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Abstract. SPEC is an automated equivalence checker for security protocols spec-
ified in the spi-calculus, an extension of the pi-calculus with cryptographic prim-
itives. The notion of equivalence considered is a variant of bisimulation, called
open bisimulation, that identifies processes indistinguishable when executed in
any context. SPEC produces compact and independently checkable bisimulations
that are useful for automating the process of producing proof-certificates for se-
curity protocols. This paper gives an overview of SPEC and discusses techniques
to reduce the size of bisimulations, utilising up-to techniques developed for the
spi-calculus. SPEC is implemented in the Bedwyr logic programming language
that we demonstrate can be adapted to tackle further protocol analysis problems
not limited to bisimulation checking.

1 Introduction

SPEC is a tool for automatically checking the equivalence of processes specified in the
spi-calculus [1], an extension of the π-calculus [12], with operators encoding crypto-
graphic primitives. The spi-calculus can be used to encode security protocols, and via
a notion of observational equivalence, security properties such as secrecy and authen-
tication can be expressed and proved. Intuitively, observational equivalence between
two processes means that the (observable) actions of the processes cannot be distin-
guished in any execution environment (which may be hostile, e.g., if it represents an ac-
tive attacker trying to compromise the protocol). The formal definition of observational
equivalence [1] involves infinite quantification over all such execution environments
and is therefore not an effective definition that can be implemented. SPEC implements
a refinement of observational equivalence, called open bisimulation [14, 18, 19] that re-
spects the context throughout execution. The decision procedure (for finite processes)
implemented here is derived from earlier work [20].

The current version of SPEC allows modelling of symmetric and asymmetric en-
cryption, digital signatures, cryptographic hash functions, and message authentication
codes (MAC). It is currently suited to work with finite processes, i.e., those without
recursion or replication. SPEC is designed with the goal of producing explicit witness
of equivalence, in the form of a bisimulation set, that can be verified independently. To
reduce the size of the witness, so as to ease verification, we employ a technique known
as bisimulation “up-to” [15]. Bisimulation up-to allows one to quotient a bisimulation
with another relation, as long as the latter is sound w.r.t. bisimilarity. Section 5 discusses
some simple up-to techniques that produce significant reduction in proof size.



The proof engine of SPEC is implemented in the Bedwyr prover [3], with a user
interface implemented directly in OCaml utilising a library of functions available from
Bedwyr. The user, however, does not need to be aware of the underlying Bedwyr im-
plementation and syntax in order to use the tool. The latest version of SPEC can be
downloaded from the project page.1

This paper gives a high-level overview of SPEC and the theory behind it. For a
more detailed hands-on tutorial, the reader is referred to the user manual included in
the SPEC distribution. All examples discussed here can also be found in the example
directory in the distribution.

SPEC is one of a handful of tools for checking observational equivalence for crypto-
graphic process calculi. We briefly mention the other tools here; Cheval’s PhD thesis [9]
gives a good overview of the state of the art. Brias and Borgström implemented the SBC
tool to check symbolic bisimulation for the spi-calculus [5, 6]. SBC does not allow com-
pound keys in encryption, nor does it support asymmetric encryption, so it is strictly less
expressive than SPEC (see Section 4). Blanchett implements an extension to ProVerif to
check observational equivalence of biprocesses [4], i.e., pairs of processes which differ
only in the structure of the terms, by reducing it to reachability analysis. Other tools
such as AKISS [7], Adecs [9] and APTE [10] implement symbolic trace equivalence
checking (for bounded processes), which is coarser than bisimulation. However, unlike
SPEC, none of these tools currently produce proofs to support the correctness claim for
the protocols they verify.

2 The spi-calculus

The spi-calculus generalises the π-calculus by allowing arbitrary terms (or messages) to
be output, instead of just names. The set of messages allowed is defined by the following
grammar:

M,N ::= x | 〈M,N〉 | enc(M,N) | pub(M) | aenc(M,N) | sign(M,N) | h(M) | mac(M)

where x denotes a variable. The message 〈M,N〉 represents a pair of messages M and N,
enc(M,N) represents a message M encrypted with symmetric key N using a symmetric
encryption function, aenc(M,N) represents a message M encrypted with public key N
using an asymmetric encryption function, pub(M) represents a public key correspond-
ing to secret key M, sign(M,N) represents a message M signed with secret key N using
a digital signature function, h(M) represents the hash of M and mac(M) represents the
MAC of M.

The language of processes is given by the following grammar:

P ::= 0 | τ.P | x(y).P | x̄〈M〉.P | ν(x1, . . . , xm).P | (P | P) | (P + P) |!P |
[M = N]P | [checksign(M,N, L)]P |
let 〈x, y〉 = M in P | case M of enc(x,N) in P | let x = adec(M,N) in P.

The intuitive meaning of each of the process constructs is as follows:

1 http://www.ntu.edu.sg/home/atiu/spec-prover/.



– 0 is a deadlocked process. It cannot perform any action.
– τ.P performs a silent action then continues as P.
– x(y).P is an input-prefixed process, where y is bound in P. The process accepts a

value on channel x, binds it to the variable y and evolves as P.
– x̄〈M〉.P is an output-prefixed process. It outputs a message M on channel x and

evolves into P.
– ν(x1, . . . , xm).P is a process that introduces m fresh names x1, . . . , xm that can be

used in the body of P. These fresh names may be used to represent nonces in pro-
tocols or (private) encryption keys.

– P | Q is the parallel composition of P and Q.
– P + Q represents a non-deterministic choice between P and Q.
– !P is a replicated process representing infinitely many parallel copies of P.
– [M = N]P is a process which behaves like P when M is syntactically equal to N.
– [checksign(M,N, L)]P is used to check that a signature is valid with respect to a

message and public key. This process behaves like P when M is a message, N
is message M signed with some secret key K, i.e. N = sign(M,K), and L is the
corresponding public key pub(K).

– let 〈x, y〉 = M in P is a deconstructor for pairs. The variables x and y are binders
whose scope is P. This process checks that M decomposes to a pair of messages,
and binds those messages to x and y, respectively.

– case M of enc(x,N) in P is a deconstructor for symmetrically encrypted messages.
The variable x here is a binder whose scope is P. This process checks that M is a
message encrypted with key N, decrypts the encrypted message and binds it to x.

– let x = adec(M,N) in P is a deconstructor for asymmetrically encrypted messages
that binds free occurrences of x in P. This process checks that M is a message
encrypted with public key pub(N), and binds the resulting decrypted message to x.

3 Open bisimulation

The equivalence checking procedure implemented by SPEC is based on a notion of
open bisimulation for the spi-calculus developed in [18]. Two processes related by open
bisimulation [16] are observationally indistinguishable, and remain so even if they are
executed in an arbitrary execution context. Hence open bisimulation is robust in an
environment where processes are mobile.

An open bisimulation is a relation over processes, parameterised by a representation
of the history of messages called a bitrace, satisfying some conditions (see [19, 20]).
The bitrace is a list of i/o pairs which are either an input pair, written (M,N)i, where
M and N are messages, or an output pair, written (M,N)o. Note that open bisimulation
uses names, indicated using boldface, to distinguish extruded private names from free
variables. We call these names rigid names, to distinguish them from constants.

A bitrace represents the history of messages input and output by a pair of processes.
That is, the first (resp. the second) projection of a bitrace represents a trace of the first
(resp. the second) process in the pair. In an open bisimulation, a bitrace attached to a
pair of processes must be consistent [19]. Roughly, consistency here means that the two
traces that form the bitrace are indistinguishable to the attacker. One instance where



this is the case is if the two traces are syntactically identical. However, we also allow
two traces to be indistinguishable if one can be obtained from the other by renaming
the rigid names in the traces. The idea is that these rigid names represent nonces (i.e.,
random numbers) generated during runs of a protocol and should therefore be treated
as indistinguishable: a process that outputs a random number and terminates should be
considered indistinguishable from another process that also outputs a random number
and terminates, although they may output different random numbers. The actual notion
of consistency of bitraces extends this further to allow traces that contain different en-
crypted parts that cannot be decrypted by the attacker to be treated as indistinguishable.
The reader is referred to [19] for the formal definition of bitrace consistency.

Two processes P and Q are bisimilar if there exists a bisimulation set containing the
triple (H, P,Q), where H is a bitrace consisting of input pairs of identical free variables
occurring in P and Q. Intuitively, H makes explicit that free variables in P and Q may
be affected by earlier inputs in the context.

SPEC also supports progressing bisimulation [13], which is a form of weak bisim-
ulation sensitive to mobile contexts. Simulation is also supported by the keyword sim
in place of bisim.

4 An example

We show here a simple example to illustrate features of the bisimulation output. The
SPEC distribution contains a number of examples, including small tests and full proto-
cols. Consider the following two processes.

P := a(x).ν(k).ā〈enc(x, k)〉.ν(m).ā〈enc(m, enc(a, k))〉.m̄〈a〉

Q := a(x).ν(k).ā〈enc(x, k)〉.ν(m).ā〈enc(m, enc(a, k))〉.[x = a]m̄〈a〉

This example is taken from [6], where it is used to show the incompleteness of their
symbolic bisimulation. The process P inputs a message via channel a, binds it to x and
outputs an encrypted message enc(x, k). It then generates a new channel m, sends it off

encrypted with the key enc(a, k). Here we assume a is a constant (or a public channel),
so it is known to the intruder. The process then sends a message on the newly generated
channel m. Although the channel m is a secret generated by P, and it is not explicitly
extruded, the intruder can still interact via m if it feeds the name a to P (hence binds x to
a). As a result, the (symbolic) output enc(x, k) can be ‘concretized’ to enc(a, k), which
can be used to decrypt enc(m, enc(a, k)) to obtain m.

The process Q is very similar, except that it puts a ‘guard’ on the possibility of inter-
acting on m by insisting that x = a. The above informal reasoning about the behaviour
of P shows that it should be observationally equivalent to Q. SPEC shows that the two
processes are bisimilar, and produces the following bisimulation (up-to) set:

1. Bi-trace: (?a, ?a)i

First process:
?a(n3).ν(n4).?a〈 enc(n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.n5〈 ?a 〉.0.
Second process:
?a(n3).ν(n4).?a〈 enc(n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.[n3 = ?a]n5〈 ?a 〉.0.



2. Bi-trace: (?a, ?a)i.(?n3 , ?n3)i.
First process: ν(n4).?a〈 enc(?n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.n5〈 ?a 〉.0
Second process:
ν(n4).?a〈 enc(?n3, n4) 〉.ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.[?n3 = ?a]n5〈 ?a 〉.0.

3. Bi-trace: (?a, ?a)i.(?n3 , ?n3)i.(enc(?n3, n4) , enc(?n3, n4))o.
First process: ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.n5〈 ?a 〉.0
Second process: ν(n5).?a〈 enc(n5, enc(?a, n4)) 〉.[?n3 = ?a]n5〈 ?a 〉.0.

4. Bi-trace:
(?a, ?a)i.(?n3 , ?n3)i.(enc(?n3, n4) , enc(?n3, n4))o.

(enc(n5, enc(?a, n4)) , enc(n5, enc(?a, n4)))o.
First process: n5〈 ?a 〉.0, and second process: [?n3 = ?a]n5〈 ?a 〉.0.

5. Bi-trace:
(?a, ?a)i.(enc(?a, n3) , enc(?a, n3))o.(enc(n4, enc(?a, n3)) , enc(n4, enc(?a, n3)))o.
First process: 0, and second process: 0.

This is more or less the output produced automatically by SPEC, with minor editing
to improve presentation. A few notes on this output:

– Typesetting of names and variables: Variables are typeset by prefixing the variables
with a question mark ‘?’ to distinguish them from private names. Notice how input
prefixes are replaced with variables in the bitraces, e.g., when moving from 1 to 2.

– The triples are given in the order of the unfolding of the processes, e.g., the first
triple is the original input processes (with a bitrace indicating free variable ?a)
which unfolds to the second triple. Notice that in moving from 4 to 5, the input pair
disappears from the bitrace. This is because the variable ?n3 gets instantiated to ?a,
and is removed from the bitrace by the simplification steps of SPEC.

– Equivariance of bisimulation: Notice that in proceeding from 4 to 5 there is an
implicit renaming performed by SPEC. It is a by-product of equivariance tabling
implemented in Bedwyr (see Section 5). Each triple in the bisimulation set output
by SPEC represents an equivalence class of triples modulo renaming of variables
and names (but excluding constants).

5 Implementation

The proof engine of SPEC is implemented on top of the theorem prover/model checker
Bedwyr [3]. The logic behind Bedwyr is a variant of the logic Linc [17], which is a
first-order intuitionistic logic, extended with fixed points and a name-quantifier ∇. The
quantifier ∇ provides a logical notion of fresh names and is crucial to modelling scope
extrusion and fresh name generation in bisimulation checking. Propositions are consid-
ered equivalent modulo renaming of ∇-variables. This property, called the equivariance
principle, allows one to support equivariant reasoning in bisimulation checking, by en-
coding names in the spi-calculus as ∇-quantified variables.

The proof extraction part of SPEC relies on the tabling mechanism in Bedwyr. Bed-
wyr allows one to store previously proved goals in a table, and reuse them in proving a
query later. SPEC utilises this to store bisimulation triples in the table. The earlier ver-
sions of Bedwyr implement a simple syntactic matching to query a table, which results



in too many variants of the same triples to be stored. In the course of SPEC imple-
mentation, the tabling mechanism in Bedwyr is modified so as to allow one to match a
query with a table entry modulo renaming of ∇-variable. Logically, this is justified by
the equivariant principle of the logic underlying Bedwyr. We call this form of tabling
equivariant tabling.

In the initial version of SPEC, where a naı̈ve version of the bisimulation algorithm
from [20] was implemented, the size of the bisimulation sets quickly got out of hand,
even for small examples. Several simplifications have then been introduced to reduce
the size of the bisimulation sets. However, these simplifications mean that the produced
sets are no longer bisimulations; they are, instead, bisimulation up-to sets, in the sense
of [15]. The following are among the simplifications done in bisimulation checking:

– Equivariant tabling. The bisimulation set is closed under renaming.
– Reflexivity checking. This says that any process P should be considered bisimilar

to itself. However, a simple syntactic check is not enough, and even unsound. This
is due to the fact that in a triple (H, P, P), the bitrace H may have different orders of
names. For example, if H = (a, b)o.(b, a)o, then the triple (H, c̄〈a〉.0, c̄〈a〉.0) is not in
the largest bisimilarity. One needs to consider equality checking modulo renaming.

– Structural simplification. This is basically applying structural congruences to sim-
plify processes.

These rather straightforward simplifications, especially equivariant tabling, turn out to
be effective in reducing the bisimulation set and running time. Table 1 shows the sig-
nificant effect of equivariant tabling on a selection of example problems. The protocols
are single-session authentication protocols, encoded into the spi-calculus by Brias and
Borgström in the SBC prover. The table shows the running time (in seconds) and the
size of the bisimulation set produced for each example. These examples were tested
on a PC with Intel Xeon CPU E5-1650, 16GB RAM and running Ubuntu 14.04 LTS
64-bit operating system. The descriptions of the protocols can be found in, e.g., the
security protocol repository at ENS Cachan.2 The performance gain seems to increase
with larger examples, e.g., the amended version of the Needham-Schroeder symmetric
key authentication protocol produced more than ten thousand triples in the earlier unim-
proved version of SPEC, but has been cut down to 835 triples in the current version.

Note that the running time is still considerably higher than other tools such as
ProVerif, which can solve all these problems in a few seconds. However, ProVerif and
other tools do not produce symbolic proofs of equivalence, so there is no direct com-
parison with this proof-producing aspect of SPEC.

6 Key Cycles Detection

Bedwyr is suited to protocol analysis problems beyond bisimulation. To illustrate this
power, SPEC includes a feature that detects key cycles. Key cycles are formed when
a key is directly or indirectly encrypted by itself. The absence of key cycles in possi-
ble runs of a protocol is important in relating symbolic approaches and computational

2 http://www.lsv.ens-cachan.fr/Software/spore/



Protocol Equiv. tabling on Equiv. tabling off

Time Proof Size Time Proof Size
Andrew Secure RPC (BAN version) 16s 98 17s 108
Denning-Sacco-Lowe 19s 63 31s 103
Kao Chow, v.1 140s 223 215s 300
Kao Chow, v.2 177s 259 273s 352
Needham-Schroeder symm. key 46s 161 50s 173
Needham-Schroeder symm. key (amended) 377s 835 1598s 2732
Yahalom (BAN version) 268s 513 281s 548
Yahalom (Paulson’s version) 288s 513 300s 548

Table 1. Running time and bisimulation size for some authentication protocols

approaches to protocol analysis [11]. For example, the process

nu(k1, k2).a〈enc(k1, k2)〉.a〈enc(k2, k1)〉

has a private key k1 encrypted with private key k2 which is encrypted with k1. Key
cycles are a security issue, since the computational security of the encryption function
is dependent on the assumption there are no such cycles. Thus although both k1 and
k2 are never directly revealed to attackers, we cannot computationally prove that the
encryption cannot be broken.

For example, using keyword keycycle, SPEC detects that the following generates
a key cycle.

P B ν(k1, k2, k3).(a〈enc(k1, k3) | a(x).case x of enc(y, k3).a〈enc(y, k2)〉 | a〈k2, k1〉)

7 Future work

We are investigating extensions of SPEC to include blind signatures [8], homomorphic
encryption and the mismatch operator. Each of these features requires a problem in the
theory to be resolved, before an implementation can be proven to be correct. SPEC is in-
tended to be part of a tool chain for machine assisted certification of security protocols.
Another part of this tool chain will involve a proof assistant that will be used to in-
dependently verify the bisimulation up-to relations generated by SPEC. Independently
verifiable bisimulation up-to relations would thereby form dependable proof certificates
for security protocols.
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