
A Toolbox Supporting Agile Modelling Method
Engineering: ADOxx.org Modelling Method

Conceptualization Environment

Nesat Efendioglu(&), Robert Woitsch, and Wilfrid Utz

BOC Asset Management GmbH, Operngasse 20B, 1040 Vienna, Austria
{nesat.efendioglu,robert.woitsch,

wilfrid.utz}@boc-eu.com

Abstract. The importance of Modelling Method Engineering is equally rising
with the importance of domain specific modelling methods and individual
modelling approaches. In order to capture the most relevant semantic primitives
that address domain specifics needs, it is necessary to involve both, method
engineers as well as domain experts. Due to complexity of conceptualization of
a modelling method and development of regarding modelling tool, there is a
need of a guideline and corresponding tools supporting actors with different
background along this complex process. Based on practical experience in
business, more than twenty EU projects and other research initiatives, this paper
introduces a toolbox to support the conceptualization of a modelling method.
The realized toolbox is introduced and evaluated by two EU-funded research
projects in the domain of e-learning and cloud computing as well as additionally
by an in-house development project in the area of decision modelling exten-
sions. The paper discusses the evaluation results and derived outlooks.

Keywords: Meta-modelling � Modelling method design � Agile modelling
method engineering � Conceptualization

1 Introduction

The importance of Modelling Method Engineering is equally rising with the impor-
tance of Domain Specific Conceptual Modelling Methods and individual modelling
approaches. In addition to existing standards (e.g. BPMN, DMN, CMMN), a growing
number of groups around the world design their individual modelling-methods (in
accordance with the definition of such a method by [1, 2]) for a variety of application
domains. The engineering of such applicable modelling tools as a result of the con-
ceptualization process of modelling methods, is complex, especially when considering
the mapping of the entire spectrum from language artefacts and corresponding func-
tionality to concrete implementable and deployable modelling tool capabilities. Besides
that, there are branching knowledge domains into more refined and specialized sub-
domains, where each domain needs to be characterized by its own abstraction and
refinement of concepts from reality. Hence, in order to capture the most relevant
semantic primitives that address domain specific needs, it is necessary to involve both
the method engineers as well as domain experts. Today, there are different approaches,

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J. Horkoff et al. (Eds.): PoEM 2016, LNBIP 267, pp. 317–325, 2016.
DOI: 10.1007/978-3-319-48393-1_23

guidelines and practices for the development of modelling tools available that do not
consider the full spectrum of the design and collaborative development of a modelling
method, which unavoidably leads to limitations in the conceptualization of it [3]. There
is a need of a guideline and corresponding tools supporting method engineers along the
complex conceptualization process taking all phases into consideration and ensuring
collaboration among stakeholders involved in the process. Karagiannis proposes in [2]
the Agile Modelling Method Engineering (AMME) framework. Authors of [4] propose
the Modelling Method Conceptualization Process that based on AMME, guides the
method engineers during conceptualization. The work at hand proposes a toolbox that
supports this process, evaluates it in two European Research projects, and one addi-
tional in the context of an in-house research project, and discusses evaluation results.

The remainder of the paper is structured as follows: Sect. 2 briefly revisits AMME,
the Modelling Method Conceptualization Process and outlines each tool in the toolbox.
Section 3 presents evaluation cases and discusses the evaluation results, while Sect. 4
concludes the paper and gives an outlook on future work.

2 Modelling Method Conceptualization Environment

AMME is proposed in [2] to support modelling method engineering during propagation
and evolution of modelling requirements. The OMiLab Lifecycle [5] instantiates
AMME and defines the internal cycle of a modelling method conceptualization with five
phases; (1) “Create” as a mix of goal definition, knowledge acquisition and requirements
elicitation activities that capture and represent the modelling requirements; (2) “Design”
specifies the meta-model, language grammar, notation and functionality as model
processing mechanisms and algorithms; (3) “Formalize” aims to describe the outcome
of the previous phase in non-ambiguous, formal representations with the purpose of
sharing results within a scientific community; (4) “Develop” produces concrete mod-
elling prototypes and finally (5) “Deploy/Validate” involves the stakeholders in
hands-on experience and the evaluation process as input for upcoming iterations.

Due to the involvement of several stakeholders with varying knowledge back-
grounds, perspectives and different objectives, in the conceptualization of a modelling
method, the authors of [4] propose so-called Modelling Method Conceptualization
Process (as depicted in Fig. 1) by adding additional feedback channels into the

Create Design Formalize Develop
Deploy/
Validate

Fig. 1. Modelling method conceptualization process

318 N. Efendioglu et al.

OMiLab Lifecycle between: (1) Create and Design, to prove, if the designed modelling
language covers the identified application scenarios and considers the identified
requirements; (2) Design and Formalize to ensure formal approval of modelling lan-
guage, as well as (3) Design and Develop - to improve modelling language in earlier
stages before it is released and deployed.

The work at hand introduces a toolbox called “Modelling Method Conceptual-
ization Environment” (as depicted in Fig. 2) that instantiates the above process and
supports method engineers during each phases. The only exception is that of the
“Create” phase, as this part is regarded as the most creative phase and standard tools
and methods (also in some cases pen and paper can be the most appropriate tools) to
can be freely selected. Modelling Method Conceptualization Environment proposes a
combination of tools, such as the Modelling Method Design Environment (MMDE,
available at [6]) for the Design, the ADOxx Library Development Environment
(ALDE) and ADOxx, for Formalize and Develop, ADOxx.org Tool Packing Services
and Developer Spaces for Deploy/Validate Phases.

It is worth to mention that one of the objectives is to provide loosely coupled tools,
so method engineers have the flexibility to decide to use one, a combination of tools
from the toolbox or even use other appropriate tools of their choice, (e.g. method
engineer uses MMDE during the Design Phase, but formalize the modelling method
design with mathematical models or use another development tool during the Develop
Phase and deploys them at the Developer Spaces and enable validation).

In the following sub-sections current abilities of the tools from the environment are
shortly presented.

2.1 Modelling Method Design Environment

The Modelling Method Design Environment (MMDE) is itself a modelling tool to
design other modelling methods. MMDE has been implemented based on lessons
learned and the experience of the authors, who have been involved in modelling
method/tool development activities in more than 20 EU research projects for varying
domains. Based on these lessons learned, UML [7] has been identified as a fitting

Create Design Formalize Develop Deploy/Validate

ADOxx
Development

Tool

Modelling
Method src
Repository

ABL

Installation Package of
Modelling Tool

Tooling

Modelling Method
Design Environment

ADOxx Library Development Environment

University,
Consultant, End

User

Project
Members

ADOxx.org
Community

ADOxx.org Tool Packaging Services and
Developer Spaces

Fig. 2. The toolbox: modelling method conceptualization environment

A Toolbox Supporting Agile Modelling Method Engineering 319

starting point. Hence, the MMDE takes a subset of UML and extends it with required
concepts and functionalities in order to overcome the following challenges (Ch), which
are introduced by [4] after a state of the art analysis about specification of conceptual
modelling methods: Ch1-Definition of functional and non-functional requirements and
their relation between the concepts in modelling methods; Ch2-Fragmenting the whole
meta-model into individual meta-models composing concepts for different sub-domains
and still be able to define links between concepts in different individual meta-models;
Ch3-Having another abstraction layer to represent modules and layers of modelling
language as well as relation among them without representing the complexity of
abstract and concrete syntax; Ch4-Assigning different concrete syntax to the concepts
in modelling language; Ch5-Possibility to design modelling procedure and mecha-
nisms & algorithms of a domain specific modelling language.

To overcome Ch1, “Requirements” model type is implemented that allows the
elicitation of requirements, specifying their status as well as dependencies among them.
The described requirements in this model type can be referenced to (a) all the mod-
elling classes modelled in the related model type “Meta-Model” classes, (b) graphical
notation (concrete syntax) definitions modelled in the “Graphical Notation” model
type, (c) the “Modelling Stack” definition and (d) to the functionalities modelled in
“Mechanisms & Algorithms” models. For Ch2 and Ch3, we extend the class diagram
from UML with concepts, so method engineers can differentiate between class and
relation class as well as relate different meta-models (-fragments) with each other using
“Weaving” techniques as they are introduced in [8, 9]. The modularization and layering
of modelling language is essential to avoid complexities during the design of domain
specific modelling methods [10, 11]. Hence, we propose representation of the mod-
elling stack as the “Meta-models Stack model type allowing method engineers to
differentiate meta-models in sense of different model types that target different frag-
ments of the system. In order to target Ch4 and specify a proper graphical represen-
tation (concrete syntax) of each concept in a meta-model, we introduce another model
type called “Graphical Notation” model type (allows definition of concrete syntax of
model types with specifying graphical representations for each constructs in meta-
models. This model type allows the description of graphical representations either
assignment of vector graphics code written in GraphRep Language [31] or with the
assignment of concrete images in PNG, JPG or Bitmap format including a description
of the functionalities in the notation (e.g. attribute-value dependent visualization,
context related views) In order to target Ch5 to define the applicable modelling
technique as steps and corresponding results we propose a model type called “Mod-
elling Procedure” model type”. The Modelling Procedure Model Type allows method
engineers to define the steps with their required inputs and produced outputs, as well as
the sequence of steps based on input – output relationships, in order to introduce case
specific proper usage of their modelling method. Based on this procedural view,
concrete Mechanisms and Algorithms can be derived and depicted as Sequence and
Component Diagrams from UML (therefore these diagram types has been implemented
as model types in MMDE). Further details about MMDE can be found in [4].

320 N. Efendioglu et al.

2.2 ADOxx Library Development Environment

The ADOxx Library Development Environment (ALDE) aims to enable formalization
and parallel development of modelling tools libraries based on the designs deriving
from Design Phase, merging different libraries and ensuring maintainability. As an
experimental prototype ALDE uses the Resource Description Framework (RDF) as a
format for data interchange [12].

ALDE is a development environment based on the Eclipse IDE [13] and includes a
meta2model defined in RDFS, the ALDE vocabulary. Having the vocabulary and
utilizing Apache Ant® as a build mechanism [14], the environment enables the defi-
nition of the transformation processes from ADOxx Library Languages to RDF and
vice versa. Moreover ALDE serializes libraries in an arbitrary RDF format; for the
prototypical realization RDF Turtle [15] has been used and includes the RDF XTurtle
Editor developed by [16]. Having libraries in RDF Turtle format and a RDF Turtle
Editor available, method engineers can adapt declaratively and script libraries collab-
oratively using standard functionalities of source-code management systems. Merging
several libraries or integration of parts of libraries in each other becomes possible.

2.3 ADOxx.org Tool Packaging Services and Developer Spaces

The ADOxx.org Tool Packaging Service [17] is a web-based service that allows
method engineers of the ADOxx community to build verified, professional and
installable distribution packages that can be distribute to interested stakeholders. The
service combines and validates all available inputs, integrates all elements, compiles
the necessary artifacts and signs the outcomes and creates the actual installer as a
download archive.

As a collaboration space for the development and deployment phases, the concept
of “Developer Spaces” has been introduced in ADOxx.org [18]. These spaces enable
sharing of intermediate/release results, discussing development resources from all
pre/past phases in the form of source code, snippet, examples and distribution packages
with the community.

3 Evaluation

The toolbox introduced above has been applied in three different cases for evaluation:
two EU-funded research projects in the domain of eLearning and cloud computing and
additionally in an in-house development project, in the area of decision modelling
extensions. These cases have been selected since the involved partners have varying
profiles and expertise in development and in modelling tool engineering. In the fol-
lowing subsection we introduce the cases and their requirements in method engineering
manner. Afterwards the evaluation results are discussed.

Case 1: Conceptualization of a Modelling Method for E-Learning: The FP7 pro-
ject Learn PAd [19] proposes a process-driven-knowledge management approach
based on conceptual and semantic models for transformation of public administration

A Toolbox Supporting Agile Modelling Method Engineering 321

organizations into learning organizations. Learn PAd proposes a model-driven col-
laborative learning environment. In this case, 4 domain experts and method engineers
have been involved. In addition, two developer teams, each consisting of 4 developers
worked on the implementation of the tool. The results of the conceptualization process
of this modelling method can be found at Learn PAd Developer Space [20], as well as
the developed prototypes [21] can be downloaded and feedback can be given.

Case 2: Conceptualization of Modelling Method for Cloud Computing: The
H2020 project CloudSocket [22] introduces the idea of Business Processes as a Service
(BPaaS), where conceptual models and semantics are applied to align business pro-
cesses with Cloud-deployed workflows [23]. In this case, 6 domain experts and method
engineers have been involved, as well as two developer teams, one with 5 developers,
the other one with 2 members The results of the conceptualization process of this
modelling method can be found at CloudSocket Developer Space [24], as well as
developed prototypes [25] can be downloaded and feedback can be given.

Case 3: Integration of Exiting BPMN and DMN Modelling Methods: The in-house
project requires integration of an already implemented DMN [26] Modelling Method
into existing BPMN 2.0 [27] realization as part of the a commercial product. In this
case, 3 domain experts and method engineers, and a team of two developers have been
involved.

3.1 Evaluation Results

The evaluation process was enacted in the following steps: (1) Provisioning: the tools -
of the toolbox have been provided to the stakeholders in the involved cases. (2) Team
Formation: representatives, -of the stakeholders in the project created development
teams consisting of domain experts and method engineers following the conceptual-
ization process and developing tools individually. (3) Feedback Phase: individual
results have been consolidated periodically through video conferences and workshops,
constituting the evaluation results. In all cases each tool from the toolbox except ALDE
has been utilized, ALDE has been utilized just in Case 3.

Feedback on MMDE

Pro: It is possible to specify requirements and dependencies among them as well as
tracing them; (2) to define modelling language fragments and modules, (3) layering the
modelling language with navigational constructs; (4) definition of syntax, semantic and
assignment of notation (concrete syntax); (5) definition of weaving among construct in
different meta-models; (6) assignment of (multiple-) graphical notation (concrete
syntax); (7) explicit definition of modelling procedure;

Contra: It is not possible to define application scenarios and use cases, and design
results can be exchanged solely using ADOxx specific formats or as static content
(image, PDF or HTML).

322 N. Efendioglu et al.

Feedback on ALDE

Pro: It is possible to transform libraries in a machine as well as human interpretable
format, ability to use reasoning algorithms, due to standard semantic formats; reduces
complexity to edit, merge and maintain libraries.

Contra: To take over results from Design Phase require manual steps. Without
knowledge of RDF and Turtle syntax, it is difficult for software engineers that using
well-known programing languages (e.g. Java, C++), to get used familiar with; it
requires different transformation scripts for different meta-modelling technologies (such
as ADOxx, EMF).

Feedback on ADOxx.org Tool Packing Services and Developer Spaces

Pro: It is possible to have an installation package to distribute to interested stake-
holders, building your own community around the modelling method, and get feedback
from them.

Contra: Setting up and handling issues of a certain Developer Space involves certain
manual steps, such, as the interested stakeholder has to send an e-mail to the admin-
istrator with a request of an own Developer Space.

4 Conclusion and Outlook

In this paper we introduce a toolbox instantiating the Modelling Method Conceptu-
alization Process, which supports agile modelling method engineering. The toolbox has
been evaluated through an analysis of three different cases: two EU research projects
and one in-house project. The evaluation results put forward that having an approach
and a corresponding toolbox following the idea of model-driven engineering approach
is effective in terms of transferring knowledge from the analysis of requirements up to
the development of solutions. Being two main tools, MMDE and ALDE, experimental
prototypes that are at very early stage of development, lack of full integration or
automatic data exchange ability, and the need of manual steps building Developer
Spaces came out as major limitations of the toolbox. As an outlook the following items
derived from the evaluation: (1) currently we are evaluating development alternatives
of MM-DSLs with using Java, Xtend [28] or RDF; building on existing work [29] in
the field, (2) enabling graphical modelling method design to transform into machine
understandable format, (3) formalization of modelling method design using mathe-
matical models such as FDMM [30], (4) automatization of tooling services and
deployment onto developer spaces, (5) full integration of tools around new MM-DSL.

Acknowledgment. This work has been partly supported by the European Commission
co-funded projects Learn PAd (www.learnpad.eu) under contract FP7- 619583 and CloudSocket
(www.cloudsocket.eu), under contract H2020-ICT 644690.

A Toolbox Supporting Agile Modelling Method Engineering 323

http://www.learnpad.eu
http://www.cloudsocket.eu

References

1. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Stuckenschmidt, H., Jannach, D.
(eds.) EC-Web 2015. LNCS, vol. 239, p. 182. Springer, Heidelberg (2002). doi:10.1007/3-
540-45705-4_19

2. Karagiannis, D.: Agile modeling method engineering. In: Proceedings of the 19th
Panhellenic Conference on Informatics, Athens, Greece, pp. 5–10. ACM (2015)

3. Hrgovcic, V., Karagiannis, D., Woitsch, R.: Conceptual modeling of the organisational
aspects for distributed applications: the semantic lifting approach. In: IEEE COMPSACW
(2013)

4. Efendioglu, N., Woitsch, R., Karagiannis, D.: Modelling method design: a model-drive
approach. In: IIWAS 2015: Proceedings of the 17th International Conference on Information
Integration and Web-based Applications, Brussels, Belgium. ACM (2015)

5. Open Models Laboratory (OMILab): Idea and Objectives (2015). http://austria.omilab.org/
psm/about. Accessed 15 July 2016

6. ADOxx.org: LearnPAd Developer Space (2015). https://www.adoxx.org/live/web/learnpad-
developer-space/design-environment. Accessed 07 July 2016

7. Object Management Group (OMG): Documents Associated with UML Version 2.0 (2005).
http://www.omg.org/spec/UML/2.0/. Accessed 12 July 2015

8. Kühn, H.: Method integration in business engineering, Ph.D. thesis (in German), University
of Vienna (2004)

9. Woitsch, R.: Hybrid modeling: an instrument for conceptual interoperability. In: Revolu-
tionizing Enterprise Interoperability Through Scientific Foundations, Hershey, pp. 97–118
(2014)

10. Selic, B.: The theory and practice of modeling language design for model-based software
engineering—a personal perspective. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva,
J. (eds.) Generative and Transformational Techniques in Software Engineering III. LNCS,
vol. 6491, pp. 290–321. Springer, Heidelberg (2011)

11. Karagiannis, D., Hrgovcic, V., Woitsch, R.: Model driven design for e-applications: the meta
model approach. In: Proceedings of the 13th International Conference on Information
Integration and Web-based Applications and Services, iiWAS11, Ho Chi Minh City,
Vietnam, pp. 451–454. ACM (2011)

12. W3C: RDF-Resource Description Framework (2014). https://www.w3.org/RDF/. Accessed
14 July 2016

13. Eclipse Foundation: Eclipse IDE for Java EE Developers (2016). http://www.eclipse.org/
downloads/packages/. Accessed 14 July 2016

14. The Apache Software Foundation: Apache Ant Download (2016). https://www.apache.org/
dist/ant/binaries/. Accessed 14 July 2016

15. W3C: RDF 1.1 Turtle Terse RDF Triple Language (2014). https://www.w3.org/TR/2014/
REC-turtle-20140225/. Accessed 14 July 2016

16. The Research Group Agile Knowledge Engineering and Semantic Web (AKSW), University
of Leipzig, “Xturtle” (2015). http://aksw.org/Projects/Xturtle.html. Accessed 15 July 2016

17. ADOxx.org: AutoPDP Tool Packaging Service (2016). https://www.adoxx.org/live/autopdp-
packaging-service. Accessed 14 July 2016

18. ADOxx.org: ADOxx.org Developer Spaces (2016). https://www.adoxx.org/live/
development-spaces. Accessed 14 July 2016

19. Learn PAd Consortium: The EU Project Learn PAd (2014). http://www.learnpad.eu/.
Accessed 15 July 2016

324 N. Efendioglu et al.

http://dx.doi.org/10.1007/3-540-45705-4_19
http://dx.doi.org/10.1007/3-540-45705-4_19
http://austria.omilab.org/psm/about
http://austria.omilab.org/psm/about
https://www.adoxx.org/live/web/learnpad-developer-space/design-environment
https://www.adoxx.org/live/web/learnpad-developer-space/design-environment
http://www.omg.org/spec/UML/2.0/
https://www.w3.org/RDF/
http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
https://www.apache.org/dist/ant/binaries/
https://www.apache.org/dist/ant/binaries/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
http://aksw.org/Projects/Xturtle.html
https://www.adoxx.org/live/autopdp-packaging-service
https://www.adoxx.org/live/autopdp-packaging-service
https://www.adoxx.org/live/development-spaces
https://www.adoxx.org/live/development-spaces
http://www.learnpad.eu/

20. LearnPAd Consortium: LearnPAd Developer Space (2015). https://www.adoxx.org/live/
web/learnpad-developer-space. Accessed 15 July 2016

21. LearnPAd Consortium: LearnPAd Developer Space - Downloads (2015). https://www.
adoxx.org/live/web/learnpad-developer-space/downloads. Accessed 15 July 2016

22. CloudSocket Consortium: CloudSocket Project (2016). https://www.cloudsocket.eu/.
Accessed 14 July 2016

23. Woitsch, R., Utz, W.: Business process as a service, model based business and IT cloud
alignment as a cloud offering. In: ES 2015, Third International Conference on Enterprise
Systems, Basel, Switzerland (2015)

24. CloudSocket Consortium: CloudSocket Developer Space (2015). https://www.adoxx.org/
live/web/cloudsocket-developer-space/. Accessed 15 July 2016

25. CloudSocket Consortium: CloudSocket Developer Space - Downloads (2015). https://www.
adoxx.org/live/web/cloudsocket-developer-space/downloads. Accessed 15 July 2016

26. Object Management Group (OMG): Decision Model and Notation, Version 1.0 (2015).
http://www.omg.org/spec/DMN/1.0/. Accessed 15 July 2016

27. Object Management Group (OMG): Business Model and Notation Version 2.0 (2011).
http://www.omg.org/spec/BPMN/2.0/. Accessed 15 July 2016

28. Eclipse Foundation: Xtend (2015). https://eclipse.org/xtend. Accessed 15 July 2016
29. Visic, N., Karagiannis, D.: Developing conceptual modeling tools using a DSL. In:

Buchmann, R., Kifor, C.V., Yu, J. (eds.) KSEM 2014. LNCS, vol. 8793, pp. 162–173.
Springer, Heidelberg (2014)

30. Fill, H.-G., Redmond, T., Karagiannis, D.: FDMM: a formalism for describing ADOxx meta
models and models. In: Proceedings of ICEIS 2012, Wroclaw, Poland, vol. 3, pp. 133–144
(2012)

31. ADOxx.org “GraphRep” (2016). https://www.adoxx.org/live/graphrep. Accessed 31 Aug
2016

A Toolbox Supporting Agile Modelling Method Engineering 325

https://www.adoxx.org/live/web/learnpad-developer-space
https://www.adoxx.org/live/web/learnpad-developer-space
https://www.adoxx.org/live/web/learnpad-developer-space/downloads
https://www.adoxx.org/live/web/learnpad-developer-space/downloads
https://www.cloudsocket.eu/
https://www.adoxx.org/live/web/cloudsocket-developer-space/
https://www.adoxx.org/live/web/cloudsocket-developer-space/
https://www.adoxx.org/live/web/cloudsocket-developer-space/downloads
https://www.adoxx.org/live/web/cloudsocket-developer-space/downloads
http://www.omg.org/spec/DMN/1.0/
http://www.omg.org/spec/BPMN/2.0/
https://eclipse.org/xtend
https://www.adoxx.org/live/graphrep

	A Toolbox Supporting Agile Modelling Method Engineering: ADOxx.org Modelling Method Conceptualization Environment
	Abstract
	1 Introduction
	2 Modelling Method Conceptualization Environment
	2.1 Modelling Method Design Environment
	2.2 ADOxx Library Development Environment
	2.3 ADOxx.org Tool Packaging Services and Developer Spaces

	3 Evaluation
	3.1 Evaluation Results

	4 Conclusion and Outlook
	Acknowledgment
	References

