Skip to main content

ROS-Gazebo Supported Platform for Tag-in-Loop Indoor Localization of Quadrocopter

  • Conference paper
  • First Online:
Book cover Intelligent Autonomous Systems 14 (IAS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Included in the following conference series:

Abstract

Localization and navigation inside GPS-denied buildings has been one of the main technological challenges of quadrocopter researches. Hereafter, this paper proposes and develops a supporting research platform integrated with 2D tag visual fiducials for quadrocopter indoor autonomous localization. Robot operating system (ROS) and Gazebo are simultaneously fused into the integrated platform. Under such circumstances, tag-involved images are sequentially captured via on-board cameras, while vehicle position/posture is achieved via off-board processing based on the open-source AprilTag algorithm. Simulation and experiments of the AR.Drone 2.0 are conducted to demonstrate the system architecture and workflow of the developed tag-in-loop indoor localization research platform. The results validate the effectiveness and application potentials of the ROS-Gazebo platform to support quadrocopters’ autonomous indoor localization, flight autopilot, and cooperative control, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das, A.K., et al.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Google Scholar 

  2. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 0278364911434236 (2012)

    Google Scholar 

  3. Ritz, R., et al.: Cooperative quadrocopter ball throwing and catching. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2012)

    Google Scholar 

  4. Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: ICRA’09. IEEE International Conference on Robotics and Automation, 2009. IEEE (2009)

    Google Scholar 

  5. Blösch, M., et al.: Vision based MAV navigation in unknown and unstructured environments. In: 2010 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2010)

    Google Scholar 

  6. Achtelik, M., et al.: Onboard IMU and monocular vision based control for MAVs in unknown in-and outdoor environments. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)

    Google Scholar 

  7. Bylow, E., et al.: Real-time camera tracking and 3D reconstruction using signed distance functions. Robotics: In: Science and Systems (RSS) Conference 2013, vol. 9 (2013)

    Google Scholar 

  8. Achtelik, M., et al.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: SPIE Defense, Security, and Sensing. International Society for Optics and Photonics (2009)

    Google Scholar 

  9. Huang, A.S., et al.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR) (2011)

    Google Scholar 

  10. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)

    Google Scholar 

  11. Müller, M., Lupashin, S., D’Andrea, R.: Quadrocopter ball juggling. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2011)

    Google Scholar 

  12. Eberli, D., et al.: Vision based position control for MAVs using one single circular landmark. J. Intell. Robot. Syst. 61(1–4), 495–512 (2011)

    Google Scholar 

  13. Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot. Auton. Syst. 62(11), 1646–1656 (2014)

    Article  Google Scholar 

  14. Chu, C.-H., Yang, D.-N., Chen, M.-S.: Image stabilization for 2D barcode in handheld devices. In: Proceedings of the 15th International Conference on Multimedia. ACM (2007)

    Google Scholar 

  15. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)

    Google Scholar 

  16. Wagner, D., et al.: Pose tracking from natural features on mobile phones. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society (2008)

    Google Scholar 

  17. Mohan, A., et al.: Bokode: imperceptible visual tags for camera based interaction from a distance. ACM Trans. Graph. (TOG) 28(3), 98 (2009)

    Google Scholar 

  18. Dijkshoorn, N.: Simultaneous localization and mapping with the ar. drone. Ph.D. dissertation, Masters thesis, Universiteit van Amsterdam (2012)

    Google Scholar 

  19. Martinez, A., Fernández, E.: Learning ROS for Robotics Programming. Packt Publishing Ltd. (2013)

    Google Scholar 

  20. Horaud, R., et al.: An analytic solution for the perspective 4-point problem. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR’89. IEEE (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjiang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, S., Hu, T. (2017). ROS-Gazebo Supported Platform for Tag-in-Loop Indoor Localization of Quadrocopter. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics