Skip to main content

An Efficient System for Finding Functional Motifs in Genomic DNA Sequences by Using Nature-Inspired Algorithms

  • Conference paper
  • First Online:
Book cover Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 (AISI 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 533))

  • 2485 Accesses

Abstract

Motifs are short patterns in Deoxyribonucleic Acid (DNA) that indicate the presence of certain biological characteristics. Motifs finding is the process of successfully finding meaningful motifs in large DNA sequences. Nature-inspired algorithms have been recently gaining much popularity in solving complex and large real-world optimization problems similar to the motif finding problem. This work aims on investigating the application of nature-inspired algorithms in motif finding problem. The investigation methodology is divided into three main approaches; the first is to apply well-known nature-inspired algorithms in solving the problem, then the enhancement of an algorithm is investigated, and finally the hybridization between two algorithms is investigated. Experiments are performed on synthetic as well as real data sets. The results show that the combination provides the best results, however, individual and modified algorithms provide also good results compared to some state-of-the-art tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’haeseleer, P.: What are DNA sequence motifs? Nat. Biotechnol. 24(4), 423–425 (2006)

    Article  Google Scholar 

  2. Marbrouk, M., Hamdy, M., Mamdouh, M., Aboelfotoh, M., Kadah, Y.M.: BIOINFTool: bioinformatics and sequence data analysis in molecular biology using Mat Lab. In: Proceedings of Cairo International Biomedical Engineering Conference, 01–09 October 2006

    Google Scholar 

  3. Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity–Mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)

    Article  Google Scholar 

  4. Smolinski, T.G., Milanova, M.M., Hassanien, A.E.: Applications of Computational Intelligence in Biology: Current Trends and Open Problems. Studies in Computational Intelligence Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  5. Smolinski, T.G., Milanova, M.M., Hassanien, A.E.: Applications of Computational Intelligence in Bioinformatics and Biomedicine: Current Trends and Open Problems. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  6. Abdelhalim, M.B., Habib, S.E.D.: Particle swarm optimization for HW/SW partitioning. In: Lazinica, A. (ed.) Particle Swarm Optimization, pp. 49–76. Tech Education and Publishing, New York (2009)

    Google Scholar 

  7. Wei, W., Xiao-Dan, Yu.: Comparative analysis of regulatory motif discovery tools for transcription factor binding sites. Genom. Proteomics Bioinf. 5(2), 131–142 (2007)

    Article  Google Scholar 

  8. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences. Bioinformatics 18(suppl 1), S354–S363 (2002)

    Article  Google Scholar 

  9. Pavesi, G., et al.: Weeder web: discovery of transcription factor binding sites in a set of sequences from co-regulared genes. Nucl. Acids Res. 32, 199–203 (2004)

    Article  Google Scholar 

  10. Bailley, T., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach. Learn. 21(1–2), 51–80 (1995)

    Google Scholar 

  11. Roth, P., et al.: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16(10), 939–945 (1998)

    Article  Google Scholar 

  12. Vijayvargiya, S., Shukla, P.: Identification of transcription factor binding sites using genetic algorithm. Int. J. Res. Rev. Comput. Sci. 2(2), 100–107 (2011)

    Google Scholar 

  13. Basha Gutierrez, J., Frith, M., Nakai, K.: A genetic algorithm for motif finding based on statistical significance. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part I. LNCS, vol. 9043, pp. 438–449. Springer, Heidelberg (2015)

    Google Scholar 

  14. Reddy, U., et al.: A particle swarm solution for planted(l, d)-Motif problem. In: IEEE Symposium in Bioinformatics and Computational Biology (CIBCB), pp. 222–229 (2013)

    Google Scholar 

  15. Lei, C., Ruan, J.: A particle swarm optimization-based algorithm for finding gapped motifs. BioData Min. 3(1), 3–9 (2010)

    Article  Google Scholar 

  16. Das, M.K., Dai, H.K.: A survey of DNA motif finding algorithms. BMC Bioinf. 8(7), 1 (2007)

    Google Scholar 

  17. Yang, X., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications (2009)

    Google Scholar 

  18. Zhang, Y., Wang, L., Wu, Q.: Modifed adaptive cuckoo search (MACS) algorithm and formal description for global optimisation. Int. J. Comput. Appl. Technol. 44(2), 73–79 (2012)

    Article  MathSciNet  Google Scholar 

  19. Sinaie, S.: Solving shortest path problem using gravitational search algorithm and neural networks (Doctoral dissertation, Universiti Teknologi Malaysia) (2010)

    Google Scholar 

  20. Zhang, Yu., Wu, L., Zhang, Y., Wang, J.: Immune gravitation inspired optimization algorithm. In: Huang, D.-S., Gan, Y., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2011. LNCS, vol. 6838, pp. 178–185. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. González-Álvarez, D.L., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. In: International Work-Conference on Artificial Neural Networks, pp. 372–379 (2011)

    Google Scholar 

  22. Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding subtle signals in DNA sequences. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, California USA, pp. 269–278 (2000)

    Google Scholar 

  23. Tompa, M., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23(1), 137–144 (2005)

    Article  MathSciNet  Google Scholar 

  24. Chan, T.M. et al.: TFBS identification by position and consensus-led genetic algorithm with local filtering. In: GECCO 2007: Proceedings of the 2007 Conference on Genetic and Evolutionary Computation, pp. 377–384. ACM, London, England (2007)

    Google Scholar 

  25. Hassanien, A.E., Alamry, E.: Swarm Intelligence: Principles, Advances, and Applications. CRC – Taylor & Francis Group (2015). ISBN 9781498741064 - CAT# K26721

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtehal S. Elewa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Elewa, E.S., Abdelhalim, M.B., Mabrouk, M.S. (2017). An Efficient System for Finding Functional Motifs in Genomic DNA Sequences by Using Nature-Inspired Algorithms. In: Hassanien, A., Shaalan, K., Gaber, T., Azar, A., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. AISI 2016. Advances in Intelligent Systems and Computing, vol 533. Springer, Cham. https://doi.org/10.1007/978-3-319-48308-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48308-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48307-8

  • Online ISBN: 978-3-319-48308-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics