Skip to main content

Sparsifying Congested Cliques and Core-Periphery Networks

  • Conference paper
  • First Online:
Book cover Structural Information and Communication Complexity (SIROCCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9988))

Abstract

The core-periphery network architecture proposed by Avin et al. [ICALP 2014] was shown to support fast computation for many distributed algorithms, while being much sparser than the congested clique. For being efficient, the core-periphery architecture is however bounded to satisfy three axioms, among which is the capability of the core to emulate the clique, i.e., to implement the all-to-all communication pattern, in O(1) rounds in the CONGEST model. In this paper, we show that implementing all-to-all communication in k rounds can be done in n-node networks with roughly \(n^2/k\) edges, and this bound is tight. Hence, sparsifying the core beyond just saving a fraction of the edges requires to relax the constraint on the time to simulate the congested clique. We show that, for \(p\gg \sqrt{\log n/n}\), a random graph in \(\mathcal{G}_{n,p}\) can, w.h.p., perform the all-to-all communication pattern in \(O(\min \{\frac{1}{p^2},n p\})\) rounds. Finally, we show that if the core can emulate the congested clique in t rounds, then there exists a distributed MST construction algorithm performing in \(O(t\log n)\) rounds. Hence, for \(t=O(1)\), our (deterministic) algorithm improves the best known (randomized) algorithm for constructing MST in core-periphery networks by a factor \(\varTheta (\log n)\).

P. Fraigniaud—Additional supports from ANR project DISPLEXITY, and Inria project GANG.

Z. Lotker—Additional supports from Foundation des Sciences Mathématiques de Paris (FSMP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avin, C., Borokhovich, M., Lotker, Z., Peleg, D.: Distributed computing on core-periphery networks: axiom-based design. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 399–410. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_34

    Google Scholar 

  2. Broder, A.Z., Frieze, A.M., Upfal, E.: Existence and construction of edge-disjoint paths on expander graphs. SIAM J. Comput. 23(5), 976–989 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: ACM Symposium on Principles of Distributed Computing (PODC), pp. 143–152 (2015)

    Google Scholar 

  4. Censor-Hillel, K., Toukan, T.: On fast and robust information spreading in the vertex-congest model. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 270–284. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25258-2_19

    Chapter  Google Scholar 

  5. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: ACM Symposium on Principles of Distributed Computing (PODC), pp. 367–376 (2014)

    Google Scholar 

  6. Elkin, M.: A faster distributed protocol for constructing a minimum spanning tree. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 359–368 (2004)

    Google Scholar 

  7. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Struct. Algorithms 1(4), 447–460 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frieze, A.M.: Disjoint paths in expander graphs via random walks: a short survey. In: Luby, M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 1–14. Springer, Heidelberg (1998). doi:10.1007/3-540-49543-6_1

    Chapter  Google Scholar 

  9. Frieze, A.M.: Edge-disjoint paths in expander graphs. In: 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 717–725 (2000)

    Google Scholar 

  10. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

    Article  MATH  Google Scholar 

  11. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for minimum-weight spanning trees. SIAM J. Comput. 27(1), 302–316 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: 35th ACM Symposium on Principles of Distributed Computing (PODC) (2016)

    Google Scholar 

  13. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquizzato, M.: Toward optimal bounds in the congested clique: graph connectivity and MST. In ACM Symposium on Principles of Distributed Computing (PODC), pp. 91–100 (2015)

    Google Scholar 

  14. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to MapReduce. Theor. Comput. Sci. 608, 268–281 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time distributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 514–530. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45174-8_35

    Google Scholar 

  16. Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and applications. J. Algorithms 28(1), 40–66 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leighton, T., Rao, S., Srinivasan, A.: Multicommodity flow and circuit switching. In: 31st Hawaii International Conference on System Sciences, pp. 459–465 (1998)

    Google Scholar 

  18. Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In ACM Symposium on Principles of Distributed Computing (PODC), pp. 42–50, (2013)

    Google Scholar 

  19. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in O(log log n) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter graphs. In: 20th ACM Symposium on Principles of Distributed Computing (PODC), pp. 63–71 (2001)

    Google Scholar 

  21. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  22. Ookawa, H., Izumi, T.: Filling logarithmic gaps in distributed complexity for global problems. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 377–388. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46078-8_31

    Google Scholar 

  23. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction. SIAM J. Comput. 30(5), 1427–1442 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G, Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. In: 43rd ACM Symposium on Theory of Computing (STOC), pp. 363–372 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Fraigniaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Balliu, A., Fraigniaud, P., Lotker, Z., Olivetti, D. (2016). Sparsifying Congested Cliques and Core-Periphery Networks. In: Suomela, J. (eds) Structural Information and Communication Complexity. SIROCCO 2016. Lecture Notes in Computer Science(), vol 9988. Springer, Cham. https://doi.org/10.1007/978-3-319-48314-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48314-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48313-9

  • Online ISBN: 978-3-319-48314-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics