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{rosete}@ceis.cujae.edu.cu

Abstract. Automatic sign language recognition (SLR) is an important
topic within the areas of human-computer interaction and machine learn-
ing. On the one hand, it poses a complex challenge that requires the
intervention of various knowledge areas, such as video processing, image
processing, intelligent systems and linguistics. On the other hand, robust
recognition of sign language could assist in the translation process and
the integration of hearing-impaired people, as well as the teaching of sign
language for the hearing population.
SLR systems usually employ Hidden Markov Models, Dynamic Time
Warping or similar models to recognize signs. Such techniques exploit
the sequential ordering of frames to reduce the number of hypothesis.
This paper presents a general probabilistic model for sign classification
that combines sub-classifiers based on different types of features such as
position, movement and handshape. The model employs a bag-of-words
approach in all classification steps, to explore the hypothesis that or-
dering is not essential for recognition. The proposed model achieved an
accuracy rate of 97% on an Argentinian Sign Language dataset contain-
ing 64 classes of signs and 3200 samples, providing some evidence that
indeed recognition without ordering is possible.

Keywords: sign language recognition, bag-of-words, argentinian sign
language

1 Introduction

1.1 Background

Automatic sign recognition is a complex, multidisciplinary problem that has not
been fully solved. While recently there has been some lateral progress through
gesture recognition, driven mainly by the development of new technologies, there
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is still a long road ahead before accurate and robust applications are developed
that allow translating and interpreting the signs performed by an interpreter[1].
The complex nature of signs draws effort in various research areas such as human-
computer interaction, computer vision, movement analysis, machine learning and
pattern recognition.

The full task of recognizing a sign language involves a multi-step process [1],
which can be simplified as:

1. Tracking the hands of the interpreter
2. Segmenting the hands and creating a model of its shape
3. Recognizing the shapes of the hands
4. Recognizing the sign as a syntactic entity.
5. Assigning semantics to a sequence of signs.
6. Translating the semantics of the signs to the written language

While these tasks can provide feedback to each other, they can be carried
out mostly independently, and in different ways. For example, there are several
approaches for tracking hand movements: some use 3D systems [4,5], such as
MS Kinect, and others simply use a 2D image from an RGB camera [1,10]. Most
older systems employed movement sensors such as special gloves, accelerometers,
etc, but recent approaches generally focus on video, such as the one presented
here.

There are numerous publications dealing with the automated recognition of
sign languages, a field that started mostly in the 90s. Von Agris [10] and Cooper
[1] both present a general view of the state of the art in sign language recognition.

Sign language recognition employs different types of features, usually classi-
fied as manual and non-manual.

Non-manual features such as pose, lip-reading or face expressions are some-
times included to enhance the recognition process, since some signs cannot be
differentiated from manual information only [10]. In this regard, the tracking
of the head is mostly solved [9], but its segmentation with respect to an arbi-
trary background or in the presence of hand-head occlusions is still an unsolved
problem, as is the robust recognition of such non-manual features [10]. Manual
information, on the other hand, generally conveys most of the information in a
sign.

For tracking and segmentation of the hands, there is much interest in creating
skin color models to detect and track the hands of an interpreter on a video [8],
and adding the possibility of segmenting the hands [2], even in the presence of
hand-hand occlusions [11].

The handshape information of a sign is composed by a sequence of hand
poses. After segmenting the hand, it must represented in a convenient way for
handshape recognition. However, turning a hand pose into another requires a
non-rigid transformation of the hand, which must be also modeled, and capturing
non-rigid 3D transformations with occlusions using a 2D RGB camera is a hard
task. While the best possible output from this step would be a full 3D model of
the hand, this is generally hard to do without multiple cameras, special sensors or
markers [5]. In most cases the handshape is instead represented as a combination



of more abstract features based on geometric or morphologic properties of its
shape or texture [10].

Some researchers focus on fingerspelling [5], which is essentially a static hand-
shape recognition task. While some signs do indeed present a static handshape
in one or both hands, and no movement, most involve many handshapes and
their transitions (i.e., non-rigid body transformations of the hand), or rigid body
transformations of a single handshape (i.e., rotation and traslation), and a cer-
tain movement of the hands. To deal with these dynamic signs, SLR systems
are based usually on Hidden Markov Models (HMMs), Dynamic Time Warping
(DTW) or similar models, whether to recognize segmented signs or a continuous
stream [10,1]. These techniques attempt to model the sequence of positions and
handshapes, therefore exploiting the sequential ordering of frames to reduce the
number of hypothesis to test.

Finally, SLR techniques have traditionally employed sign-level models to rec-
ognize sign language. Recently, there have been many efforts to move from sign-
level models to sub-unit level models, analogously to the transition from word-
level to phoneme-level models in speech recognition [2]. The main problem found
in these attempts has been the difficulty to find a useful definition of sub-units
of a sign. Unlike speech, signing is very much multimodal and there is little stan-
dardization of both languages and specification languages, therefore a promising
approach is to infer such sub-units from training data [10].

1.2 Presented work

This paper presents a general classification model for sign language recognition
that focuses on step 4, that is, the recognition of signs as a syntactic entity on the
sign-level (i.e., a correspondence between a video containing a sign and a word).
The model is composed of a set of subclassifiers, each employing a bag-of-words
approach that ignores sequence information. This setup allows us to explore the
hypothesis that a classifier can still achieve high recognition accuracies under
such a constraint.

While models that exploit the ordering of frames such as HMMs should
theoretically achieve greater recognition accuracy, such constraint complicates
the inference of sub-units, since by definition they must too be ordered. The
bag of words approach can ease the task of determining sub-units, since their
sequence or transitions do not need to be specified or learned.

To test the model, we performed experiments on the LSA64 dataset, which
consists of 64 signs of the Argentinian Sign Language (LSA) and was recorded
with normal RGB cameras.

The document is organized as follows. Section 2 describes the LSA64 dataset,
the image processing and feature extraction. Section 3 defines the classifica-
tion model. Section 4 details the experiments carried out, and finally Section 5
presents the general conclusions.



2 Dataset and Features

2.1 Argentinian Sign Language Dataset (LSA64)

The sign dataset for the Argentinian Sign Language 3, includes 3200 videos
where each of the 10 non-expert subjects performed 5 repetitions of 64 different
types of signs.

To simplify the problem of hand segmentation within an image, subjects wore
fluorescent-colored gloves, as can be seen in Figure 1. The glove substantially
simplifies the problem of recognizing the position of the hand and performing its
segmentation by removing all issues associated to skin color variations and hand-
head occlusions, while fully retaining the difficulty of recognizing the handshape.

The dataset contains 22 two-handed signs and 42 one-handed ones, which
were selected among the most commonly used ones in the LSA lexicon.

Fig. 1. Snapshots of the performance of four different signs of the LSA64 database.

2.2 Preprocessing and Features

The pre-processing and feature extraction activities carried out with the database’s
videos consist of extracting hand and head positions, along with images of the
hand, segmented.

The detection of the hand, and generation of features based on the hand im-
ages for each video frame is based on the work of [7]. Additionally, the head of
the subjects is tracked via the Viola-Jones’s face detector [9]. The 2D position of
each hand is then transformed to be relative to that of the head. The positions
are normalized by dividing by the arm’s length of the subject, measured in cen-
timeters/pixels. In this way, the transformed positions represent displacements
from the head, in units of centimeters.

The result of this process is a sequence of frame informations, in which for
each frame we calculate the normalized position of both hands, and we extract
an image of each hand with the background segmented.

3 More information about this dataset can be found at http://facundoq.github.io/
unlp/lsa64/.

http://facundoq.github.io/unlp/lsa64/.
http://facundoq.github.io/unlp/lsa64/.


3 Classification Model

The model combines the output of two subclassifiers, one for each hand. The sub-
classifier for each hand combines as well the output of three other subclassifiers
that each use position, movement and handshape information (Figure 2).

Fig. 2. Diagram of the model.

From the sample video, the sequence of segmented hand images and hand
positions is extracted. For each hand, the position info is fed to the position and
movement subclassifiers, while the segmented hand images are used as input
for the handshape subclassifier. The right hand and left hand subclassifiers each
output probabilities for each class, and the final output combines those per class.

Since the proposed model classifies each hand separately, we define the prob-
ability of a sample sign x given a class of sign c as:

P (x|c) = P (xl|c)P (xr|c) (1)

where xl and xr is the sample sign information in the left and right hand respec-
tively. Being able to split the probabilities in this way depends on the (naive)
assumption that the synchronization between the hands is not important for
the recognition of the sign, or at least that such information is not crucial for
recognition.

The classifier for a single hand depends on several subclassifiers that focus
on specific parts of the sign. Since the same type of subclassifiers are employed
for each hand, in the following we assume that h can be either l or r, for left
and right.

The three subclassifiers for a hand h use the information of the sequence of
positions of the hand of the sample, xh

p , the movement it performs, xh
m, and the

sequence of handshapes it goes through, xh
s . Therefore the probability for a hand

can be written as:

P (xh|c) = P (xh
p |c)P (xh

m|c)P (xh
s |c) (2)



As before, Equation 2 assumes independence between xh
p , x

h
m and xh

s , that is,
that the position of the hand in no way restricts the types of possible movements
or configurations, etc. Since signers are usually restricted to move their hands
inside an imaginary square centered at their torso, this assumption holds in most
practical cases.

Hence, to classify a sample sign x we pick the class of sign c with the maxi-
mum probability P (x|c), that expands into:

P (x|c) = P (xl|c)P (xr|c) = P (xl
p|c)P (xl

m|c)P (xl
s|c)P (xr

p|c)P (xr
m|c)P (xr

s|c) (3)

Table 1 describes symbols of the notation. In the following subsections, we
describe how we calculate the probability for each subclassifier, and how we
extend this model to deal with the absence of a hand and signs in which a hand
does not move.

Table 1. Notation reference. The variable x refers always to sample information. Sub-
scripts indicate type of information. Superscripts indicate the hand. Variable a refers
to a parameter of the model.

c Class x Sample h
Hand h
(generic)

(·)h Hand h info

(·)l Left hand
info

(·)r Right hand
info

xh
p Position xh

s Handshape

xh
m Movement xh

tm Trajectory xh
am

Amount of
movement

xh
a

Absence of
hand h in
testing

ah
c

Hand h is not
used in class c

ah
c,m

Absence of
movement in

training

3.1 Position-based probability

From the set of absolute positions a hand goes through in the execution of the
sign, we only employ the first (fp) and last (lp). We performed a 2D Kolmogorov-
Smirnov normality test on the first and last positions and found that with a
confidence level of 95% there is enough evidence to reject the hypothesis of nor-
mality in 30% of the classes. However, when fitting the positions with a Gaussian
Mixture Model we found that for 78.5% of the models a single component pro-
vided the best Bayesian Information Criteria score, and that performance on the
test set was lower than with a single gaussian, possibly due to overfitting avoid-
ance. Therefore, we chose to model the positions for each class using a single 2D
normal distribution.



From the training set data we calculate the means µfp,c and µlp,c and co-
variances Σfp,c and Σlp,c of the first and last positions, for each class c. The
probability for a new sample with position information xp given class c is com-
puted as:

P (xh
p |c) = gfp,c(x

h
p)glp,c(x

h
p) (4)

where gfp,c is a 2D gaussian probability density function with mean µfp,c and
covariance Σfp,c. The gaussian glp,c is defined analogously for the last position
lp.

3.2 Movement-based probability

We consider two factors for the movement-based probability, based on trajectory
(xtm) and amount of movement (xam) information, so that:

P (xh
m|c) = P (xh

tm|c)P (xh
am|c) (5)

Amount of movement We calculate the amount of movement for a hand
h and a sign c as the maximum distance between two positions of the hand.
In the training phase, we compute the mean amount of movement µh

am,c along

with standard deviation σh
am,c. During testing, we penalize classes for which the

movement of testing sample x differs greatly from µh
am,c, so that:

P (xh
am|c) = gam,h(x

h
am) (6)

where gam,h is a 1D Gaussian probability density function with mean and stan-
dard deviation µh

am,c and σh
am,c.

Trajectory We calculate the probability for the trajectory of the hand, P (xh
tm|c),

adapting a classifier which was employed succesfully in [6] for action recognition.
In this model, a movement of the hand is described as a discrete path in space,
i.e., a list of positions in space. The model calculates the set of directions of
that discrete path in space, which is formed by the set of (normalized) vector
difference between hand positions in successive frames. By quantizing the pos-
sible directions, the classifier computes a distribution of directions of a sample
movement, which is then compared to the distribution of directions of training
samples to determine the probability of a sample for each class.

This subclassifier employs some sequence information, since to compute the
directions of the sign, we need to compute the vector difference between positions
of consecutive frames. However, after computing this difference, the order of
the directions is irrelevant for the subclassifier. Moreover, if we consider each
direction as an estimate of the instantaneous unit velocity of the hand at each
frame, we can see that this scheme is simply a proxy for computing the velocities
in each frame.



Signs with no movement in one or both hands Signs in which a hand
does not move present a problem. If a class c has very little or no movement,
then the trajectory probability P (xh

tm|c) is not useful and will probably penalize
classes randomly. To avoid this situation, we employ again the per-class amount
of movement means µh

am,c computed at training time, and we set a parameter:

ahc,m =

{
1 if µh

am,c > 5cm

0 if µh
am,c ≤ 5cm

(7)

where we determined the threshold as 5cm experimentally. We can use this
parameter as an exponent for P (xh

tm|c) to neutralize that factor for classes with
no or little movement by redefining Equation 5 as:

P (xh
m|c) = P (xh

tm|c)a
h
c,mP (xh

am|c) (8)

In this way, if a sign does not have movement in a hand, by setting ahc,m = 0
the model can ignore the trajectory information.

3.3 Handshape-based probability

To obtain the probabilities of each class for the sequence of handshapes of a sign
x, we first calculate the probability for each handshape on each frame of a sign,
based on the segmented 2D image of the hand, using the classifier described
in [7]. Then, we use the probabilities for all frames to model the sequence of
handshapes and transformations of the hand.

To calculate the handshape-based probability for the whole sign, we also em-
ploy a similar approach as in the trajectory-based subclassifier, but now instead
of quantizing over directions, we quantize over the set of vectors that indicate
the probability that the hand is in a given hand pose.

3.4 One-handed signs

Ignoring the information of an unused hand Some classes of signs only
use one hand. It is possible, however, that at recognition time the other hand
is not off camera but present in the video with random positions, movements
or handshapes. It is desirable not to consider the other hand’s information for
one-handed signs, since such random information could be interpreted by the
classifier as a genuine attempt to perform part of a sign. To avoid those situa-
tions, we can turn Equation 1 into:

P (x|c) = P (xl|c)a
l
cP (xr|c)a

r
c (9)

where alc and arc have value either 1 or 0. Setting ahc = 0 allows the model to
ignore information for hand h with respect to sign c, and is equivalent to setting
the probability for that hand to 1.

We can calculate the parameters ahc in various ways; the simplest approach,
used in this paper, is to set these parameters according with the annotations



provided for the dataset specifying which hands are employed for each class of
signs.

Exploiting the absence of a hand in the video When a hand h is missing
from a sample video, we can assume that there is no possibility that the sign
in the video uses that hand. If from the annotations mentioned in the previous
subsection we know that hand h is used in the signs of class c (i.e., ahc = 1), but
that hand is missing from the video, then the probability for a class c in that
case should be set to 0.

We can compute xh
a , a boolean variable with value 1 when hand h is present

in a sign when testing. We consider a hand as present when it can be detected
in more than 50% of the frames of the video. With it we can define:

P (xh
a |c) =

{
0 if ahc = 1 and xh

a = 0

1 otherwise
(10)

We can then add two factors (one for each hand) to Equation 9 to penalize
this situation, such that:

P (x|c) = P (xl|c)a
l
cP (xl

a|c)P (xr|c)a
r
cP (xr

a|c) (11)

4 Results

We performed experiments with the proposed model, setting parameters as de-
scribed in the previous sections. We employed a stratified random subsampling
cross-validation methodology, with an 80/20 training/testing split and 30 inde-
pendent runs for each experiment. In the following subsections we present and
analyze the results of the experiments.

4.1 Subject-dependent experiments

Table 2 shows the result of the subject-dependent experiments, where the model
obtains an accuracy of 96.2%. The table also shows the accuracies obtained by
the model when using a subset of the features, to measure how much each in-
formation each of the corresponding subclassifiers is providing. All subclassifiers
seem to provide non-redundant information, since the decreases in accuracy af-
ter removing a feature are all significant. Nonetheless, the position subclassifier
can classify correctly a large amount (76.1%) of signs by itself, which could be
an effect due to the distribution of positions in the dataset.

The ALL-HMM column also shows the mean accuracy when replacing the
trajectory and handshape subclassifiers with Hidden Markov Models with Gaus-
sian Mixture Models output probabilities (HMM-GMM). We trained a model for
each class and feature, using EM. Each model is a left-to-right HMM with skip
transitions and 4 states in all cases. The handshape subclassifier also uses as
input the output probabilities of the static handshape classifier described in [7].



We also performed subject-dependent experiments with the binary features
described in [3], that include the same kind of information our classifier consid-
ers (position, movement and handshape). The features were calculated for each
sample, and in each case the resulting features × frames matrix was resam-
pled so that the number of frames was the same for all samples (32 frames in
our experiments). The resulting features × 32 matrices were used as input to
a one-versus-all multiclass SVM with a linear kernel. The results of these ex-
periments, that followed the same cross-validation scheme, are shown in column
ALL-BF-SVM.

Table 2. Subject-dependent experiments, with various combinations of features. ALL:
all features. HS: Handshape features. MOV: Movement features. POS: Position fea-
tures. ALL-HMM: All features with HMM subclassifiers. ALL-BF-SVM: All features
with Binary Features and a SVM classifier.

ALL HS MOV POS HS-POS HS-
MOV

POS-
MOV

ALL-
HMM

ALL-
BF-SVM

µ 97.44 52.97 54.03 76.05 94.91 83.59 84.84 95.92 95.08
σ 0.59 1.74 1.71 0.62 0.52 0.87 0.90 0.95 0.69

To test the confusion of the model between one and two handed signs, we
performed independent experiments dividing the dataset in two subsets: one with
the one-handed signs (1H, 42 classes) and another with the two-handed ones (2H,
22 classes) (Table 3). Since the weighted mean between the accuracies of this
two experiments does not differ significantly from the subject-dependent mean
from Table 2 (97.44%), this provides evidence that the model is discriminating
very well between one and two-handed signs.

Table 3. Accuracy of the model on the one-handed (1H) and two-handed (2H) subsets
of the LSA64 dataset. The last column shows the mean accuracy between 1H and 2H,
weighted by the percentage of signs in each subset.

Subset 1H 2H Mean

µ 95.93 99.09 97.01
σ 1.31 0.77 -

Figure 3 shows the confusion matrix for all signs of the dataset. There are few
visible patterns in the matrix, providing some evidence that in general the model
does not suffer from biases. There are however some exceptions. For example, the
model confuses classes 24 and 26, since both posses similar movements and po-
sitions, and have only a subtle difference in handshape. Figure 4 shows the same
confusion matrix after removing the handshape classifier from the model. Here



the confusion between classes 24 and 26 increases dramatically, since without
handshape information it is impossible to distinguish the two.

Fig. 3. Confussion Matrix of the LSA64
database.

Fig. 4. Confussion Matrix of the LSA64
without HandShapes Subclassifier.

4.2 Subject-independent experiments

To evaluate how well the model generalizes with an unseen subject, we performed
subject-independent experiments, where we trained the model with nine of the
ten subjects and tested it with the remaining one. For each subject left out,
we performed 30 runs of the experiment, whose results are show in Table 4. As
expected, the accuracy decreases on these experiments, but not overmuch.

Table 4. Subject-independent experiments on the LSA64 database. Each column shows
the mean accuracy when testing with a subject. The final column shows total mean.

Subject 1 2 3 4 5 6 7 8 9 10 Mean

µ 94.5 93.8 87.7 93.8 91.8 92.6 89.1 90.3 88.4 94.6 91.7
σ 0.66 0.83 1.05 0.79 0.65 0.41 0.91 0.70 0.85 0.66 0.75

5 Conclusion

We have presented a sign language recognition model that does not employ
frame-sequence information and still achieves low classification error for both
subject-dependent and independent tasks. We tested the model on a medium-
sized Argentinian Sign Language dataset. We also compared the model to a



sequence dependent one by replacing the trajectory and handshape subclassifiers
with HMM-GMM models, and found little difference in the accuracy of both
models, providing further evidence of the validity of the sequence-agnostic model.
This approach could point the way to new ways of defining sub-units for sign
language recognition. The model could also provide advantages for real-time
recognition, specially for dealing with out-of-order or missing frames.

In future work, we plan on testing the model on continuous sign language
tasks with a sentence-level dataset, as well as determining its suitability for
real time tasks. We also plan on introducing new sub-classifiers to improve the
model’s performance.
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