Gharachorloo, K.: Shared memory consistenagiets: a tutorial. Computer

29(12) (1996) 6676

https://bitbucket.org/abet/mcspin/

11.
12.
13.
14.
15.
16.
17.

18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
20.
30.
31.

32.
33.

34.

35.
36.

37.
. SV-COMP: Competition on Software Verificatidrttps: //sv-comp.sosy-1lab.org/.
39.
40.

41.

Reducing State Explosion for Software Model Checking wigteRed MCMs 15

Boehm, H.J., Adve, S.V.: Foundations of the4Cconcurrency memory model. In: Proc. of
PLDI. (2008) 68—78

Cavada, R., Cimatti, A., Jochim, C.A., Olivetti, G.K.Pistore, M., Roveri, M., Tchaltsev,
A.: NuSMV User Manual. 2.5 edn. (2002)

Dan, A., Meshman, Y., Vechev, M., Yahay, E.: Predicat&graltion for relaxed memory
models. In: Proc. of SAS. (2013) 84-104

Doligez, D., Gonthier, G.: Portable, unobtrusive ggebeollection for multiprocessor sys-
tems. In: Proc. of POPL. (1994) 70-83

Ferreira, R., Feng, X., Shao, Z.: Parameterized memaxels and concurrent separation
logic. In: Proc. of ESOP. (2010) 267-286

Gammie, P., Hosking, T., Engelhardt, K.: Relaxing safeérified on-the-fly garbage col-
lection for x86-TSO. In: Proc. of PLDI. (2015) 99-109

Graf, S., Saidi, H.: Construction of abstract state lgsapith PVS. In: Proc. of CAV. (1997)
72-83

Holzmann, G.J.: The SPIN Model Checker. Addison-We&é93)

Holzmann, G.J., Smith, M.H.: An automated verificatioatinod for distributed systems
software based on model extraction. IEEE Trans. Softwage2B() (2002) 364-377

IBM: PowerPC Architechture Book, Version 2.02. (2005)

Intel: A Formal Specification of Intel Itanium ProcesBamily Memory Ordering. (2002)
Intel: Intel 64 and IA-32 Architectures Software Dey@ds Manual. (2016)

ISQIEC 14882:2011: Programming Language+ (2011)

Jonsson, B.: State-space exploration for concurrgotighms under weak memory order-
ings: (preliminary version). SIGARCH Computer ArchitectiNews36(5) (2008) 65-71
Kroening, D., Tautschnig, M.: CBMC - C bounded model &leec (competition contribu-
tion). In: Proc. of TACAS. Volume 8413 of LNCS. (2014) 389439

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Yiegtion of probabilistic real-time
systems. In: Proc. of CAV. Volume 6806 of LNCS. (2011) 585t59

Linden, A., Wolper, P.: An automata-based symbolic apph for verifying programs on
relaxed memory models. In: Proc. of SPIN. Volume 6349 of LN2810) 212-226

Linden, A., Wolper, P.: A verification-based approacim@mory fence insertion in relaxed
memory systems. In: Proc. of SPIN. Volume 6823 of LNCS. (2au4-160

Linden, A., Wolper, P.: A verification-based approachmtemory fence insertion in PSO
memory systems. In: Proc. of TACAS. Volume 7795 of LNCS. @0339-353

Manson, J., Pugh, W., Adve, S.V.: The Java memory model.Pioc. of POPL. (2005)
378-391

McCloskey, B., Bacon, D.F., Cheng, P., Grove, D.: Stacdaparallel and concurrent real-
time compacting garbage collector for multiprocessorgpdReRC24504, IBM (2008)
Oracle: The Java Language Specification. Java SE 8reditiin. (2015)

Pizlo, F., Frampton, D., Petrank, E., Steensgaard, Bpl&ss: a real-time garbage collector
for multiprocessors. In: Proc. of ISMM. (2007) 159-172

Pizlo, F., Petrank, E., Steensgaard, B.: A study of coaotireal-time garbage collectors.
In: Proc. of PLDI. (2008) 3344

Ridge, T.: A rely-guarantee proof system for x86-TSO Froc. of VSTTE. (2010) 55-70
Sarkar, S., Sewell, P., Alglave, J., Maranget, L., \Milis, D.: Understanding POWER mul-
tiprocessors. In: Proc. of PLDI. (2011) 175-186

SPARC International, Inc.: The SPARC Architecture Man\ersion 9. (1994)

The UPC Consortium: UPC Language Specifications Verki®n(2013)

Travkin, O., Mutze, A., Wehrheim, H.: SPIN as a lineakitity checker under weak memory
models. In: Proc. of Haifa Verification Conference. Volun248 of LNCS. (2013) 311-326
Vafeiadis, V., Narayan, C.: Relaxed separation logiprégram logic for C11 concurrency.
In: Proc. of OOPSLA. (2013) 867-884

https://sv-comp.sosy-lab.org/

16 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kaislétsumoto

A McSPIN Model — Compare-and-Swap

Here we show the McSPIN model of compare-and-swap instmostiwhich we used in
the models of each copying protocols of CCGCs. We made faians;CAS compare-

and-swaps a single variable, a@AlS2 does two variables at the same time, and those

that do not report if the operation succeeded or not, whosgeaahave theNORET
suffix. CAS2 is used for modeling a double-word compare-and-swap arfeelals. The
fences McSPIN_fence) appear for TSO but not for PSO.

/* compare-and-swap */
static inline CAS(int target, int old, int new, int retval) {
#pragma McSPIN attribute atomic
{
if (target == old) {
target = new;
retval = 1;
} else
retval

0;
}
}

/* two-variable compare-and-swap */
static inline CAS2(int targetl, int target2, int oldl, int old2, int newl, int new2,
int retval) {
#pragma McSPIN attribute atomic
{
if (targetl == oldl)
if (target2 == 01d2) {
targetl = newl;
target2 = new2;

retval = 1;
} else
retval = 0;
else

retval = 0;
}
}

/% compare-and-swap */
static inline CAS_NORET(int target, int old, int new) {
#pragma McSPIN attribute atomic

{

if (target == old)
target = new;

}

}

/% two-variable compare-and-swap */
static inline CAS2_NORET(int targetl, int target2, int oldl, int old2, int newl, int new2) {
#pragma McSPIN attribute atomic
{
if (targetl == oldl)
if (target2 == 01d2) {
targetl = newl;
target2 new2;

}

B McSPIN Model for Chicken

Here we show our McSPIN model for the copying protocol of Rbait

Reducing State Explosion for Software Model Checking wigteRed MCMs 17

#include "stdbool.h"
#include "atomic.h"

#define INITIAL_VALUE 0

#define FROM_OBJECT 0
#define TO_OBJECT 1

int main(Q)

/* handshake */
int hs_req;
/* heap */
int from_header_fwd, from_header_copying, from_body;
int to_body;
#define to_header_fwd TO_OBJECT
#define to_header_copying FALSE
/* mutator’s variable */
int root;

#pragma McSPIN parallel sections
{
/* collector */
#pragma McSPIN section
{
int success = 0;
while (success == 0) {
from_header_copying = TRUE;

start_handshake();
wait_for_handshake();

/* assume: to_header_copying = FALSE */
/* assume: to_header_fwd = TO_OBJECT */
to_body = from_body;

CAS2(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, TO_OBJECT, FALSE,
success) ;
}
root = from_header_fwd; /* flip */
}

/* mutator */
#pragma McSPIN section
{
int last_written = INITIAL_VALUE;
int readval;
while (true) {
#pragma McSPIN nondeterministic
{
ack_handshake() ;
}
#pragma McSPIN nondeterministic
{
last_written = 1 - last_written;
write(root, last_written);
} else {
read(root, readval);
McSPIN_assert(McSPIN_variable(last_written,1,0) == McSPIN_variable(readval,1,0));
}
#pragma McSPIN nondeterministic
{
ack_handshake() ;
}
}
}
}

18 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kaislétsumoto

}

static inline ack_handshake()
{
if (hs_req == true)
hs_req = false;

}
static inline start_handshake()
{
hs_req = true;
}

static inline wait_for_handshake()

while (hs_req != 0)

}

/* read barrier */
static inline read(int obj, int retval) {
if (obj == FROM_OBJECT) {
if (from_header_fwd == FROM_OBJECT)
retval = from_body;
else
retval = to_body;
} else {
/* assume: to_header_fwd = TO_OBJECT */
retval = to_body;
}
}

/% write barrier */
static inline write(int obj, int val) {
if (obj == FROM_OBJECT) {
if (from_header_copying == TRUE) {
CAS2_NORET(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, FROM_OBJECT, FALSE);

}
if (from_header_fwd == FROM_OBJECT)
from_body = val;
else
to_body = val;
} else {
/* assume: to_header_copying = FALSE */
/* assume: to_header_fwd = TO_OBJECT */
to_body = val;
}
}

C McSPIN Model for Staccato

Here we show our McSPIN model for the copying protocol of &tde. Two fences are
removed forstaccato_pso and another fence is omitted fetaccato_bug. They are
marked with comments in the following model.

#include "stdbool.h"
#include "atomic.h"

#define INITIAL_VALUE 0

#define FROM_OBJECT ©
#define TO_OBJECT 1

Reducing State Explosion for Software Model Checking wigteRed MCMs 19

int mainQ

/* handshake */
int hs_req;
/* heap */
int from_header_fwd, from_header_copying, from_body;
int to_body;
#define to_header_fwd TO_OBJECT
#define to_header_copying FALSE
/* mutator’s variable */
int root;

#pragma McSPIN parallel sections

/* collector */
#pragma McSPIN section

int success = 0;

while (success == 0) {
from_header_copying = TRUE;
McSPIN_fence(Q);

start_handshake(Q);
wait_for_handshake();
McSPIN_fence(); /* removed for staccato_pso and saccato_bug */

/* assume: to_header_copying = FALSE */
/* assume: to_header_fwd = TO_OBJECT */
to_body = from_body;

McSPIN_fence(); /* omitted for saccato_bug */
start_handshake(Q);
wait_for_handshake();

CAS2(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, TO_OBJECT, FALSE,
success);
}
root = from_header_fwd; /* flip */
}

/* mutator */
#pragma McSPIN section

int last_written = INITIAL_VALUE
int readval;

while (true) {
#pragma McSPIN nondeterministic

{
ack_handshake();

#pragma McSPIN nondeterministic
{
last_written = 1 - last_written
write(root, last_written);
} else {
read(root, readval);
McSPIN_assert(McSPIN_variable(last_written,1,0) == McSPIN_variable(readval,1,0));
}
#pragma McSPIN nondeterministic
{
ack_handshake() ;

20 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kaislétsumoto

static inline ack_handshake()
{
McSPIN_fence();
if (hs_req == true)
hs_req = false;
McSPIN_fence(); /* removed for staccato_pso and saccato_bug */

}
static inline start_handshake()
{
hs_req = true;
}

static inline wait_for_handshake()

while (hs_req != 0)

}

/* read barrier */
static inline read(int obj, int retval) {
if (obj == FROM_OBJECT) {
if (from_header_fwd == FROM_OBJECT)
retval = from_body;
else
retval = to_body;
} else {
/* assume: to_header_fwd = TO_OBJECT */
retval = to_body;
}
}

/% write barrier */
static inline write(int obj, int val) {
if (obj == FROM_OBJECT) {
if (from_header_copying == TRUE) {
CAS2_NORET(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, FROM_OBJECT, FALSE);

}
if (from_header_fwd == FROM_OBJECT)
from_body = val;
else
to_body = val;
} else {
/* assume: to_header_copying = FALSE */
/* assume: to_header_fwd = TO_OBJECT */
to_body = val;
}
}

D McSPIN Model for Stopless

Here we show our McSPIN model for the copying protocol of &tsg.

#include "stdbool.h"
#include "atomic.h"

/* status */

#define IN_ORIGINAL 0
#define IN_WIDE 1
#define IN_COPY 2

/* value */
#define INITIAL_VALUE 0

Reducing State Explosion for Software Model Checking wigteRed MCMs 21

/* space */

#define FROM_OBJECT 0
#define WIDE_OBJECT 1
#define TO_OBJECT 2

int mainQ

{
/* from object */
int from_fwd = FROM_OBJECT;
int from_data = INITIAL_VALUE;

/* wide object */
int wide_status = IN_ORIGINAL;
int wide_data;

/* to object */
#define to_fwd TO_OBJECT
int to_data;

/* root */
int root = FROM_OBJECT;

#pragma McSPIN parallel sections

/* collector */
#pragma McSPIN section
{
int x;
int success;

/* allocate wide object and install its forwarding pointer */
CAS_NORET(from_fwd, FROM_OBJECT, WIDE_OBJECT);
/* copy the payload to the wide object */
x = wide_data;
CAS2_NORET(wide_status, wide_data, IN_ORIGINAL, x,
IN_WIDE, from_data);
/* copy the payload to the final copy */
success = 0;
while (!success) {
x = wide_data;
to_data = x;
CAS2(wide_status, wide_data, IN_WIDE, x, IN_COPY,
X, success);
}
/* repoint to the final copy */
from_fwd = TO_OBJECT;

root = from_fwd; /* flip */
}

/* mutator */
#pragma McSPIN section
{
int last_written = INITIAL_VALUE;
int readval;
int write_tmp;
int write_success;

while (true) {
#pragma McSPIN nondeterministic
{
read(root, readval);
McSPIN_assert(McSPIN_variable(last_written,1,0) == McSPIN_variable(readval,1,0));
} else {
last_written = 1 - last_written;
write(root, last_written);
}
}

22 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kaislétsumoto

}
3
}

/% read barrier */
static inline read(int obj, int retval) {
if (obj == FROM_OBJECT) {
if (from_fwd == FROM_OBJECT)
retval = from_data;
else if (from_fwd == WIDE_OBJECT) {
if (wide_status == IN_ORIGINAL)
retval = from_data;
else if (wide_status == IN_WIDE)
retval = wide_data;
else if (wide_status == IN_COPY)
retval = to_data;
} else if (from_fwd == TO_OBJECT)
retval = to_data;
} else { /* obj == TO_OBJECT */
/* assume: to_fwd == TO_OBJECT */
retval = to_data;
}
}

/* write barrier */
static inline write(int obj, int val) {
if (obj == FROM_OBJECT) {
if (from_fwd == FROM_OBJECT)
CAS_NORET(from_fwd, FROM_OBJECT, WIDE_OBJECT);
if (from_fwd == WIDE_OBJECT) {
write_success = 0;
while(!write_success) {
if (wide_status == IN_ORIGINAL) {
write_tmp = wide_data;
CAS2(wide_data, wide_status, write_tmp, IN_ORIGINAL, val, IN_WIDE, write_success);
} else if (wide_status == IN_WIDE) {
write_tmp = wide_data;
CAS2(wide_data, wide_status, write_tmp, IN_WIDE, val, IN_WIDE, write_success);
} else if (wide_status == IN_COPY) {
to_data = val;
write_success = 1;

}

}
} else if (from_fwd == TO_OBJECT)
to_data = val;
} else { /* obj == TO_OBJECT */
/* assume: to_fwd = TO_OBJECT */
to_data = val;
}
}

	Reducing State Explosion for Software Model Checking with Relaxed Memory Consistency Models
	1 Introduction
	2 McSPIN
	2.1 Syntax
	2.2 Semantics
	2.3 Formalized Memory Consistency Models
	2.4 Translation into PROMELA

	3 Optimizations
	3.1 Enhanced Guards: Pruning Inadmissible Execution Traces
	3.2 Defining Predicates: Promoting Partial Order Reduction
	3.3 Stage: Abstracting Programs by MCM-Deriving Predicates

	4 Experiments
	4.1 Experimental Setting
	Model.
	GC Algorithm

	4.2 Effect of Optimization
	4.3 Reducing Memory Fences of Staccato
	4.4 McSPIN vs. Hand-Coding

	5 Related Work
	6 Conclusion and Future Work
	A McSPIN Model – Compare-and-Swap
	B McSPIN Model for Chicken
	C McSPIN Model for Staccato
	D McSPIN Model for Stopless

