
ar
X

iv
:1

60
8.

05
89

3v
1

 [c
s.

S
E

]
21

 A
ug

 2
01

6

Reducing State Explosion for Software Model Checking
with Relaxed Memory Consistency Models

Tatsuya Abe1, Tomoharu Ugawa2, Toshiyuki Maeda1, and Kousuke Matsumoto2

1 {abet,tosh}@stair.center STAIR Lab, Chiba Institute of Technology
2 {ugawa,matsumoto}@plas.info.kochi-tech.ac.jp Kochi University of Technology

Abstract. Software model checking suffers from the so-called state explosion
problem, and relaxed memory consistency models even worsenthis situation.
What is worse, parameterizing model checking by memory consistency mod-
els, that is, to make the model checker as flexible as we can supply definitions
of memory consistency models as an input, intensifies state explosion. This pa-
per explores specific reasons for state explosion in model checking with multi-
ple memory consistency models, provides some optimizations intended to mit-
igate the problem, and applies them to McSPIN, a model checker for memory
consistency models that we are developing. The effects of the optimizations and
the usefulness of McSPIN are demonstrated experimentally by verifying copying
protocols of concurrent copying garbage collection algorithms. To the best of our
knowledge, this is the first model checking of the concurrentcopying protocols
under relaxed memory consistency models.

Keywords: software model checking; relaxed memory consistency models; state
explosion; reordering of instructions; integration of states; concurrent copying
garbage collection

1 Introduction

Modern computing systems are based on concurrent/parallel processing designs for
their performance advantages, and programs therefore mustalso be written to exploit
these designs. However, writing such programs is quite difficult and error-prone, be-
cause humans cannot exhaustively consider the behaviors ofcomputers very well. One
approach to this problem is to use software model checking, in which all possible states
that can be reached during a program’s execution are explored. Many such model check-
ers have been developed (e.g., [12,18,26,25,7,8]).

However, most existing model checkers adoptstrict consistencyas a Memory Con-
sistency Model (MCM) on shared memories, which only allows interleaving of instruc-
tion execution, and ignore morerelaxedMCMs than strict consistency, which allow
reorderings of instructions. This is not realistic becausemany modern computer archi-
tectures such as IA64, SPARC, and POWER [22,37,20] have adopted relaxed MCMs.
Relaxed MCMs facilitate the performance of parallel-processing implementations be-
cause instructions may be reordered and multiple threads may observe distinct views on
shared memory while strict consistency, which requires synchronization at each mem-
ory operation, is prohibitively expensive to be implemented on computer architectures.

http://arxiv.org/abs/1608.05893v1

2 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KousukeMatsumoto

As interest in MCMs has grown, some model checkers have introduced support for
them [24,27,28,29]. However, these have been specific to certain MCMs, such as Total
Store Ordering (TSO) and Partial Store Ordering (PSO) [10].We are in the process of
developing a model checker, McSPIN [9], that can handle multiple MCMs [1,2,3,5].
McSPIN can take an MCM as an input with a program to be verified.It has a spec-
ification language that covers various MCMs including TSO, PSO, Relaxed Memory
Ordering (RMO), acquire and release consistency [23], Itanium MCM [21], and UPC
MCM [39]. By using McSPIN, we can easily model check afixedprogram undervari-
ousMCMs.

However, software model checking suffers from thestate explosion problem, and
relaxed MCMs even worsen this, because the reordering of instructions allowed under
relaxed MCMs enormously increases the number of reachable states. What is worse,
parameterizing model checking by MCMs, that is, to make the model checker as flexible
as we can supply definitions of MCMs as an input intensifies thestate explosion.

This paper explains how model checking with multiple MCMs increases the number
of reachable states, and clarifies the reasons for state explosion specific to model check-
ing with multiple MCMs. In addition, some optimizations areprovided that reduce state
explosion, and their effects are demonstrated through experiments. The ideas behind the
optimizations are simple: Pruning traces, partial order reduction, and predicate abstrac-
tion are well known to reduce state explosion in conventional model checking [17]. In
our former paper [3], we arranged pruning traces and partialorder reduction for model
checking with relaxed MCMs. In this paper, we arrange predicate abstraction, and pro-
posestages, which are integrations of states under relaxed MCMs.

Although the optimization in our earlier work have enabled verification of non-toy
programs such as Dekker’s mutual exclusion algorithm [3], it was difficult to apply Mc-
SPIN to larger problems such as verifications of copying protocols of Concurrent Copy-
ing Garbage Collection algorithms (CCGCs), due to the stateexplosion. In this paper,
we demonstrated the optimizations above enables McSPIN to verify larger programs;
we checked if a desirable property of CCGCs, “in a single thread program, what the
program reads is what it has most recently written”, are heldor not for several CCGCs
on multiple MCMs. Though we used verifications of GCs as examples in this paper,
safety of GC is an important issue in the field (e.g., [14,16]), and this achievement is a
positive development. To the best of our knowledge, this is the first model checking of
copying protocols of CCGCs with relaxed MCMs.

The rest of this paper is organized as follows: Sect. 2 describes McSPIN with explor-
ing the reasons for state explosion specific to model checking with MCMs, and Sect. 3
describes the relevant optimizations we have applied in McSPIN. Sect. 4 presents ex-
perimental results using McSPIN on different CCGCs and shows the effectiveness of
the optimizations. Sect. 5 discusses related work, and the conclusions and directions for
future work are presented in Sect. 6.

2 McSPIN

We first briefly review our earlier work [1,2,3] on constructing a general model checking
framework with relaxed MCMs and developing and implementation. In the following,

Reducing State Explosion for Software Model Checking with Relaxed MCMs 3

we do not distinguish the framework from its implementationand refer to both as Mc-
SPIN. In McSPIN, threads on computers with shared memory areuniformly regarded
as processes that have their own memories. Therefore, we formally call threads (in the
usual sense)processes(in McSPIN), while we refer to them as “threads” when infor-
mally explaining behavior on shared-memory systems.

2.1 Syntax

A program is anN-tuple of sequences of instructions defined as follows:

(Instruction) i F 〈L,A, ι〉 ,

(Raw Instruction) ιF Move r t | Load r x | Store x t | Jump L if t | Nop ,

(Term) tF v | r | t + t | t − t | · · · ,

(Attributes) AF {a, . . . , a} ,

whereN is the number of processes. An instructioni is a triple of a label, attributes, and
a raw instruction. A labelL designates an instruction in a program. An attributea ∈ A
denotes an additional label for a raw instruction, has no effect itself, and are used to
describe constraints specified by an MCM.

Here r is variable local to a process andx, y, . . . , are shared variables. The raw
instructionMovert denotes the assignment of an evaluated value of a termt to a process-
local variabler, which does not affect other processes. The termv denotes an immediate
value. The termst0 + t1, t0 − t1, . . . , denote standard arithmetic expressions.Load r x
represents loadingx from its own memory and assigning its value tor. Storext denotes
storing an evaluated value oft to x on its own memory.JumpL if t denotes a conditional
jump toL depending on the evaluated value oft. Note thatt contains no shared values;
to jump toL depending onx, it is necessary to performLoadr x in advance.Nop denotes
the usual no-operation.

Careful readers may wonder why no synchronization instructions such asmemory
fenceandcompare-and-swapinstructions appear. In McSPIN, a memory fence is rep-
resented as aNop with attributefence, and its effect is defined at each input MCM,
that is, multiple types of fences can be defined. This flexibility enables verification of a
fixedprogram withdifferentMCMs as explained in more detail in Sec. 2.3. Compare-
and-swap (usually an instruction on a computer architecture) is also represented by
compound statements, which can be seen in Appendix A.

Programs (inputs to McSPIN) have to be written in the assembly-like modeling
language. Such low-level languages are suitable for handling MCMs that require one to
carefully take into account effects on specific computer architectures. However, these
languages may not be practical for writing programs. McSPINhas a C-like modeling
language to facilitate programming, but this is beyond the scope of the present paper.

2.2 Semantics

McSPIN adopts trace semantics with states. Execution traces are sequences ofopera-
tions, defined as follows:

(Operation) oF Fe j
q p i | Is j

q p i | Ex j
q p i ℓ v | Re j

q
[

p⇒p
]

i ℓ v .

4 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KousukeMatsumoto

One key point in handling different MCMs is to consider at most four kinds of opera-
tions for an instruction. For any instruction, its fetch andissue operations are consid-
ered. Load and store instructions have execution operations. Store instructions have re-
flect operations. An effect of each operation is formally defined in our former paper [5].
In this paper, we roughly explain why such operations are introduced.

Under very relaxed MCMs such as C++ [23] and UPC MCM [39], distinct threads
can exhibit different program behaviors; that is, each thread has its own execution trace.
To represent these in one trace, we add a process identifierq, denoting an observer
process as a subscript of an operation. In addition, McSPIN can handle programs with
loops. To distinguish multiple operations corresponding to an instruction, an operation
has a branch counterj that designates thejth iteration within a loop.

We explain the four kinds of operations by example.Fe j
q p i denotes fetching an

instructioni from a processp, which enables the issuance ofi. By default, this also
increments the program counter ofp if i’s raw instruction is notJump. If so, the pro-
gram counter is not changed and will be changed when theJump is issued. McSPIN
is equipped with abranch predictionmode that can be switched on or off. In branch
prediction mode, the program counter is non-deterministicly incremented or set toL
whenJump L if t is fetched. Thus, in order to handle branch prediction, fetch has to be
distinguished from issue.

Although branch prediction is often ignored in specifications of MCMs, note that
no branch prediction implicitly prohibits some kinds of reorderings across conditionals.
For example, no branch prediction on the process-model thatMcSPIN adopts cannot
perform the so-calledout-of-thin-air read [30] in the program in Table 17.6 of Java
language specification [32], althoughlegal executions under Java MCM are specified
by not using atotal order of operations on such process-model but consistency between
partial orders of operations on threads.

OperationIs j
q p i denotes the issuing of an instructioni to a processp. Effects that

complete inside the register onp (not p’s own memory) are performed. For example,
while issuingMove r t indicates assignment of an evaluated value oft to r, Store x t
implies evaluation oft only. In branch prediction mode, a predicted execution trace in
fetchingJump is checked.

OperationEx j
q piℓ v denotes execution of an instructioni on a processp. Effects that

complete insidep are performed. For example, while the execution ofLoad r x means
that v is loaded fromx (at locationℓ) and assigned tor, Store x t represents storing
an evaluated valuev of t to x (at locationℓ) in p’s own memory. While an instruction
is issued, its (intra-process) effect may not have occur yet. Itanium MCM allows such
situation, by distinguishing issues from executions of instructions.

OperationRe j
q
[

p0⇒p1
]

i ℓ v denotes reflects of an instructioni from processp0

to p1. The reflect ofStore x t means storing an evaluated valuev of t to x at ℓ in
p1’s own memory. While a store instruction is executed, that is, its effect is reflected
to its store buffer, its (inter-process) effect may not be reflected to other processes yet.
One reflect may be immediately passed, and another reflect maybe delayed. Moreover,
processes can observe distinct views a.k.a.the IRIW test[11]. Our definition covers
such situations.

Reducing State Explosion for Software Model Checking with Relaxed MCMs 5

While the distinction enables delicate handling effects of instructions, it intensifies
state explosion since the number of interleavings of operations increases.

To handle more relaxed MCMs, it is also necessary to distinguish multiple opera-
tions that are generated from an instruction in a loop statement, whereas this is unnec-
essary when queues can be used to handle specific MCMs such as TSO and PSO. For
example, in a code (Storexr0; Mover0r0 + 1;Jump0 if 1) ‖ Loadr0 x, the second fetch
of theStore on the former process may follow the fetch of theLoad on the latter pro-
cess, while the first fetch of theStore on the former process may precede it. To the best
of our knowledge, no existing method can handle such low-level jumps (across which
instructions may be reordered) in a detailed fashion, whichis necessary for verification
of CCGCs.

2.3 Formalized Memory Consistency Models

MCMs are sets of constraints that control program behaviorson the very relaxed seman-
tics that McSPIN adopts and are formally defined as a first-order formula as follows:

ϕF xτ = x′τ | xτ < x′τ | ¬ϕ | ϕ ⊃ ϕ
′ | ∀ xτ. ϕ(xτ) ,

whereτ denotes one of Variable, Location, Label, Value, Instruction, Raw Instruction,
Attribute, Branch Counter, and Operation. Here xτ represents metavariables in the syn-
tax of McSPIN. For example,xLocation < x′Location can be read asℓ < ℓ′. In addition,<
with respect to Operation identifies the order of execution between operations. We use
standard notation such as∧, ∨, and∃ and assign higher precedence to¬, ∧, ∨, and⊃.

Example constraints can be seen in [1,2,3], and Itanium and UPC MCMs are fully
formalized in their journal version[5]. Here we focus on only two. In Sect. 2.1, we stated
that the effect of a memory fence can be flexibly defined by an input MCM. A memory
fence forces evaluation of all the reflects of store instructions that are fetched before the
memory fence. This is represented as follows:

Fe
j0
q p i0 < Fe

j1
q p (L1,A1, Nop) ⊃ Re

j0
q
[

p⇒p0
]

i0 ℓ0 v0 < Is
j1
q p (L1,A1, Nop) ,

wherefence ∈ A1, i0’s raw instruction isStore, and all free variables are universally
quantified. Meanwhile, we can consider another operation that forcesLoad only:

Fe
j0
q p i0 < Fe

j1
q p (L1,A1, Nop) ⊃ Ex

j0
q p i0 ℓ0 v0 < Is

j1
q p (L1,A1, Nop) ,

wherefence ∈ A1 andi0’s raw instruction isLoad.
One constraint that differentiates TSO from PSO withmultiple-copy-atomicity[36],

which prohibits two threads from observing different behaviors of write operations that
the two threads do not perform, is whether reflects of store instructions areatomically
performedin program order. This can be represented as follows:

Fe
j0
q p i0 < Fe

j1
q p i1 ⊃ Re

j0
q
[

p⇒p0
]

i0 ℓ0 v0 < Re
j1
q
[

p⇒p1
]

i1 ℓ1 v1 ,

wherei0’s andi1’s raw instructions areStore instructions. This constraint causesevery
reflect ofi1 to await completion ofall reflects ofi0. Full constraints of TSO, PSO, and
other relaxed MCMs are formalized in McSPIN’s public repository [9].

6 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KousukeMatsumoto

2.4 Translation into PROMELA

McSPIN uses the model checker SPIN as an engine and translates programs written
in our modeling language into PROMELA, the modeling language of SPIN. The un-
derlying idea is quite simple. McSPIN translates sequential compositions of statements
i0; i1; . . . written in our modeling language into PROMELA loop statements as follows:

do

:: (guard0,0) -> (operation of Fe of i0); (epilogue0,0);

:: (guard0,1) -> (operation of Is of i0); (epilogue0,1);

:: (guard0,2) -> (operation of Ex of i0); (epilogue0,2);

:: (guard0,3) -> (operation of Re of i0 to p0); (epilogue0,3);

:: ...

:: (guard0,(N−1)+3) -> (operation of Re of i0 to pN−1); (epilogue0,(N−1)+3);

:: (guard1,0) -> (operation of Fe of i1); (epilogue1,0);

:: ...

:: else -> break;

od;

A PROMELA loop statement has multiple clauses with guards. One of those clauses
whose guards are satisfied is non-deterministicly chosen and processed. Letclock be
a time counter. Each clause corresponds to performing an operation as follows:

end_o==0 -> o; end_o=clock; clock++;

where the positiveness ofend o denotes thato has already performed.
Although such a PROMELA code may admit very relaxed behaviorthat does not

satisfy an input MCM, McSPIN appropriately removes such execution traces. Asser-
tions can be written not only at the end of a program, but also at any place within. This
is important for CCGC verification, because we would like to confirm data consistency
at a certain place and moment. McSPIN modifies assertion statements to follow the
input MCM. Letϕ be an assertion that we wish to verify. McSPIN adds (formalized)
constraints that an input MCM obligates toϕ as a conjunct. For example, the constraint
that differentiates TSO and PSO, as explained in Sect. 2.3, is translated into

!(end_{Fe
j0
q pi0}<end_{Fe

j1
q pi1})||end_{Re

j0
q
[

p⇒p0
]

i0 ℓ0 v0}<end_{Re
j1
q
[

p⇒p1
]

i1ℓ1 v1}

and added to the assertionϕ as a conjunct, where! and|| represent negation and
disjunction in PROMELA, respectively. Thus, execution traces that violate the MCM
are removed when assertions are checked.

3 Optimizations

Here we provide MCM-sensitive optimization techniques to reduce the problem specific
to model checking with multiple MCMs. The optimizations described in Sects. 3.1 and
3.2 were introduced in [3]; we briefly review them here in order to make it easy to
understand an optimization introduced in Sect. 3.3.

Reducing State Explosion for Software Model Checking with Relaxed MCMs 7

3.1 Enhanced Guards: Pruning Inadmissible Execution Traces

As explained in Sect. 2.4, McSPIN explores all execution traces and removes traces that
are inadmissible under an input MCM in checking assertions.This is obviously redun-
dant. A straightforward method to prune inadmissible execution traces is to enhance
guards for clauses corresponding to operations. A guard that is uniformly generated
asend o==0 from an operationo in Sect. 2.4 is enhanced by an input MCM (details
are provided in [3]). We explain this using the constraint that differentiates TSO and
PSO, as set out in Sect. 2.3. The constraint claims that all reflects ofi1 must wait for all
reflects ofi0, wherei0 precedesi1 in program order. McSPIN adds a condition

!(end_{Fe
j0
q p i0}<end_{Fe

j1
q p i1})||end_{Re

j0
q
[

p⇒p0
]

i0 ℓ0 v0}>0

corresponding to this claim to the guard of the reflect ofi1.

3.2 Defining Predicates: Promoting Partial Order Reduction

As explained in Sect. 2.4, it is necessary to judge whether anexecution trace is admis-
sible to a given MCM. This means that it is also necessary to remember orders between
operations in the execution trace. The most straightforward method is to use a time
counter; that is, to substitute a variableend o (defined at each operation) with the time
at which operationo was performed. However, time counters are too concrete to reduce
state explosion. For example, consider four operationso0, o1, o2, o3 under the con-
strainto0 < o1 ⊃ o2 < o3. If times are substituted for the variablesend ok (0 ≤ k < 4,
then the number of combinations〈end o0, end o1, end o2, end o3〉 is 24 (=4!), which
distinguishes states more concretely than the constraint requires.

When considering the constraint rule, it suffices to remember the order ofo0 and
o1 and ofo2 ando3, because nothing else is used to define the constraint. We intro-
duce new variablesord o0 o1 andord o2 o3, and call themdefining predicatesof the
constraint or, formally, atomic formulas consisting of thepredicate symbol< (or ≤)
between operations that occur in the constraint. Because the defining predicates pre-
serve the order of times at which the operations are performed, we changeend ok to
boolean variables that denote whether the operation has been performed. After all the
operations have been performed (that is,end ok = 1 (0 ≤ k < 4)), the possible states
are〈ord o0 o1, ord o2 o3〉 = {〈0, 0〉, 〈0, 1〉, 〈1, 1〉}, of cardinality 3.

3.3 Stage: Abstracting Programs by MCM-Deriving Predicates

Predicate abstraction [17] is one promising method to reduce state explosion in model
checking. In this subsection, we show that predicates existthat are determined by an in-
put MCM. Such predicates integrate states that do not have tobe separated with respect
to an input MCM. Therefore, the predicate abstractions haveno omission of checking.

To handle the effects of instructions more delicately, McSPIN has at most four kinds
of operations,Fe, Is, Ex, andRe for one instruction. However, some MCMs do not
require complete distinction. Assume that an input MCM has the constraintIs j

q p i <

o ⊃ Ex j
q p i ℓ1 v1 < o as calledintegration in [2,3], which indicates that no operation

can interleave two operationsIs j
q p i andEx j

q p i ℓ1 v1. In an earlier version, McSPIN

8 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and KousukeMatsumoto

generated clauses that had guards waiting forEx
j
q p i ℓ1 v1 whenIs j

q p i was performed.
Such guards control program behaviors in accordance with aninput MCM.

In this paper, we promote integration to state level rather than execution-trace level.
In earlier versions, McSPIN generated one clause at each operation; that is, at most
3+ N, the cardinality of{Fe, Is, Ex} ∪ { Re k | 0 ≤ k < N }, clauses at each instruction,
whereN is again the number of processes, andRe k denotes a reflect tok. In the cur-
rent version, McSPIN can accept additional inputstages S= {s0, s1, . . . , sM−1} for an
input MCM. Formally, stages are partitions of{Fe, Is, Ex} ∪ { Re k | 0 ≤ k < N }. We
write fS for the induced mapping from the stages. McSPIN generatesM clauses at each
instructioni, whereM is the number of stages ofi as follows:

do

:: (guards0, fS (s0)) -> (operation of fS(s0) of i0); (epilogue0, fS (s0));

:: (guards0, fS (s1)) -> (operation of fS(s1) of i0); (epilogue0, fS (s1));

:: ...

:: (guards0, fS (sM−1)) -> (operation of fS(sM−1) of i0 to pN−1); (epilogue0, fS (sM−1));

:: ...

:: else -> break;

od;

This optimized translation reduces checking space and time. By loading such a
PROMELA code, SPIN remembers not unintegrated states themselves but stages. This
implies that state-vector on SPIN is kept small. Memory is not, therefore, consumed so
much. This optimization also saves time to check whether clauses are executable since
the number of clauses is smaller.

Let us see example stages for TSO and PSO with neitherbranch predictionnor
multiple-copy-atomicity[36], which prohibits two threads from observing different be-
haviors of write operations that the two threads do not perform. Since these MCMs al-
low Loads to overtake (inter-process) effects ofStores, each member of{Rek | 0 ≤ k <
N } has to be separated fromEx. However,Fe, Is, andEx do not have to be separated.
Also, Re k does not have to be distinguished fromRe k′ (k′ , k) by multiple-copy-
atomicity. We can therefore introduce the following stages:

S = {s0, s1} fS(s) =















{Fe, Is, Ex} if s= s0

{ Re k | 0 ≤ k < N } if s= s1 .

Given a stageS (and its mappingfS), McSPIN automatically returns PROMELA
code in which clauses are integrated; in particular, guardsand epilogues are appropri-
ately generated from an input MCM.

4 Experiments

In this section, we demonstrate the effects of
the optimizations introduced in Sect. 3. The
figure to the right shows our experimental
environment, with ample memory.

CPU: Intel Xeon E5-2670 2.6GHz
Memory: DDR3-1066 1.5TB
SPIN: 6.4.5
GCC: 5.3.0

The optimizations described in Sects. 3.1 and 3.2 have enabled verification of relatively
large programs such as Dekker’s algorithm [3]. Here we demonstrate that the optimiza-
tion described in Sect. 3.3 enables verification of genuinely large programs.

Reducing State Explosion for Software Model Checking with Relaxed MCMs 9

4.1 Experimental Setting

We chose CCGCs as examples of large programs. In this subsection, we briefly explain
the CCGCs we used.

Garbage collection (GC) is a basic service of modern programming languages. Its
role is to find garbage, that is, data objects that are no longer in use by the application,
and to reclaim the memory that those objects occupy. CopyingGC accomplishes this by
copying live objects, i.e., those that may be used in the future, to a separate space and
then releasing the old space that contains the copied objects and garbage. Concurrent
GC, as the name suggests, runs concurrently with the application. What is difficult
in designing CCGC algorithms is that the garbage collector thread and an application
thread may race; the application thread may change the contents of an object that is
being copied by the garbage collector. This may be the case even with an single thread
application. Because an application thread changes, or mutates, the object, we call it a
mutator. If a mutator writes to the object that is being copied, the collector may copy
a stale value, which means that the latest value gets lost. Various copying protocols
have been proposed to provide application programmers withreasonable MCMs, all of
which require the mutators to do some work on every read (read barrier) or write (write
barrier) operation or both, in which the mutator synchronizes with the collector.

Because such barriers incur overhead for every read or writeoperation, one goal of
CCGC algorithms is to design barriers that are as lightweight as possible. Thus, syn-
chronizations such as compare-and-swap should be minimized. With relaxed MCMs,
memory barriers should also be minimized. Unfortunately, the synchronizations re-
quired for safety depend on the given MCM; it is often the casethat those synchro-
nizations that are redundant for one MCM are mandatory for another.

Model. We experimentally checked the safety of concurrent copyingprotocols,in a
single thread program, what the mutator reads is what it has most recently written. This
property is expected to be held in any reasonable MCMs such asthe happens-before
consistency of Java [32]. The complete McSPIN models for checking this property can
be found in Appendix or the McSPIN public repository [9]. Here, we briefly explain the
model.

In our model checking, we made some assumptions. We assume that there is a
single mutator thread, i.e., the application is a single thread program. Remark that even
if there is a single mutator thread, there is another thread,the collector thread, and they
may race. We also assume that there is only a single object with a single integer slot in
the heap.

The mutator has a pointer to the object and repeatedly reads from and write to the
object through the pointer. On write operations, it remembers the value it wrote.On read
operations, it checks if the read value is equal to the value it lastly wrote. Meanwhile,
the collector copies the object following to the copying protocol of each algorithm.
Once it successfully copied, the collector rewrites the mutator’s pointer to the object so
that the pointer points at the copy.

To cooperate with the collector, the mutator uses the read and write barriers re-
quired by the copying protocol on its read and write operations. For some algorithms,
the mutator also performs so called the checkpoint operation between object accessing

10 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Matsumoto

operations, where the mutator polls and answers collector’s requests. Some collectors
request the mutator to answer the handshake by setting a per-mutator handshake request
flag. The checkpoint operation clears the flag to let the collector know the mutator has
observed the flag set. In TSO, if a mutator observes the flag is set, all stores preceding
the store setting the flag are guaranteed to be visible to the mutator.

We created McSPIN models for each CCGC algorithms we describe below. In the
models, the mutator has an infinite loop, where it reads or writes once per an iteration.
It also performs a checkpoint operation before and after each read or write. Thus, the
supremum of loop iterations on the mutator limits the numberof mutator’s memory
accesses.

GC Algorithm In this paper, we checked three GC algorithms: Chicken [34],Stac-
cato [31] and Stopless [33]. The details of these algorithmscan be found in their papers.
Here, we briefly explain their features.

Chicken and Staccato were basically the same algorithm though they are devel-
oped independently. The only difference is their target MCMs; Chicken is designed
for the MCMs of Intel CPU such as IA64 [22], while Staccato’s main target seems to
be POWER MCM [20]. These algorithms use compare-and-swap operations to resolve
races between the collector and a mutator. In the IA64 MCM, the compare-and-swap
is usually realized by the instruction sequencelock cmpxchg. This sequence implies
memory fences. As for POWER MCM, the manual [20] shows a sample implementa-
tion of the compare-and-swap operation that does not imply memory fences.

Stopless is a different algorithm from those two. It uses compare-and-swap opera-
tions that implies memory fence excessively, hence chancesof reordering are fewer.

4.2 Effect of Optimization

In this subsection, we reveal the effectness of thestageoptimization described in Sect. 3.3.
We verified the models created in Sect. 4.1 by using McSPIN with and without the op-
timization. We fixed the supremum of iteration on the collector to 1 and varied that on
the mutator from 1 to 2.

Tab. 1 shows the results of the verification. Note that any PROMELA code pro-
duced by McSPIN consumed around 170 MB of memory as constant overhead. As
Tab. 1 shows, the amounts of memory consumed and elapsed times are greatly reduced
in all algorithms compared with those without the optimization. In particular, when the
supremum of loop iterations on the mutator was set to 2, McSPIN without the optimiza-
tion often required around 1 TB of memory, which is far from reasonable. However, a
single iteration could not detect any error even for the algorithms that actually work
incorrectly with PSO, i.e., Chicken and Stopless.

Tab. 1 also suggests that the more instructions the model had, the more effective the
stage optimization was. For example, in Chicken and Staccato with a single iteration,
the net memory consumption was reduced to 3.9–8.8 %, while, in Stopless, it was re-
duced to 3.3 and 4.4 %. This is because the stage optimizationreduced the number of
units that are subject to reordering, or clauses of the do-loop in the PROMELA code.

To the best of our knowledge, this is the first model checking of these algorithms
with PSO, due to the optimizations given in this paper.

Reducing State Explosion for Software Model Checking with Relaxed MCMs 11

Table 1. Effects of optimization: In TSO, a compare-and-swap instruction implies memory
fences. In PSO, it does not. Columns labeled with “col.” and “mut.” list the number of instructions
of the collector and the mutator, respectively. Column labeled with “loop” lists the supremum of
loop iterations on the mutator. For verification either withor without stages, the first column
shows the results;X means no error was found and× means a violation was found. The follow-
ing columns are the number of state transitions, the amount of memory consumed, and elapsed
times for verification, respectively. Columns labeled with“mem. ratio” and “time ratio” list the
ratios of memory and time consumption for verification with/without stages. The column labeled
with “net mem. ratio” lists those that do not count constant overhead.

without stages with stages mem. net mem.time
MCM algorithm col. mut. loop state memory time statememory time ratio ratio ratio

(K) (MB) (sec.) (K) (MB) (sec.) (%) (%) (%)

chicken 24 42
1 X 108 8,595 132 X 23 908 8 10.6 8.8 6.2
2 X 2,506 546,038 8,637X 534 24,960 433 4.6 4.5 5.0

TSO
staccato 32 46

1 X 141 14,918 236 X 26 1,032 11 6.9 5.8 4.7
2 X 3,888 1,097,49116,022X 733 43,432 735 4.0 3.9 4.6

stopless 33 87
1 X 90 28,183 378 X 14 1,404 19 5.0 4.4 5.0
2 X 564 564,635 7,705X 87 18,885 585 3.3 3.3 7.6

chicken 24 42
1 X 308 25,208 430 X 65 1,652 28 6.6 5.9 6.6
2 × 1,136 264,857 4,248 × 237 12,190 227 4.6 4.5 5.3

PSO
staccato 32 46

1 X 143 15,166 243 X 26 1,032 11 6.8 5.7 4.7
2 X 4,020 1,144,60216,975X 751 44,920 768 3.9 3.9 4.5

stopless 33 87
1 X 177 55,210 833 X 30 2,520 46 4.6 4.3 5.5
2 × 45 45,416 630 × 8 2,148 41 4.7 4.4 6.6

Table 2.Variants of Staccato

TSO PSO
algorithm col. mut. loop statememory time statememory time

(K) (MB) (sec.) (K) (MB) (sec.)

staccato 32 46
1 X 26 1,032 11 X 26 1,032 11
2 X 733 43,432 735 X 751 44,920 768

staccatopso 31 44
1 X 25 908 10 X 25 1,032 10
2 X 719 38,721 637 X 755 40,953 703

staccatobug 30 44
1 X 28 1,032 11 X 35 1,156 14
2 X 819 43,184 726 × 235 12,810 217

4.3 Reducing Memory Fences of Staccato

Because Staccato is designed for the relaxed MCM of POWER, some memory fences
are redundant on a stricter MCM. Thus, we designed and verified a variant of Staccato
for a PSO MCM with a compare-and-swap that does not imply memory fences. In
addition, we created an incorrect variant that lacks mandatory fences for the PSO MCM.
These variants are labeledstaccato pso andstaccato bug.

The result of verification is shown in Tab. 2. The verificationis conducted with the
stage optimization. The result ofstaccato bug shows that McSPIN detected an error
if we reduced fences too much.

The variants of Staccato demonstrate the usefulness of McSPIN. When we modify
a GC algorithm for a machine with some MCM that is different from the one that the
GC is originally designed for, we add or remove some synchronizations. However, the
modified model often lacks synchronizations. McSPIN can detect such errors in the
variant with a reasonable memory consumption. This enablesus to check the GC when
we are performing modifications.

12 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Matsumoto

active proctype main() {

run mem();

run proc0();

...

}

proctype proc0() {

WRITE(x0,0);

WRITE(x1,1);

}

...

proctype mem() {

endmem:

do

::atomic{COMMIT_WRITE(queue_proc0);}

::atomic{COMMIT_WRITE(queue_proc1);}

...

od;

}

inline WRITE (var,val) {...}

inline COMMIT_WRITE (queue) {...}

Fig. 1. Hand-written code
Table 3.Comparison between McSPIN and hand-coding

TSO PSO
McSPIN hand-written McSPIN hand-written

statememory time statememory time statememory time statememory time
(MB) (sec.) (MB) (sec.) (MB) (sec.) (MB) (sec.)

1 25 0.006 0.01 19 0.002 0.01 25 0.006 0.02 19 0.003 0.01
2 52 0.017 0.02 60 0.009 0.00 65 0.021 0.02 79 0.017 0.01
3 116 0.053 0.02 149 0.026 0.00 241 0.110 0.05 337 0.095 0.01
4 241 0.153 0.04 313 0.064 0.02 977 0.619 0.20 1,405 0.504 0.02
5 457 0.391 0.08 585 0.143 0.01 3,985 3.405 0.98 5,749 2.500 0.07
6 800 0.897 0.18 1,004 0.276 0.01 16,145 18.107 6.13 23,269 11.894 0.31
7 1,312 1.882 0.35 1,615 0.493 0.01 65,041 93.290 34.06 93,637 54.294 1.66
8 2,041 3.659 0.61 2,469 0.829 0.02 261,137468.195171.10375,685246.497 8.28

4.4 McSPIN vs. Hand-Coding

In this subsection, we compare PROMELA codes generated by McSPIN with codes
written by hand and confirm how close McSPIN is to an ideal implementation.

Whereas McSPIN generates uniform PROMELA codes that contain variables to
remember orders between operations, etc., to support different MCMs, some variables
are essentially unnecessary for verifications specific to TSO and PSO. Because TSO
never reorders store instructions, queues (for all shared variables) at each thread to
buffer effects of write instructions suffice for verifications under TSO as shown in Fig. 1.
The twoWRITEs put〈x0, 0〉 and〈x1, 1〉 into the queue in order. Reflects from the queue
to shared memory are performed byCOMMIT WRITEs on a processmem. We omit the
implementation details. For PSO, one queue ateachshared variable is enough to reorder
the effects of write instructions to distinct shared variables.

Tab. 3 compares PROMELA codes generated by McSPIN with thosewritten by
hand where the constant overhead is removed. The programs are simple, consisting of
multiple store instructions (without loops). Verified properties are fixed to be true. Each
column is similar to Tab. 1. The digits in the names of the codes denote the number of
store instructions at each thread, respectively. The number of states almost coincides.
Slight differences appear to derive from the current implementation ofSPIN, because
we observe that SPIN returns fewer states for a PROMELA code with a loop statement
and control variables (such as code generated by McSPIN) than another PROMELA
code with a sequential composition of statements (like hand-written code). However,
we have not investigated this in detail.

McSPIN consumes more memory and time. This is a result of the sizes of the state
vectors and is inevitable, because McSPIN defines more variables to determine program
structures than hand-written codes, as explained in the beginning of this subsection.

Reducing State Explosion for Software Model Checking with Relaxed MCMs 13

5 Related Work

There exists no work, which is directly compared with our work, of model checking to
take multiple MCMs in a uniform way. Therefore, we can find no work for its optimiza-
tion has been studied.

Jonsson’s seminal work discovered the potential of SPIN forprogram translation
toward model checking with relaxed MCMs [24]. However, he could not conduct a
large number of experiments, because his program translation was not completely auto-
matic and optimized. This paper has addressed the problems that he left open. McSPIN
supports various MCMs and takes an MCM as an input, and its program translation is
automatic. McSPIN is greatly optimized and enables verification of larger concurrent
algorithms such as copying protocols of CCGCs.

Linden et al. [27,28,29] tackled the state explosion problem by representing store
buffers as automata. However, they handled relatively strict relaxed MCMs such as
TSO and PSO, unlike McSPIN. It is an open issue to extend theirrepresentation so as
to handle more relaxed MCMs and apply it to McSPIN.

Modex [19], a model extractor of SPIN that is guided by a user-defined test-harness,
translates C codes into PROMELA codes. However, Modex ignores relaxed MCMs.
Although revising Modex so as to handle relaxed MCMs is surely one approach, we
have developed McSPIN in order to show the potential of program translation toward
model checking with relaxed MCMs with no restriction derived from the existing tool.

Travkin et al. [40] developed a similar tool that translatesprograms into PROMELA
codes and uses SPIN as the engine for model checking, demonstrated verifications of
linearizability of concurrent algorithms under TSO, and planned to tackle PSO. How-
ever, their translator, which generates codes that are similar to hand-written PROMELA
code as introduced in Sect. 4.4, cannot be immediately applied to relaxed MCMs be-
yond PSO. Unlike their approach, ours supports relaxed MCMsby virtue of construct-
ing a base that allows such relaxed behaviors and then definesMCMs as constraints on
the base. Although an issue of our approach is addressing thestate explosion problem,
this paper has presented optimizations for the problem.

Dan et al. [13] reported high utility of predicate abstractions in model checking with
relaxed MCMs by verifying some programs with predicate abstractions under TSO and
PSO. They proposed the notion of predicateextrapolationto abstract a boolean program
for an input program. Although the stages introduced in thispaper can be regarded as
predicate abstractions, there is a difference in usage: McSPIN considers at most four
kinds of multiple states at one instruction to support various MCMs beyond TSO/PSO.
Although it is necessary to handle the worst case under the most relaxed MCM, this is
not always the case. Stages are states that are integrated bypredicates that are uniformly
generated by an input MCM. Therefore, abstractions by the predicates never leak out
of checking. Dan et al.’s technique of extrapolating predicates seems to be compatible
with stages, and its combination with stages is an open issue.

Theorem proving in program logic is also one promising approach to program ver-
ification with relaxed MCMs [35,15,41,4,6]. Formal verifications of GC algorithms
with relaxed MCMs using theorem provers have recently appeared [16]. However, fully
automated verification by model checking is usually preferable to manual (or semi-
automatic) construction of proofs in theorem proving.

14 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Matsumoto

6 Conclusion and Future Work

We have explained the reasons for the state explosion problem specific to model check-
ing with multiple MCMs, presented optimizations modified from pruning execution
traces, partial order reduction, and predicate abstraction, and applied them to McSPIN,
our model checker with MCMs. We have also shown the effectiveness of the optimiza-
tions through experiments of verifications of copying protocols of CCGCs, which are
larger programs.

There are four future directions for this work. Although we verified copying pro-
tocols of CCGCs as examples of large programs in this paper, averification of GC
algorithm is itself subject of our interest. Our future workincludes verifications of
wide range of GC algorithms and other properties such as wait-freedom for Chicken,
which the authors designed as a wait-free CCGC [34]. These verifications may require
more complicated settings including pointers and/or multiple mutators, which need still
larger models. The second is to show a verification of concurrent copying protocols
with MCMs that are more relaxed than PSO. An advantage of McSPIN is its ability to
support various MCMs. The third is to show more realistic benchmark programs, e.g.,
SV-COMP benchmarks [38]. The fourth is further optimization of McSPIN to verify
even larger programs.

AcknowledgmentsThe authors thank the anonymous reviewers for several comments
to improve the final version of the paper. This research partly used computational re-
sources under Collaborative Research Program for Young Scientists provided by Aca-
demic Center for Computing and Media Studies, Kyoto University. This work was sup-
ported by JSPS KAKENHI Grant Numbers 25871113, 25330080, and 16K21335.

References

1. Abe, T., Maeda, T.: Model checking with user-definable memory consistency models. In:
Proc. of PGAS, short paper. (2013) 225–230

2. Abe, T., Maeda, T.: A general model checking framework forvarious memory consistency
models. In: Proc. of HIPS. (2014) 332–341

3. Abe, T., Maeda, T.: Optimization of a general model checking framework for various mem-
ory consistency models. In: Proc. of PGAS. (2014)

4. Abe, T., Maeda, T.: Concurrent program logic for relaxed memory consistency models with
dependencies across loop iterations. Journal of Information Processing (2016) To appear.

5. Abe, T., Maeda, T.: A general model checking framework forvarious memory consistency
models. International Journal on Software Tools for Technology Transfer (2016) To appear.

6. Abe, T., Maeda, T.: Observation-based concurrent program logic for relaxed memory con-
sistency models. In: Proc. of APLAS. (2016) To appear.

7. Abe, T., Maeda, T., Sato, M.: Model checking with user-definable abstraction for partitioned
global address space languages. In: Proc. of PGAS. (2012)

8. Abe, T., Maeda, T., Sato, M.: Model checking stencil computations written in a partitioned
global address space language. In: Proc. of HIPS. (2013) 365–374

9. Abe, T., Maeda, T., Ugawa, T.: McSPIN.https://bitbucket.org/abet/mcspin/ .
10. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Computer

29(12) (1996) 66–76

https://bitbucket.org/abet/mcspin/

Reducing State Explosion for Software Model Checking with Relaxed MCMs 15

11. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model. In: Proc. of
PLDI. (2008) 68–78

12. Cavada, R., Cimatti, A., Jochim, C.A., Olivetti, G.K.E., Pistore, M., Roveri, M., Tchaltsev,
A.: NuSMV User Manual. 2.5 edn. (2002)

13. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed memory
models. In: Proc. of SAS. (2013) 84–104

14. Doligez, D., Gonthier, G.: Portable, unobtrusive garbage collection for multiprocessor sys-
tems. In: Proc. of POPL. (1994) 70–83

15. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent separation
logic. In: Proc. of ESOP. (2010) 267–286

16. Gammie, P., Hosking, T., Engelhardt, K.: Relaxing safely: Verified on-the-fly garbage col-
lection for x86-TSO. In: Proc. of PLDI. (2015) 99–109

17. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Proc. of CAV. (1997)
72–83

18. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley(2003)
19. Holzmann, G.J., Smith, M.H.: An automated verification method for distributed systems

software based on model extraction. IEEE Trans. Software Eng 28(4) (2002) 364–377
20. IBM: PowerPC Architechture Book, Version 2.02. (2005)
21. Intel: A Formal Specification of Intel Itanium ProcessorFamily Memory Ordering. (2002)
22. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual. (2016)
23. ISO/IEC 14882:2011: Programming Language C++. (2011)
24. Jonsson, B.: State-space exploration for concurrent algorithms under weak memory order-

ings: (preliminary version). SIGARCH Computer Architecture News36(5) (2008) 65–71
25. Kroening, D., Tautschnig, M.: CBMC - C bounded model checker - (competition contribu-

tion). In: Proc. of TACAS. Volume 8413 of LNCS. (2014) 389–391
26. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time

systems. In: Proc. of CAV. Volume 6806 of LNCS. (2011) 585–591
27. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying programs on

relaxed memory models. In: Proc. of SPIN. Volume 6349 of LNCS. (2010) 212–226
28. Linden, A., Wolper, P.: A verification-based approach tomemory fence insertion in relaxed

memory systems. In: Proc. of SPIN. Volume 6823 of LNCS. (2011) 144–160
29. Linden, A., Wolper, P.: A verification-based approach tomemory fence insertion in PSO

memory systems. In: Proc. of TACAS. Volume 7795 of LNCS. (2013) 339–353
30. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proc. of POPL. (2005)

378–391
31. McCloskey, B., Bacon, D.F., Cheng, P., Grove, D.: Staccato: A parallel and concurrent real-

time compacting garbage collector for multiprocessors. Report RC24504, IBM (2008)
32. Oracle: The Java Language Specification. Java SE 8 edition edn. (2015)
33. Pizlo, F., Frampton, D., Petrank, E., Steensgaard, B.: Stopless: a real-time garbage collector

for multiprocessors. In: Proc. of ISMM. (2007) 159–172
34. Pizlo, F., Petrank, E., Steensgaard, B.: A study of concurrent real-time garbage collectors.

In: Proc. of PLDI. (2008) 33–44
35. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Proc. of VSTTE. (2010) 55–70
36. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER mul-

tiprocessors. In: Proc. of PLDI. (2011) 175–186
37. SPARC International, Inc.: The SPARC Architecture Manual, Version 9. (1994)
38. SV-COMP: Competition on Software Verification.https://sv-comp.sosy-lab.org/.
39. The UPC Consortium: UPC Language Specifications Version1.3. (2013)
40. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak memory

models. In: Proc. of Haifa Verification Conference. Volume 8244 of LNCS. (2013) 311–326
41. Vafeiadis, V., Narayan, C.: Relaxed separation logic: Aprogram logic for C11 concurrency.

In: Proc. of OOPSLA. (2013) 867–884

https://sv-comp.sosy-lab.org/

16 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Matsumoto

A McSPIN Model – Compare-and-Swap

Here we show the McSPIN model of compare-and-swap instructions, which we used in
the models of each copying protocols of CCGCs. We made four variants;CAS compare-
and-swaps a single variable, andCAS2 does two variables at the same time, and those
that do not report if the operation succeeded or not, whose names have theNORET
suffix. CAS2 is used for modeling a double-word compare-and-swap and bitfields. The
fences (McSPIN fence) appear for TSO but not for PSO.

/* compare-and-swap */

static inline CAS(int target, int old, int new, int retval) {

#pragma McSPIN attribute atomic

{

if (target == old) {

target = new;

retval = 1;

} else

retval = 0;

}

}

/* two-variable compare-and-swap */

static inline CAS2(int target1, int target2, int old1, int old2, int new1, int new2,

int retval) {

#pragma McSPIN attribute atomic

{

if (target1 == old1)

if (target2 == old2) {

target1 = new1;

target2 = new2;

retval = 1;

} else

retval = 0;

else

retval = 0;

}

}

/* compare-and-swap */

static inline CAS_NORET(int target, int old, int new) {

#pragma McSPIN attribute atomic

{

if (target == old)

target = new;

}

}

/* two-variable compare-and-swap */

static inline CAS2_NORET(int target1, int target2, int old1, int old2, int new1, int new2) {

#pragma McSPIN attribute atomic

{

if (target1 == old1)

if (target2 == old2) {

target1 = new1;

target2 = new2;

}

}

}

B McSPIN Model for Chicken

Here we show our McSPIN model for the copying protocol of Chicken.

Reducing State Explosion for Software Model Checking with Relaxed MCMs 17

#include "stdbool.h"

#include "atomic.h"

#define INITIAL_VALUE 0

#define FROM_OBJECT 0

#define TO_OBJECT 1

int main()

{

/* handshake */

int hs_req;

/* heap */

int from_header_fwd, from_header_copying, from_body;

int to_body;

#define to_header_fwd TO_OBJECT

#define to_header_copying FALSE

/* mutator’s variable */

int root;

#pragma McSPIN parallel sections

{

/* collector */

#pragma McSPIN section

{

int success = 0;

while (success == 0) {

from_header_copying = TRUE;

start_handshake();

wait_for_handshake();

/* assume: to_header_copying = FALSE */

/* assume: to_header_fwd = TO_OBJECT */

to_body = from_body;

CAS2(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, TO_OBJECT, FALSE,

success);

}

root = from_header_fwd; /* flip */

}

/* mutator */

#pragma McSPIN section

{

int last_written = INITIAL_VALUE;

int readval;

while (true) {

#pragma McSPIN nondeterministic

{

ack_handshake();

}

#pragma McSPIN nondeterministic

{

last_written = 1 - last_written;

write(root, last_written);

} else {

read(root, readval);

McSPIN_assert(McSPIN_variable(last_written,1,0) == McSPIN_variable(readval,1,0));

}

#pragma McSPIN nondeterministic

{

ack_handshake();

}

}

}

}

18 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Matsumoto

}

static inline ack_handshake()

{

if (hs_req == true)

hs_req = false;

}

static inline start_handshake()

{

hs_req = true;

}

static inline wait_for_handshake()

{

while (hs_req != 0)

;

}

/* read barrier */

static inline read(int obj, int retval) {

if (obj == FROM_OBJECT) {

if (from_header_fwd == FROM_OBJECT)

retval = from_body;

else

retval = to_body;

} else {

/* assume: to_header_fwd = TO_OBJECT */

retval = to_body;

}

}

/* write barrier */

static inline write(int obj, int val) {

if (obj == FROM_OBJECT) {

if (from_header_copying == TRUE) {

CAS2_NORET(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, FROM_OBJECT, FALSE);

}

if (from_header_fwd == FROM_OBJECT)

from_body = val;

else

to_body = val;

} else {

/* assume: to_header_copying = FALSE */

/* assume: to_header_fwd = TO_OBJECT */

to_body = val;

}

}

C McSPIN Model for Staccato

Here we show our McSPIN model for the copying protocol of Staccato. Two fences are
removed forstaccato pso and another fence is omitted forstaccato bug. They are
marked with comments in the following model.

#include "stdbool.h"

#include "atomic.h"

#define INITIAL_VALUE 0

#define FROM_OBJECT 0

#define TO_OBJECT 1

Reducing State Explosion for Software Model Checking with Relaxed MCMs 19

int main()

{

/* handshake */

int hs_req;

/* heap */

int from_header_fwd, from_header_copying, from_body;

int to_body;

#define to_header_fwd TO_OBJECT

#define to_header_copying FALSE

/* mutator’s variable */

int root;

#pragma McSPIN parallel sections

{

/* collector */

#pragma McSPIN section

{

int success = 0;

while (success == 0) {

from_header_copying = TRUE;

McSPIN_fence();

start_handshake();

wait_for_handshake();

McSPIN_fence(); /* removed for staccato_pso and saccato_bug */

/* assume: to_header_copying = FALSE */

/* assume: to_header_fwd = TO_OBJECT */

to_body = from_body;

McSPIN_fence(); /* omitted for saccato_bug */

start_handshake();

wait_for_handshake();

CAS2(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, TO_OBJECT, FALSE,

success);

}

root = from_header_fwd; /* flip */

}

/* mutator */

#pragma McSPIN section

{

int last_written = INITIAL_VALUE;

int readval;

while (true) {

#pragma McSPIN nondeterministic

{

ack_handshake();

}

#pragma McSPIN nondeterministic

{

last_written = 1 - last_written;

write(root, last_written);

} else {

read(root, readval);

McSPIN_assert(McSPIN_variable(last_written,1,0) == McSPIN_variable(readval,1,0));

}

#pragma McSPIN nondeterministic

{

ack_handshake();

}

}

}

}

}

20 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Matsumoto

static inline ack_handshake()

{

McSPIN_fence();

if (hs_req == true)

hs_req = false;

McSPIN_fence(); /* removed for staccato_pso and saccato_bug */

}

static inline start_handshake()

{

hs_req = true;

}

static inline wait_for_handshake()

{

while (hs_req != 0)

;

}

/* read barrier */

static inline read(int obj, int retval) {

if (obj == FROM_OBJECT) {

if (from_header_fwd == FROM_OBJECT)

retval = from_body;

else

retval = to_body;

} else {

/* assume: to_header_fwd = TO_OBJECT */

retval = to_body;

}

}

/* write barrier */

static inline write(int obj, int val) {

if (obj == FROM_OBJECT) {

if (from_header_copying == TRUE) {

CAS2_NORET(from_header_fwd, from_header_copying, FROM_OBJECT, TRUE, FROM_OBJECT, FALSE);

}

if (from_header_fwd == FROM_OBJECT)

from_body = val;

else

to_body = val;

} else {

/* assume: to_header_copying = FALSE */

/* assume: to_header_fwd = TO_OBJECT */

to_body = val;

}

}

D McSPIN Model for Stopless

Here we show our McSPIN model for the copying protocol of Stopless.

#include "stdbool.h"

#include "atomic.h"

/* status */

#define IN_ORIGINAL 0

#define IN_WIDE 1

#define IN_COPY 2

/* value */

#define INITIAL_VALUE 0

Reducing State Explosion for Software Model Checking with Relaxed MCMs 21

/* space */

#define FROM_OBJECT 0

#define WIDE_OBJECT 1

#define TO_OBJECT 2

int main()

{

/* from object */

int from_fwd = FROM_OBJECT;

int from_data = INITIAL_VALUE;

/* wide object */

int wide_status = IN_ORIGINAL;

int wide_data;

/* to object */

#define to_fwd TO_OBJECT

int to_data;

/* root */

int root = FROM_OBJECT;

#pragma McSPIN parallel sections

{

/* collector */

#pragma McSPIN section

{

int x;

int success;

/* allocate wide object and install its forwarding pointer */

CAS_NORET(from_fwd, FROM_OBJECT, WIDE_OBJECT);

/* copy the payload to the wide object */

x = wide_data;

CAS2_NORET(wide_status, wide_data, IN_ORIGINAL, x,

IN_WIDE, from_data);

/* copy the payload to the final copy */

success = 0;

while (!success) {

x = wide_data;

to_data = x;

CAS2(wide_status, wide_data, IN_WIDE, x, IN_COPY,

x, success);

}

/* repoint to the final copy */

from_fwd = TO_OBJECT;

root = from_fwd; /* flip */

}

/* mutator */

#pragma McSPIN section

{

int last_written = INITIAL_VALUE;

int readval;

int write_tmp;

int write_success;

while (true) {

#pragma McSPIN nondeterministic

{

read(root, readval);

McSPIN_assert(McSPIN_variable(last_written,1,0) == McSPIN_variable(readval,1,0));

} else {

last_written = 1 - last_written;

write(root, last_written);

}

}

22 Tatsuya Abe, Tomoharu Ugawa, Toshiyuki Maeda, and Kousuke Matsumoto

}

}

}

/* read barrier */

static inline read(int obj, int retval) {

if (obj == FROM_OBJECT) {

if (from_fwd == FROM_OBJECT)

retval = from_data;

else if (from_fwd == WIDE_OBJECT) {

if (wide_status == IN_ORIGINAL)

retval = from_data;

else if (wide_status == IN_WIDE)

retval = wide_data;

else if (wide_status == IN_COPY)

retval = to_data;

} else if (from_fwd == TO_OBJECT)

retval = to_data;

} else { /* obj == TO_OBJECT */

/* assume: to_fwd == TO_OBJECT */

retval = to_data;

}

}

/* write barrier */

static inline write(int obj, int val) {

if (obj == FROM_OBJECT) {

if (from_fwd == FROM_OBJECT)

CAS_NORET(from_fwd, FROM_OBJECT, WIDE_OBJECT);

if (from_fwd == WIDE_OBJECT) {

write_success = 0;

while(!write_success) {

if (wide_status == IN_ORIGINAL) {

write_tmp = wide_data;

CAS2(wide_data, wide_status, write_tmp, IN_ORIGINAL, val, IN_WIDE, write_success);

} else if (wide_status == IN_WIDE) {

write_tmp = wide_data;

CAS2(wide_data, wide_status, write_tmp, IN_WIDE, val, IN_WIDE, write_success);

} else if (wide_status == IN_COPY) {

to_data = val;

write_success = 1;

}

}

} else if (from_fwd == TO_OBJECT)

to_data = val;

} else { /* obj == TO_OBJECT */

/* assume: to_fwd = TO_OBJECT */

to_data = val;

}

}

	Reducing State Explosion for Software Model Checking with Relaxed Memory Consistency Models
	1 Introduction
	2 McSPIN
	2.1 Syntax
	2.2 Semantics
	2.3 Formalized Memory Consistency Models
	2.4 Translation into PROMELA

	3 Optimizations
	3.1 Enhanced Guards: Pruning Inadmissible Execution Traces
	3.2 Defining Predicates: Promoting Partial Order Reduction
	3.3 Stage: Abstracting Programs by MCM-Deriving Predicates

	4 Experiments
	4.1 Experimental Setting
	Model.
	GC Algorithm

	4.2 Effect of Optimization
	4.3 Reducing Memory Fences of Staccato
	4.4 McSPIN vs. Hand-Coding

	5 Related Work
	6 Conclusion and Future Work
	A McSPIN Model – Compare-and-Swap
	B McSPIN Model for Chicken
	C McSPIN Model for Staccato
	D McSPIN Model for Stopless

