Skip to main content

Opinion Acquisition: An Experiment on Numeric, Linguistic and Color Coded Rating Scale Comparison

  • Conference paper
  • First Online:
  • 865 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 534))

Abstract

The paper presents the problem of acquiring person opinion using different rating scales. Particular attention is given to the scale created using a visible color spectrum and to the selection of the optimum number of colors in the scale. This paper aims to compare the effectiveness of the color coded scale, word scale and selected numerical scales during the process of students opinion acquisition. Opinions were collected by questionnaire and interview. The authors compare the average time of giving answers and the cognitive load (mental effort), and describe the problems occurring in the question-answer process. It was found that the opinion is most difficult to acquire using the word scale, while the results are most effective with a color and −10 + 10 numerical scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Regoczei, S.B., Hirst, G.: Knowledge and knowledge acquisition in the computational context. In: Hoffman, R.R. (ed.) The Psychology of Expertise, pp. 12–25. Springer, New York (1992)

    Chapter  Google Scholar 

  2. Espinilla, M., Rodriguez, R.M., Martinez, L.: Performance appraisal with multiple linguistic scales. In: de Andres, R. (ed.) Intelligent Decision Making Systems, vol. 2, pp. 433–443. PRESAD Research Group (2010)

    Google Scholar 

  3. Herrera, F., Martinez, L.: A model based on linguistic 2-tuples for dealing with multigranularity hierarchical linguistic context in multi-expert decision-making. IEEE Trans. Fuzzy Syst. Man Cybern. 31, 227–234 (2001). doi:10.1109/3477.915345

    Article  Google Scholar 

  4. Boose, J.H., Gaines, B.R. (eds.): Knowledge Acquisition Tools for Expert Systems, Knowledge Based System, 2nd edn. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  5. Cooke, N.J.: Varieties of knowledge elicitation techniques. Int. J. Hum.-Comput. Stud. 41, 801–849 (1994). doi:10.1006/ijhc.1994.1083

    Article  MATH  Google Scholar 

  6. Diaper, D. (ed.): Knowledge Elicitation: Principles, Techniques, and Applications. Ellis Horwood Limited, England (1989)

    Google Scholar 

  7. Hoffman, R.R.: The problem of extracting the knowledge of experts from the perspective of experimental psychology. AI Mag. 8, 53–67 (1987)

    Google Scholar 

  8. Stephen Few Practical Rules for Using Color in Charts, Perceptual Edge, Visual Business Intelligence Newsletter, allowed at February 2008. http://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_using_color.pdf

  9. Tominski, C., Fuch, G., Schumann, H.: Task-driven color coding. 2008 12th International Conference on Information Visualisation, IV 2008, pp. 373–380 (2008)

    Google Scholar 

  10. Stone, M.C.: A Field Guide to Digital Color. A.K. Peters, Natick (2003)

    Google Scholar 

  11. Stone, M.C.: Color in information display. In: Tutorial, IEEE Visualization Conference, Sacramento, USA, October 2007

    Google Scholar 

  12. Whitworth, M.: A Review of the Evaluation of Pain Using a Variety of Pain Scales. https://cme.dannemiller.com/articles/activity?id=318

  13. Freeman, K., Smyth, C., Dallam, L., Jackson, B.: Pain measurement scales: a comparison of the visual analogue and faces rating scales in measuring pressure ulcer pain. J. Wound Ostomy Continence Nurs. 28(6), 290–296 (2001)

    Google Scholar 

  14. Zappa, C.J., Ho, D.T., McGillis, W.R., Banner, M.L., Dacey, J.W.H., Bliven, L.F., Ma, B., Nystuen, J.: Rain-induced turbulence and air-sea gas transfer. J. Geophys. Res. 114 (2009). doi:10.1029/2008JC005008

  15. Yoshifuku, S., Chen, S., McMahon, E., Korinek, J., Yoshikawa, A., Ochiai, I., Sengupta, P., Belohlavek, M.: Parametric detection and measurement of perfusion defects in attenuated contrast echocardiographic images. J. Ultrasound Med. Official J. Am. Inst. Ultrasound Med. 26(6), 739–748 (2007)

    Google Scholar 

  16. Ubbelohde, N., Fricke, Ch., Flindt, Ch., Hohls, F., Haug, R.J.: Measurement of finite-frequency current statistics in a single-electron transistor. Nat. Commun. 3, 612 (2012). doi:10.1038/ncomms1620

    Article  Google Scholar 

  17. Couper, M.P., Tourangeau, R., Conrad, F.G., Singer, E.: Evaluating the effectiveness of visual analog scales: a web experiment. Soc. Sci. Comput. Rev. 24, 227–245 (2006). doi:10.1177/0894439305281503

    Article  Google Scholar 

  18. Hyun, Y.: Nonlinear Color Scales for Interactive Exploration (2001). http://www.caida.org/~youngh/colorscales/nonlinear.html. Accessed Apr 2008

  19. De Waard, D.: The measurement of drivers’ mental workload. Ph.D. thesis, University of Groningen, Haren, The Netherlands (1996)

    Google Scholar 

  20. Sweller, J., Ayres, P., Kalyuga, S. (eds.): Cognitive Load Theory. Springer, New York (2011)

    Google Scholar 

  21. Kirschner, P., Ayres, P., Chandler, P.: Contemporary cognitive load theory research. Comput. Hum. Behav. 27, 99–105 (2011)

    Article  Google Scholar 

  22. Paas, F.: Training strategies for attaining transfer of problem-solving skill in statistics. J. Educ. Psychol. 84, 429–434 (1992)

    Article  Google Scholar 

  23. Paas, F., Tuovinen, J., Tabbers, H., van Gerven, P.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)

    Article  Google Scholar 

  24. Leppink, J., Paas, F., van der Vleuten, C., van Gog, T., van Merriënboer, J.: Development of an instrument for measuring different types of cognitive load. Behav. Res. Methods (2013). doi:10.3758/s13428-013-0334-1

    Google Scholar 

  25. Huanga, Weidong, Eadesb, Peter, Hongb, Seok-Hee: Measuring effectiveness of graph visualizations: a cognitive load perspective. Inf. Vis. 8, 139–152 (2009). doi:10.1057/ivs.2009.10

    Article  Google Scholar 

  26. Hendy, K.C., Hamilton, K.M., Landry, L.N.: Measuring subjective workload: when is a one scale better than many? Hum. Factors 35(4), 579–601 (1993)

    Google Scholar 

  27. Gopher, D., Braune, R.: On the psychophysics of workload: why bother with subjective measures? Hum. Factors 26, 519–532 (1984)

    Google Scholar 

  28. Sweller, J., van Merriënboer, J., Paas, F.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10, 251–296 (1998)

    Article  Google Scholar 

  29. Ayres, P.: Using subjective measures to detect variations of intrinsic cognitive load within problems. Learn. Instr. 16, 389–400 (2006)

    Article  Google Scholar 

  30. Kalyuga, S., Chandler, P., Sweller, J.: Managing split-attention and redundancy in multimedia learning. Appl. Cogn. Psychol. 13, 351–371 (1999)

    Article  Google Scholar 

  31. Tominski, C., Donges, J.F., Nocke, T.: Information visualization in climate research. In: 2011 15th International Conference on Information Visualisation (IV), pp. 298–305 (2011)

    Google Scholar 

  32. Nocke, T., Heyder, U., Petri, S., Vohland, K., Wrobel, M., Lucht, W.: Visualization of Biosphere Changes in the Context of Climate Change. In: Wohlgemuth, V. (ed.) Information Technology and Climate Change – 2nd International Conference IT for Empowerment. trafo Wissenschaftsverlag, pp. 29–36 (2009)

    Google Scholar 

  33. Ladstädter, F., Steiner, A.K., Lackner, B.C., Pirscher, B., Kirchengast, G., Kehrer, J., Hauser, H., Muigg, P., Doleisch, H.: Exploration of climate data using interactive visualization. J. Atmos. Oceanic Technol. 27(4), 667–679 (2010). doi:10.1175/2009JTECHA1374.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Pilipczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pilipczuk, O., Cariowa, G. (2017). Opinion Acquisition: An Experiment on Numeric, Linguistic and Color Coded Rating Scale Comparison. In: Kobayashi, Sy., Piegat, A., Pejaś, J., El Fray, I., Kacprzyk, J. (eds) Hard and Soft Computing for Artificial Intelligence, Multimedia and Security. ACS 2016. Advances in Intelligent Systems and Computing, vol 534. Springer, Cham. https://doi.org/10.1007/978-3-319-48429-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48429-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48428-0

  • Online ISBN: 978-3-319-48429-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics