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Abstract. Human action recognition is a hot research topic in computer
vision, mainly due to the high number of related applications, such as
surveillance, human computer interaction, or assisted living. Low cost
RGB-D sensors have been extensively used in this field. They can pro-
vide skeleton joints, which represent a compact and effective representa-
tion of the human posture. This work proposes an algorithm for human
action recognition where the features are computed from skeleton joints.
A sequence of skeleton features is represented as a set of key poses,
from which histograms are extracted. The temporal structure of the se-
quence is kept using a temporal pyramid of key poses. Finally, a multi-
class SVM performs the classification task. The algorithm optimization
through evolutionary computation allows to reach results comparable to
the state-of-the-art on the MSR Action3D dataset.

Keywords: kinect, human action recognition, bag of key poses, tempo-
ral pyramid, evolutionary computation

1 Introduction

Human Action Recognition (HAR) is an active research topic in computer vision,
mainly because it may enable and facilitate different applications. Automatic ac-
tion recognition algorithms can be, for example, applied in video-surveillance of
public spaces, or in Active and Assisted Living (AAL) environments, to sup-
port ageing in place of older people [1, 2]. Another interesting application is
represented by Human-Computer Interaction (HCI), where gesture recognition
in particular can provide an efficient way to interface a system [3].

In this scenario, the availability of inexpensive depth sensors, such as Mi-
crosoft Kinect, has fostered the research exploiting 3D data, which presents
some advantages with respect to RGB cameras, such as less susceptibility to
variations in light intensity [4]. Furthermore, depth data allow the extraction
of skeleton joints [5], and enable the exploitation of different features for action
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recognition [6]. Many algorithms for action recognition exploiting 3D silhouettes
have been proposed, since depth data make the process of silhouette extraction
easier. Li et al. [7] developed a method that represents postures considering a
bag of 3D points extracted from depth data. Only a small set of 3D points is
considered, and a method has been developed to sample the representative 3D
points by performing planar projections of the 3D depth map and extracting
the points that are on the contours. Other interesting features are represented
by local Spatio Temporal Interest Points (STIPs) applied to depth data [8].
Depth-based STIPs include a noise suppression scheme which can handle some
characteristics of the depth images, such as the noise in the borders of an object,
where the depth values show a big difference in the transition from foreground
to background, or the noise given by errors in the depth estimation algorithm,
which can result in some gaps in the depth map.

Despite the proposal of different depth-based descriptors, the skeleton joints
extracted by depth data represent a compact and effective description of the
human body, and many activity recognition algorithms rely only the joints as
input. Considering joint coordinates, different feature extraction methods have
been proposed. Some of them consider only spatial data, some others include
also temporal information [6]. The HOJ3D representation [9] considers the par-
tition of the 3D space into bins and the joints are associated to each bin using
a Gaussian weight function. The histograms are clustered to obtain the salient
postures and a discrete Hidden Markov Model (HMM) is employed to model the
temporal evolution of the postures. In addition to k-means clustering, the use of
sparse coding has been also proposed for the creation of the codebook. In par-
ticular, Luo et al. [10] proposed the DL-GSGC scheme, where the discriminative
capacity of the dictionary is improved by adding group sparsity and geometry
constraints to the sparse coding representation. A temporal pyramid is adopted
to model the temporal information, and a linear Support Vector Machine (SVM)
is chosen as the classification algorithm. Wang et al. [11] firstly considered rela-
tions among body joints in the spatial domain, by grouping joints into different
body parts. Then, the temporal relations of the body parts are obtained, and
actions are represented by histograms of the detected part-sets.

Feature selection methods or optimization strategies may be adopted to im-
prove the performance of HAR algorithms. These methods may increase the
recognition performance because they can select the relevant features for an ef-
ficient discrimination among the activities. Eweiwi et al. [12] proposed a HAR
algorithm exploiting joints where the pose feature is a weighted sum of all joint
features. The weights are estimated by Partial Least Squares (PLS). Wang et
al. [13] proposed a data mining solution to discover discriminative actionlets,
which are structures of base features built to be highly representative of one
action and highly discriminative compared to other actions. Evolutionary com-
putation has been successfully adopted in feature selection problems, and it has
also been considered for the optimization of HAR algorithms [14]. Usually, two
models are used to apply the evolutionary computation: the filter model and
the wrapper model. The former determinates the features relevance consider-



ing their intrinsic properties, without including the learning method. The latter
approach encloses the induction algorithm and, even if more computationally
expensive, it is usually preferred because of better results [15]. Another model of
evolutionary optimization is the coevolutionary algorithm, which considers sev-
eral populations: individuals in a population are awarded fitness values based on
their interactions with individuals from other populations. Interactions can be
competitive, where individuals are rewarded at the expense of those with which
they interact, or cooperative, where individual are rewarded if they work well
with other individuals [16]. Cooperative coevolutionary algorithms have been
also applied to address feature and parameter selection problems in HAR [17].

The HAR algorithm herein proposed considers skeleton joints and extracts
features representing the person’s posture. A bag of key poses model [18] is
adopted, where the most informative postures are learned using the k-means
clustering algorithm. Then, an action is modeled as histograms of key poses,
and the temporal structure of the action is kept using a temporal pyramid. A
multi-class SVM is finally exploited for classification. The algorithm parameters
are optimized using evolutionary and cooperative coevolutionary algorithms pro-
posed in [14] and [17], which detect the best configuration of joints, key poses,
and training instances. The proposed algorithm reaches results comparable to
the state-of-the-art on the well known MSR Action3D dataset [7].

The paper is organized as follows: Section 2 describes the proposed activ-
ity recognition algorithm, providing implementation details from the features
computation procedure to the classification scheme. The optimization process
by evolutionary computation is described in Section 3, and experimental results
are presented and discussed in Section 4. Finally, Section 5 provides concluding
remarks.

2 HAR algorithm based on temporal pyramid of key
poses

The action recognition algorithm takes the 3D coordinates of the skeleton joints
as input data and initially computes some position displacements between them,
as the features representing a specific posture. All the feature vectors are then
clustered to extract a set of key poses per action, which are then combined into
a bag of key poses. Then, an action is represented as a sequence of key poses,
from which histograms are computed. Histograms of key poses are then orga-
nized considering more levels of the temporal pyramid. The obtained histograms
represent the input to a multi-class SVM, which performs the classification task.
The entire process may be represented by 4 main steps, which are sketched in
Fig. 1 and detailed in the following:

1. Extraction of posture features: in this step the 3D coordinates of the joints
are considered and the features representing each posture are computed;

2. Codebook generation and key poses substitution: this phase consists of the
codebook generation and the association of a key pose to each posture in
the sequence;
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Fig. 1. Global scheme of the activity recognition algorithm. The first step consists
in the extraction of the posture features vector, which are organized in a codebook to
obtain the key poses. A sequence of key poses is then represented as a set of histograms
obtained at each level of a temporal pyramid. Finally, the classification is performed
using a multi-class SVM.

3. Histograms of key poses and temporal pyramid : a sequence of key poses is
represented as a set of histograms obtained at different levels of a temporal
pyramid;

4. Classification: the histograms of key poses are classified using a multi-class
SVM, implemented following the “one-versus-one” method.

The extraction of features representing the posture consists of the calculation
of the normalized position differences among the joints and their center-of-mass.
Position differences are more robust features if compared to distances, with less
ambiguity among different poses. Considering that the i-th joint of a skeleton is
represented by a three-dimensional vector Ji, a vector pn stores all the coordi-
nates for the n-th skeleton frame of an activity constituted by N frames. Each
frame is represented by P joints, and the center-of-mass Jcm is represented by
the average 3D position of all the P joints:

Jcm =
1

P

P−1∑
i=0

Ji (1)

The normalization factor s is computed based on the average `2-norm between
each joint and the center-of-mass, according to (2):

s =
1

P

P−1∑
i=0

‖Ji − Jcm‖2 (2)

The position difference di is represented by the displacement between the i-th
joint and the center-of-mass, considering the scaling factor, and it is implemented
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Fig. 2. Codebook generation and key poses extraction.

according to (3):

di =
Ji − Jcm

s
(3)

Using the difference between two positions makes the feature vector invariant to
the position of the person within the 3D space, and the normalization by the
scaling factor ensures the invariance to the build of the person. The feature vector
fn, associated to the n-th skeleton frame, is finally made by all the differences
for the P joints:

fn = [d0,d1,d2, . . . ,dP−1] (4)

Due to errors in the skeleton estimation algorithm, the joints could be unavailable
for some frames within the sequence. A skeleton integrity check is included in
the feature extraction process and, if all the skeleton joints are unavailable for
a specific frame, the posture feature vector related to the most recent skeleton
frame is considered, and associated also to the actual frame.

The second step concerns the generation of the codebook, which contains the
key poses, i.e. the most informative feature vectors. This process is implemented
according to the k-means algorithm, by a separated clustering process for each
action of the dataset. This choice is motivated by the fact that different actions
may be better represented by a different number of key poses [14]. Considering
M classes, that are the M different actions of the dataset, it is necessary to
define a vector [K1,K2, . . . ,KM ] containing the number of key poses for each
class. The clustering process is sketched in Fig. 2, where, for example, all the
training instances of the first class [F1,F2, . . . ,Ft1 ] are clustered in K1 key poses,
represented by the cluster centers [C1,C2, . . . ,CK1

]. The codebook is obtained
by merging all the key poses obtained for each class. Each feature vector in an
action is finally substituted with the corresponding key pose, by considering the
closest one in terms of Euclidean distance. At the end of this step, an action,
previously represented by a sequence of feature vectors F = [f1, f2, . . . , fn1

], is



encoded by a sequence of key poses S = [k1, k2, . . . , kn1 ]. Obviously, the codebook
is generated during the training phase and exploited during testing, where unseen
feature vectors are associated to learned key poses.

The third step regards the creation of the histograms of key poses obtained
at each level of a temporal pyramid. The temporal pyramid is an effective rep-
resentation to describe the temporal structure of a sequence representing an
action. A sequence of key poses S = [k1, k2, . . . , kn1

] is split into 2l−1 segments,
being l the level in the pyramid. For each segment, a histogram is obtained by
counting the number of appearances of each key pose within the segment, and
normalizing it to the segment length. The distribution of the key poses within
the sequence is well represented by the temporal pyramid. Each segment is split
into two parts, moving from the top to the bottom of the pyramid allows to
have different descriptions of the same sequence, from the most general to the
most detailed one. The final representation of the sequence is constituted by the
histograms at each level of the pyramid. Considering a temporal pyramid of 3
levels, the whole sequence is represented by 7 histograms, denoted by the vector
H in Fig. 1, containing the normalized number of occurrences for the 7 segments.

The last step aims to associate each set of histograms H, which represents an
action, to the corresponding class label, and it is based on a SVM. SVMs have
been originally defined as binary classifiers, and the most common approach to
have a multi-class SVM is to combine many binary SVMs, with two options:
“one-versus-all” and “one-versus-one”. Considering an M -classes classification
task, the former considers the definition of M binary SVMs, each of which is
trained to distinguish between one class and the rest. The winner class is the one
with highest probability. The “one-versus-one” method considers a number of
M(M − 1)/2 binary classifiers, each of which has to deal with two classes. The
classification is done through a voting strategy, where all the classifiers select
one class and the one with more votes is the output class. The “one-versus-one”
method implemented in LIBSVM [19] is the one used in this work.

3 Optimization

The algorithm detailed in the previous section requires several parameters in
order to be executed. These parameters can be heuristically chosen, but the use
of an optimization algorithm may lead to better results. In HAR, evolutionary
computation has been successfully used for feature selection and parameters
optimization [14] [17]. The idea is to optimize three parameters of the HAR
algorithm: the features, to select the optimal set of joints, the number of clusters
to be used for each class in the bag of key poses model, and the set of training
instances.

Considering the evolutionary optimization, the individual is constituted by
three parts, each of them related to a different parameter. A detailed definition
of the individual’s structure can be found in [20], where the authors applied the
evolutionary algorithm to have an evolving bag of key poses model. In this work,
the same structure of the individual is exploited, where the features item is rep-



resented by a binary vector of length P , the clusters item is constituted by M
integer values (one for each class), and the instances sub-individual is made up
of I elements, each of them corresponding to a specific training sequence. Since
the individual consists of three different parts, a 1-point crossover operator is
applied to each part. A standard crossover is applied to instances and clusters
vectors while a specific one, which is aware of the skeleton structure, is adopted
for the features part. The mutation operator is also applied independently on the
three parts of the individual with three probabilities mutI (instances vector),
mutM (clusters vector) and mutP (features vector). For the binary parts of the
individual, each gene can change its value according to a mutation probability.
Considering the clusters vector, the mutation is performed by considering a ran-
dom value within an interval. The fitness value is represented by the accuracy of
the HAR algorithm, and it is exploited to rank the individuals of the population.

In the cooperative coevolutionary algorithm, three different populations are
defined: the instances population, the clusters population and the features one
[17]. Each individual of the population has the same structure of the corre-
sponding sub-individual considered in the evolutionary optimization, and the
same choices about crossover and mutation operators can be adopted. In order
to obtain a fitness value for a new individual of one population (i1), it is nec-
essary to consider also individuals from the two other populations (i2 and i3),
and their selection is based on ranking. The obtained fitness value is updated for
the individual i1, but it is also updated for i2 and i3 if it improves their actual
fitness value. Some techniques have been also adopted to give different priori-
ties in the selection of individuals with the same fitness value. In features and
instances populations, individuals with a lower number of selected values are
preferred, while in the clusters population the individual with less accumulated
sum is favored.

4 Experimental results

The performance of the algorithm has been evaluated on the MSR Action3D
dataset [7], which is one of the most used datasets for action recognition. It
is constituted by 20 activities performed by 10 actors, 2 or 3 times. In total,
567 sequences of depth (320 × 240) and skeleton frames are collected using a
structured-light depth camera at 15 fps. Considering the skeleton frames, there
are 557 sequences effectively available because 10 instances are featured by miss-
ing skeletons or they are affected by too many errors. The following activities
are included in the dataset: high arm wave, horizontal arm wave, hammer, hand
catch, forward punch, high throw, draw x, draw tick, draw circle, hand clap,
two hand wave, side boxing, bend, forward kick, side kick, jogging, tennis swing,
tennis serve, golf swing, pickup and throw. Due to its complexity, the dataset
is usually evaluated considering three different subsets, namely AS1, AS2, and
AS3 [7]. Padilla-López et al. [21] reviewed the papers based on the MSR Ac-
tion3D dataset for action recognition and found that the most used evaluation
scheme is the cross-subject test defined by Li et al. [7], which considers actors 1-



Table 1. Results obtained considering Random selection, Evolutionary and Coevolu-
tionary optimizations.

AS1 AS2 AS3

Random selection

Acc. 95.24 86.61 95.5

clust. [17 17 15 25 8 22 12 22] [4 8 10 22 18 19 16 5] [71 66 48 56 66 61 76 52]

Evolutionary optimization

Acc. 95.24 90.18 100

clust. [10 26 12 10 17 22 10 10] [7 13 10 5 9 16 23 17] [68 69 60 62 55 48 75 60]

feat. [11100001011110001000] [11100111110110011111] [10100101110010100011]

Coevolutionary optimization

Acc. 95.24 91.96 98.2

clust. [15 7 9 12 12 13 5 10] [10 10 10 5 13 4 10 16] [51 15 16 34 29 56 55 43]

feat. [10101001100010001100] [00001001101110011110] [11111001011110100011]

inst. 178/219 202/228 176/222

3-5-7-9 for training, and actors 2-4-6-8-10 for testing. This evaluation procedure
has also been applied in this work.

The selection of parameters for Radial Basis Function (RBF) kernel of SVM
has been performed considering grid search and 5-fold cross-validation on train-
ing data, assuming the following intervals: C =

[
2−5, 2−3, . . . 215

]
and γ =[

2−15, 2−13, . . . 23
]
. The selection of parameters for the HAR algorithm has been

performed using three different methods, all of them considering three levels of
the temporal pyramid, with the following settings:

– Random selection: all the training instances and the features are considered,
the clusters required by the bag of key poses model are selected randomly
in the interval [4, 26] for the subsets AS1 and AS2, while the interval [44, 76]
has been considered for AS3;

– Evolutionary optimization: all the training instances are considered, and the
evolutionary algorithm is applied to select the features and the clusters, con-
sidering the same selection interval as the Random method. The population
is constituted by 10 individuals, and the mutation probabilities have been
randomly selected within the intervals [0, 0.15] for mutP and [0, 0.25] for
mutC . The selection intervals for the clusters vector are the same as the
Random selection, and the stop condition is reached after 100 generation
without changing the best fitness value.

– Coevolutionary optimization: the optimization is applied to select instances,
features and clusters, the mutation probability of instances vector mutI is
selected within the interval [0, 0.025], and the clusters are randomly selected
considering the interval [4, 16] for AS1 and AS2, and [4, 64] for AS3;



(a) (b) (c)

Fig. 3. Subsets of joints selected by the evolutionary algorithm for AS1 (a), AS2 (b)
and AS3 (c). The selected joints are depicted as green circles, while the discarded ones
are represented by red squares.

Table 1 shows the results obtained with the evolutionary and coevolutionary
algorithms as optimization methods. Considering the optimization with the evo-
lutionary algorithm, the optimized parameters are the number of clusters per
class, and the set of skeleton joints that have to be selected. The performance
obtained confirms that AS3 is the easiest subset to be recognized, and the pro-
posed method can reach 100% score even if it requires a large number of key
poses, which can be even 75 for the golf swing action. On the other hand, the
set of selected features is rather limited, because only 10 joints out of 20 are
required. AS2 is the most challenging subset, the best recognition accuracy is
90.18%, it requires a set of 15 joints and a reduced number of clusters, which
is 23 at most. The algorithm requires only 9 joints and a restricted number of
clusters also for the AS1 subset, where the recognition accuracy is 95.24%. Con-
sidering the joint representation in the feature vector, the selected subsets of
joints by the evolutionary optimization is shown in Fig. 3. The coevolutionary
optimization leads to the same average results. Considering AS1, the recognition
accuracy is exactly the same, but only a number of 178 training instances are
required out of the 219. Better results have been obtained considering AS2, the
recognition accuracy of 91.96% is achieved with only a number of 10 joints and
202 training instances. Regarding AS3, the best accuracy obtained is 98.2%, and
it is a suboptimal result that could be improved with a different stop condition,
considering a greater number of iterations.

Table 2 shows the performance obtained by the proposed method, compared
to the main HAR algorithms evaluated on the cross-subject test as well. The
proposed method achieves results comparable to the state-of-the-art according
to the accuracy averaged on AS1, AS2 and AS3 subsets. Shahroudy et al. [31],
and Xu et al. [30] reach better average results but they exploit also depth data.



Table 2. Recognition accuracy (%) obtained by the proposed method, compared with
other previously published works evaluated on the cross-subject test.

Method AS1 AS2 AS3 avg

Li et al. [7] 72.9 71.9 79.2 74.67

Akkaladevi et al. [22] 84 62 80 75.3

Xia et al. [9] 87.98 85.48 63.46 78.97

Ghorbel et al. [23] 83.08 79.46 93.69 85.41

Evangelidis et al. [24] 88.39 86.61 94.59 89.86

Chen et al. [25] 96.2 83.2 92 90.47

Chaaraoui et al. [18] 92.38 86.61 96.4 91.8

Lo Presti et al. [26] 90.29 95.15 93.29 92.91

Tao and Vidal [27] 89.81 93.57 97.03 93.5

Du et al. [28] 93.3 94.64 95.5 94.49

Chen et al. [29] 98.1 92 94.6 94.9

This method 95.24 90.18 100 95.14

Xu et al. [30] 99.1 92.9 96.4 96.1

Shahroudy et al. [31] − − − 98.2

5 Conclusion

In this work, a HAR algorithm based on skeleton joints has been proposed. A
feature extraction scheme, which is invariant to build and position of the human
subject has been exploited, and key poses are extracted from posture feature vec-
tors. An effective representation of the action is obtained considering histograms
of key poses at different levels of a temporal pyramid. The parameters optimiza-
tion based on the evolutionary computation allows to reach results comparable
to the state-of-the-art on the challenging MSR Action3D dataset. Future works
include the use of a class-aware algorithm to estimate the key poses.
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