Skip to main content

Distributed Evacuation in Graphs with Multiple Exits

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9988))

Abstract

We consider the problem of efficient evacuation using multiple exits. We formulate this problem as a discrete problem on graphs where mobile agents located in distinct nodes of a given graph must quickly reach one of multiple possible exit nodes, while avoiding congestion and bottlenecks. Each node of the graph has the capacity of holding at most one agent at each time step. Thus, the agents must choose their movements strategy based on locations of other agents in the graph, in order to minimize the total time needed for evacuation. We consider two scenarios: (i) the centralized (or offline) setting where the agents have full knowledge of initial positions of other agents, and (ii) the distributed (or online) setting where the agents do not have prior knowledge of the location of other agents but they can communicate locally with nearby agents and they must modify their strategy in an online fashion while they move and obtain more information. In the former case we present an offline polynomial time solution to compute the optimal strategy for evacuation of all agents. In the online case, we present a constant competitive algorithm when agents can communicate at distance two in the graph. We also show that when the agents are heterogeneous and each agent has access to only a subgraph of the original graph then computing the optimal strategy is NP-hard even with full global knowledge. This result holds even if there are only two types of agents.

Research partially supported by the Polish National Science Center grant DEC-2011/02/A/ST6/00201 and by the ANR (France) project MACARON (anr-13-js02-0002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Due to the space constraint, proofs of Theorems 3 and 6 have been omitted. They can be found in the appendix of the pre-proceedings version of the paper, available online at the conference site: http://sirocco2016.hiit.fi.

References

  1. Alspach, B.: Searching and sweeping graphs: a brief survey. Le Matematiche (Catania) 59, 5–37 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Berlin, G.: The use of directed routes for assessing escape potential. Fire Technol. 14(2), 126–135 (1978)

    Article  Google Scholar 

  3. Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers 6, 72–78 (1967)

    Google Scholar 

  4. Chalmet, L., Francis, R., Saunders, P.: Network models for building evacuation. Fire Technol. 18(1), 90–113 (1982)

    Article  Google Scholar 

  5. Chrobak, M., Gasieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46078-8_14

    Google Scholar 

  6. Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45174-8_9

    Google Scholar 

  7. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (Extended Abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18173-8_10

    Chapter  Google Scholar 

  8. Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  MATH  Google Scholar 

  9. Farrugia, A., Gasieniec, L., Kuszner, L., Pacheco, E.: Deterministic rendezvous in restricted graphs. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 189–200. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46078-8_16

    Google Scholar 

  10. Ford, L., Fulkerson, D.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  11. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  12. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: PODC 2006, pp. 179–187. ACM (2006)

    Google Scholar 

  13. Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems - a state of the art. In: Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Heidelberg (2002)

    Google Scholar 

  14. Higashikawa, Y., Golin, M., Katoh, N.: Multiple sink location problems in dynamic path networks. Theor. Comput. Sci. 607, 2–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kappmeier, J.P.: Generalizations of flows over time with applications in evacuation optimization. Ph.D. thesis, Technische Universität Berlin (2015)

    Google Scholar 

  16. del Moral, A.A., Takimoto, M., Kambayashi, Y.: Distributed evacuation route planning using mobile agents. Trans. Comput. Collective Intell. 17, 128–144 (2014)

    Google Scholar 

  17. Tovey, C.: A simplified NP-complete satisfiability problem. Discr. Appl. Math. 8, 85–89 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Kuszner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł. (2016). Distributed Evacuation in Graphs with Multiple Exits. In: Suomela, J. (eds) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science(), vol 9988. Springer, Cham. https://doi.org/10.1007/978-3-319-48314-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48314-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48313-9

  • Online ISBN: 978-3-319-48314-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics