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Abstract. Learning from imbalanced and sparse data in multi-mode and
high-dimensional tensor formats efficiently is a significant problem in
data mining research. On one hand, Coupled Tensor Factorization (CTF)
has become one of the most popular methods for joint analysis of hetero-
geneous sparse data generated from different sources. On the other hand,
techniques such as sampling, cost-sensitive learning, etc. have been ap-
plied to many supervised learning models to handle imbalanced data. This
research focuses on studying the effectiveness of combining advantages of
both CTF and imbalanced data learning techniques for missing entry pre-
diction, especially for entries with rare class labels. Importantly, we have
also investigated the implication of joint analysis of the main tensor and
extra information. One of our magjor goals is to design a robust weight-
ing strategy for CTF to be able to not only effectively recover missing
entries but also perform well when the entries are associated with imbal-
anced labels. Experiments on both real and synthetic datasets show that
our approach outperforms existing CTF algorithms on imbalanced data.

Keywords: Tensor Factorization; Coupled Tensor Factorization; Imbal-
anced data learning

1 Introduction

Recent innovations on the Internet and social media have made many multi-
mode, high dimensional, sparse and imbalanced data available. Together with
this explosive dimension growth, Coupled Tensor Factorization (CTF) has be-
come one of the most popular methods for joint analysis of sparse data generated
from different sources. It has also been proven to predict missing data entries
with high accuracy [2]. In case the actual entries are skewed toward a partic-
ular class, generally, we want to achieve a high prediction rate of the class of
interest in spite of its rarity. Nevertheless, even if the reconstructed tensor pre-
dicts everything to be of the majority class, the overall accuracy is still very
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high. For example, in the event of a binary class (such as high and low ratings
of movies) and the actual entries are skewed towards a particular class, for in-
stance, the ratio of negative class (e.g., low ratings of movies) to positive class
(e.g., high ratings) is 99 to 1, any CTF would easily achieve 99 percent overall
approximation accuracy by just approximating all missing entries to the nega-
tive class. This 99 percent precision rate is impressive enough if we ignore the 0
percent accuracy of the positive class. This bias accuracy not only reduces the
robustness of the model but also might cause severe consequences, especially in
cases that most of the observed samples are normal and just a few rare cases
are anomaly ones. For example in disease diagnosing application, even though
most of the training data are healthy specimens, predicting an unhealthy sample
as a healthy one costs extremely high, in many cases a human life. However, it
might be acceptable to classify a healthy person as an unhealthy and perform
a few other diagnoses. Achieving a high rate on classifying the rare case with-
out jeopardizing the majority class is, therefore, a crucial requirement in this
instance.

Learning from imbalanced data has attracted considerable attention in knowl-
edge discovery community. Sampling [7] and cost-sensitive [8] approaches have
been studied to deal with imbalanced datasets. Although they have been pro-
posed to decision trees and neural networks, they have not yet been applied to
multi-mode, high dimensional, sparse and imbalanced tensor data (and impor-
tantly, its decompositions). This significant theoretical gap motivates us to take
the advantages of both CTF and imbalanced data learning techniques to ad-
dress the problem of recommending missing entries from imbalanced yet sparse
heterogeneous datasets. In particular, we adjust CTF’s objective function by
a weighting strategy that lowers the significance of wrongly recommending the
majority class and strengthens the importance of correctly estimating the rare
case. Here we introduce a weighting strategy for CTF, called WTEN, as the
first CTF approach for imbalanced data learning. Although this paper targets
binary missing label estimation problem, the weighting strategy can be straight-
forwardly applied to multiple labels, such as integer ratings where the frequencies
of integers are imbalanced.

In brief, our main contribution in this paper are the following:

1) Performance: we propose a novel weighting strategy, named WTEN
(Weighted Tensor Factorization), for missing entry recommendation using CTF.
Our model robustly assigns effective weights with respect to different classes’
approximation, and consequently performs significantly better on the minor-
ity class estimation without jeopardizing the majority one. WTEN is the first
method, to our best knowledge, that enables CTF to handle imbalanced missing
data entries.

2) Foundation: we study the effectiveness of joint analysis of the main tensor
and the additional coupled data in CTF techniques for handling sparsity and
imbalance over Tensor Factorization. Our theoretical analysis and experimental
results suggest CTF to serve as a foundation for a general purpose latent factor
imbalanced data learning.
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Fig. 1. Factorization of coupled imcomplete data sets for missing entries recovery. a)
Correlation among different aspects of a dataset. X is a tensor of ratings made by users
for movies on weekdays. Dark boxes are observed low ratings (which are majority) and
white boxes are known minority high ratings. Matrix Y represents user information.
Movie rating tensor X is, therefore, coupled with user information matrix Y in ‘user’
mode. b) X is factorized as a sum of low rank factors that can be used to recover
missing majority as well as minority cases.

3) Usability and reproducibility: Our factorization method with weight-
ing scheme can be easily extended to different datasets and applications. Per-
formance of WTEN is validated by both real-world and synthetic datasets. To
promote the reusability of our idea, we open our source code with this paper.3

The rest of this paper is organized as follows. We introduce the background of
tensor factorization in Section 2 followed by a review of existing work in Section
3. Section 4 explains our proposed idea. Experimental results together with our
discussion are included in Section 5. We finally conclude our work in Section 6.

2 Preliminary

This section provides a brief introduction of core definitions and preliminary
concepts of tensor, tensor factorization and coupled tensor factorization.

2.1 Tensor and our notations

Tensors are multidimensional arrays which are often specified by their number
of modes (a.k.a., orders or ways). In specific, a mode-1 tensor is a vector; a
matrix is a mode-2 tensor. A mode-3 or higher-order tensor is often called tensor
in short. We denote tensors by boldface Euler script letters, e.g. X. We use
boldface capitals, e.g. A, for matrices. A boldface Euler script with indices in its
subscript is used for an entry of a tensor while a boldface capital with indices in
its subscript is for an entry of a matrix. For example, A;; is an entry at row i
and column j of matrix A; the (i,j, k)*® entry of X is X; ;. Table 1 lists all the
symbols we throughout use in this paper.

3 Our source code is available at https://github.com/quanie/WTEN
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Table 1. Symbols and their description

Symbol Description

X A tensor

X A matrix

Xi ik An entry of a tensor

X, An entry of a matrix

Xijx A reconstructed missing entry of tensor X
|A||r Frobenius norm

u® A n-th mode factor

T*J*K Dimensions of tensor X

*M Dimensions of matrix Y

R Decomposition rank

o Khatri-Rao product

@ Hadamard (elementwise) product
L Loss function

2.2 Tensor Factorization (TF) and Coupled Tensor Factorization
(CTF)

Tensor factorization, based on PARAFAC decomposition [11], approximates a
high-order tensor into a sum of a finite number of low rank factors.

R N
x~3 [lo
r=1n=1

where X € RI*l2**In s a N-mode tensor and its N rank-R factors are U™
€ RW*R vn € [1,N].

The goal of PARAFAC decomposition is to find the best low-dimensional
approximation of X [14]. In other words, PARAFAC decomposition finds

Ly,r

R N
min |[|[X — X|p with X = U\
i [ % ST

r=1n=1

and £ = ||X — X||p is defined as the loss function of the factorization.
In case X is a mode-3 tensor, TF decomposes X into a Khatri-Rao product
of its factors, and thus the loss function is defined by:

LUV, W) = 5« |X - Uo VoWl

where U € R*R, V € R7*R and W € RK*R,

We often have additional information in a format of a matrix or a tensor
which has one or more modes in common with the main tensor. These side
information along with the main data can help to deepen our understanding
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of the underlying patterns in the data, and to improve the accuracy of tensors
composition. For example, Acar et al. [2] defined an objective function for joint
analysis of a tensor X coupled with a matrix Y in its first mode by:

1 1
LUV, W,A) = 5+ [X - UoVo Wi+ 5 [Y - UATE (1)

where U is the common factor of both X and Y.

By solving this equation (1) with an optimizer, low rank factors U, V, W
and A can be obtained. These factors can then be used to approximate both
tensor X and matrix Y.

2.3 Missing data completion

Latent factors discovered by TF or CTF above can be used to recover missing
data from the original input tensor. The most widely used approach [2] is to
utilize these latent factors to reconstruct X for missing entries recovery. Suppose
a tensor X coupled with a matrix Y are factorized by (1). A missing entry (i,j,k)
of X is estimated by:

R
Xijx = ZUi,rvj,er,r (2)
r=1

In the event of binary entries, a simple method to decide a label of I)ACi’j,k is

to use a threshold e. An entry (i,j,k) of X belongs to negative label if f)ACi,jvk <e
or else positive label.

3 Literature Review

Learning from imbalanced data has attracted considerable attention in knowl-
edge discovery community. Imbalanced data learning algorithms proposed in
the literature can be categorized into sampling, cost sensitive, kernel based ap-
proaches [12]. Kernel based methods that mainly focus on modifying SVM kernel
for imbalanced learning [25] or applying sampling to SVM framework [3] are out
of scope of this paper. In this section, we provide a brief overview of sampling
and cost sensitive methods.

When a training data is skewed toward a particular class, a straightforward
strategy [7] is sampling to create a more balanced data distribution for both
classes. Two sampling techniques, oversampling and undersampling, are widely
proposed for imbalanced learning. Oversampling increases the minority class
population by creating more data samples. The extra data samples can be made
by replicating minority samples [13] or synthesized by various techniques such
as Synthetic Minority Oversampling Technique (SMOTE) [6]. Overfiting is often
considered a potential disadvantage of oversampling [7]. Undersampling, on the
other hand, reduces the majority class by eliminating some of its samples. This
reduction can be done randomly [20] or based on statistical knowledge [19]. Both
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randomly and statistically undersampling have the possibility of losing important
data.

An alternative method to overcome data imbalance is a cost-based approach.
Instead of balancing the data distribution by sampling, cost sensitive learning
[8] associates different penalties with misclassifying different classes correspond-
ingly. For example, in case a training data is skewed towards negative label,
the total cost of misclassifying negative classes as positive ones outweighs that
of misclassifying positive labels as negative. Any learning algorithm that mini-
mizes total misclassification cost mostly optimizes the negative class only [23].
By associating a higher cost with misclassifying a positive class as a negative one
than with the contrary, the algorithm now balances better for the positive class.
As a result, this cost-sensitive approach improves the classification performance
with respect to the rare class. Although this technique has been successfully
applied to decision tree via subtree pruning [5] or data split [16], and neural net-
works [26], it has not ever been proposed for high-dimensional decompositions
of tensors with imbalanced data entries.

Tensor factorization (TF) has been used for multi-mode, high-dimensional
and sparse data analysis with a goal to capture the underlying low rank struc-
tures. This analysis has become a new trend since the Netflix Prize competition
[15] where it is used to predict movie ratings with high accuracy. Researchers
has extended TF to do joint data analysis. Early work by Singh and Gordon
[24] introduced Collective Matrix Factorization (CMF) to take an advantage of
correlations between different coupled matrices and simultaneously factorized
them. CMF techniques have been successfully applied to capture the underlying
complex structure of data [15, 21]. Acar, Kolda and Dunlavy [2] later expanded
CMF to CTF to handle Coupled Matrix and Tensor Factorization by model-
ing heterogeneous data sets as higher-order tensors and matrices in a coupled
loss function. They also proved the possibility of using these low rank factors
to recover missing entries. Tensor methods have been studied for factorization
with labeled information [17] and also compression with tensor representations
[18]. Papalexakis et al. [22] and Beutel et al. [4] scaled CTF up to parallel and
distributed environments but with the same loss function as proposed by other
authors.

Motivations for this research

Despite the popularity of CTF on high-dimensional datasets, improvements of
CTF on imbalanced data has not been studied. If we apply CTF with its tra-
ditional objective function (1) on imbalanced data, it will tend to ignore the
minority cases and approximate most missing values to be the majority ones.
The objective function is still optimal thanks to the fact that almost all predicted
instances are correct. This is because the loss function (1) assumes that errors
of factorizing the majority class in X and that of decomposing the minority one
contribute equally to the final loss of the CTF. Apparently, this is not the case
for imbalanced data as the majority class extremely out-represents the minority
one. Thus, the loss of factorizing the majority class totally outweighs all the loss
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of decomposing the rare one. The algorithms, hence, focus on optimizing the
major class to achieve a lower loss.

Another problem with CTF on imbalanced learning is that both oversampling
and undersampling do not work effectively. First of all, oversampling does not
balance out the data distribution. Suppose X; ; k is an entry of the minority class,
oversampling by duplicating X;;x does not add anything to the tensor as an
entry at the index {i,j,k} is already there in X. Hence, the data distribution does
not change. Secondly, even though undersampling creates a more balanced data
distribution, it may remove some important observed data. This is especially
critical as the observed data is sparse. Losing more data might prevent CTF
from achieving its optimization, thus, reducing its accuracy. Last but not least,
sampling cannot straightforwardly be done on the additional data in a form of
coupled matrices or tensors, and doing so again does not make any change on
the data distribution of the main tensor.

Motivated by the above significant theoretical gaps, in this paper we propose
a novel cost-sensitive weighting strategy to overcome the imbalanced data prob-
lem in high dimensional and heterogeneous datasets. Our algorithm optimizes
the factorization of both the majority and minority class in a balanced manner,
significantly improving missing entry estimations of the minority class.

4 WTEN: Weighted Tensor Factorization for Imbalanced
Data

In this section, we introduce our proposed WTEN to handle imbalanced datasets.
Suppose X € R"7*K is a mode-3 tensor coupled with a matrix Y € R™*M in their
first mode, and suppose their data entries are binary. In an event when X is
skewed toward class 0, algorithms [2, 4, 22] with the objective function (1) show
their drawbacks in estimating class 1 as they approximate everything to be of the
majority class. Yet the objective function is still considered as optimal because
almost all predicted instances are correct. This hence reduces the robustness of
the methods in dealing with the imbalanced input.

One of a few possible improvements of the above problem is to properly
highlight the impact of errors in approximating the rare cases. This can be done
by adjusting the objective function (1) to a weighted version based on observed
frequencies of different classes. So the objective function (1) becomes:

LU, V,W,A) =wg*||[Xg—UoVoW|Z+w *||X; —UoVoW|i

+IY —UATJ ®
where Xy and X; are tensor entries containing negative and positive labels,
respectively; wq is a weight of precisely estimating class 0 and w; is that of
correctly approximating class 1. The first term represents prediction error of
class 0 whereas the second term captures that of class 1.

If appropriate weights are used, wg and w; will have an effect of balancing
out the impact of misclassifying different classes with respect to their observation
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ratio. An effective approach is to assign wo = N; /size(X) and w; = Ny /size(X)
where Ny and N; are the number of observed 0s and 1s in X, respectively,
and size(X) denotes the number of observed elements of X. Doing so lowers
importance of approximating the majority class. Thus, this weighting strategy
will likely improve the estimation of the minority label.

The objective function (1) can also be adjusted by a weighting tensor as the
following:

LU, VWA B)=|[W& (X -UoVoW)|i+|Y - UA"|| (4)

where A ® B is a Hadamard (element-wise) product of A and B which yeilds a
tensor € with entries Gk = Ajj ik * Bijx and W is a weighting tensor having
the same size of X, but its entries’ value is determined by
M when I)Cm-,k =0

when iXIiJ,k =1

This weighting tensor, W as illustrated in Figure 2, will have an effect of in-
creasing the impact of errors in approximating the minority class. This weight-
ing scheme produces the same result as the approach suggested in (3). Yet,
an implementation of (4) might be simpler as its gradient is likely to be more
straightforward to be computed in the optimization processes.

Wik =

size(X)
N

(a) (b)

Fig. 2. Imbalanced and sparse tensor of size R®*3*3, and its weighting tensor. a) Data
tensor X where minority class, majority class and missing entries are represented by
blue (darker), green (lighter) and transparent boxes, respectively. b) Weighting tensor
W where each observed entries of X will be assigned a weight (5/4 for the majority
and 5/1 for the minority).

Equation (3) as well as (4) overcomes the problem of the conventional loss
function (1) in dealing with imbalanced data. By introducing different weighting
parameters, they balance out importances of predicting both the majority class
and the minority one. In other words, this non-uniform weighting strategy either
emphasizes the impact of errors in estimating the minority class or reduces the
significance of losses in approximating the majority case so that WTEN is very
well balanced in optimizing the performance of both class labels.
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5 Performance Evaluation

Our goals of conducting experiments below are to assess: 1) the contribution
of an additional coupled matrix to the tensor factorization accuracy and 2)
the effectiveness of our proposed weighting strategy on the estimation of missing
entries when it is applied to imbalanced datasets. For better validating our work,
both synthetic datasets in which the imbalance rate and coupled relationship are
controlled and two real-world data are used.

5.1 Data used in our experiments

We use two synthetic and two real-world datasets for our experiments. The
following subsections explain how synthetic data is generated and introduce two
real-world datasets.

5.1.1 Synthetic data

Two datasets are synthesized by the following steps:

- Stepl: A symmetric user-by-user matrix Yso with Os and 1s is randomly
created to represent friendship among users. Value 1 means a pair of users is
friend, value 0 means otherwise. Each user has a certain percentage of all users
as friends. In this experiment, we randomly generated Ygo with about 50% of
all users as friends.

- Step 2: For every user, a set of random ratings of 1s (for 5-star ratings)
and Os (other ratings) for movies over twelve months is generated following a
rule that ensures any pair of users with 1 in Yg5o has almost the same rating
patterns. This is to capture the fact that users who are friends usually have
similar preferences for movies over the year. The generated ratings are in a tensor
format of (users, movies, months). Two different sparse tensors are synthesized
for this experiment with the ratio between 0 and 1 ratings of 100:1 (X) and
1,000:1 (X1) as summarized in Table 2.

Table 2. Ground truth distributions of the two synthesized tensors Xy and X; of size
100 x 100 x 12, a real-world ABS tensor X, of size 153 x 88 x 3 and a real-world
MovieLens tensor X3 of size 943 x 1,682 x 7

Label  Xo (100:1) X; (1,000:1) Xy (9:1) X3 (4:1)

Training Testing Training Testing Training Testing Training Testing

1 192 48 19 5 664 167 16,744 4,457
0 19,200 4,800 19,200 4,800 5,799 1450 63,256 15,543

- Final step: just like real-world scenarios where users make friends with those
who have similar preferences or unfriend those who do not while their ratings
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in the past do not change, we analyze each of the two tensors to find pairs of
users having the same rating patterns. 1s are then added to these pairs in Ygq
to create other two matrices Y3, and Y3, of about 80% of friendship for each
tensors, respectively. The same process is done to form other two matrices Y3,
and Y3, of about 20% of friendship by removing 1s in Yso for pairs of users
having unique rating patterns. These relationships are showed in Table 3.

Table 3. Matrices coupled with synthetic tensors Xy and X; for CTF.

Matrix

Tensor Friendship rate

20% 50% 80%
Xo Y9 Yso Ygo
X1 Y3, Yso Yo

5.1.2 ABS data

Australian Bureau of Statistics (ABS) [1] publishes a comprehensive data about
people and families for all Australia geographic areas. This ABS dataset has
income ranges of different family types within 153 New South Wales’ areas, so-
called ”local government areas”, in 2001, 2006 and 2011, forming a tensor Xy of
(area, income range, year) of size 153 by 88 by 3. X5 has 8080 observations whose
values are 1s for nontrivial income ranges and Os for trivial ones. ABS dataset also
includes population, number of services provided, and Socio-Economic Indexes
for Areas that rank areas with respect to their relative socio-economic advantage
and disadvantage. This additional information is compiled into a 153 by 3 matrix
Y of (area, profile). In this paper, we train our model with 80% of known Xs’s
entries, together with a fully observed Ys. The rest 20% of known entries of X5
are for testing. Table 2 summarizes this ABS data distribution.

5.1.3 MovieLens data

MovieLens dataset [10] includes ratings from 943 users for 1,682 movies. It is
compiled into tensor X3 of (users, movies, weekdays) whose entries are ratings,
matrix Y3 of (users, users’ profile) and matrix Zs of (movies, genres). Matrix
Y5 has the size of 943 by 83 in which a user is specified by her gender (0 or 1),
is grouped in one of 61 age groups, and have one of 21 occupations. Matrix Z3
categories 1,682 movies into 19 different genres. One movie belongs to one or
more genres. Finally, values of X3’s entries are 1s for high ratings (e.g. 5-star)
and Os for observed low ratings (e.g. 1-star to 4-star). In this paper, we train our
model with 80,000 known ratings, together with Y3 and Zs of 2,159 and 2,893
observed nonzeros, respectively. 20,000 ratings are for testing. MovieLens data
distribution is also shown in Table 2.
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5.2 Factorization Accuracy

We investigate effects of an additional matrix Y to a tensor X’s factorization
accuracy by comparing the performance of decomposing only X (TF in this
case) and that of joint factorizing X and Y (CTF whose coupled relationships
are defined in Table 3). Both mean squared errors (MSE) (5) of the training sets
and approximation results of the testing sets are the metrics for our evaluation.

[X-UoVoW|3

MSE = size(X)

()

where size(X) denotes the size of tensor X. In case X is a sparse tensor, it is the
number of observed elements of X.

By having additional data in a form of coupled matrix, CTF improves the
factorization accuracy of the main tensor over TF as illustrated in Figure 3 and
Figure 4. As one may anticipate, having additional information in the event
of extremely skewness towards one class is very crucial. Figure 3b shows the
additional matrices help improve the MSE of factorizing X; 60 times on average
compared with factorizing X; alone. The more interesting points lie in Figure
3a where the lower friendship rate, in other words, less informative, a coupled
matrix is, the lower training MSE of factorizing X achieves. In particular, as
information richness increases from left to right (Y3, Yso0, then Y3,), the MSEs
of Xy when joint factorizing Xo with Y9y, Y50 and Y3, raise correspondingly,
even to higher than that of decomposing tensor X, alone. This does not mean
joint factorizing a tensor Xy with a stronger constraint and more informative
matrix performs worse. Actually, a stronger constraint and more essential user-
user information in Y3, guides the factorization of Xy towards a resistant of
the conventional trend that approximates everything to be the majority class
label to achieve a better estimation of the minority case. This resistance, thus,
increases the training MSEs.

006 0.03
005 [____. o TF TF
004 | 002
% 003 | ‘LE 60x
= =
002 | 001
001 |
0 I A
20% 50% 80% 20% 50% 80%
Friend Rate Friend Rate
(a) (b)

Fig. 3. MSE of a) X and b) X; when they are joint factorized with different matrices.
Reference lines (blue) in a) and b) are MSEs of decomposing X and X; alone (by TF).
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CTF with coupled richer information matrices enables more tested minority
class (class 1) to be correctly approximated. As illustrated in Figure 4a, many
more tested minority class is correctly recovered in case 80% friendship matrix
Y2, is coupled factorized with Xo. When Ysg is used, CTF has similar perfor-
mance with TF since information in Ygg already includes in Xy which has been
done in the second step of generating synthetic data. So Yo does not really add
any extra information to X decomposition. Less informative Y3, has less mean-
ingful information, compared to the other two matrices, to guide CTF toward
correct direction, hence, performs worst. The same trend observed in Figure 4b
with X; suggests a dominance of CTF over TF when an extra and meaningful
matrix is joint decomposed with a tensor.

[ ] [ ]
25 - CTF TF 4 . CTF TF
gz 20 23t
S 15 S
Bl g2
£ 10 g
o Q 1 F
Q 5 Q
H* H* L
0
20% 50% 80% 20% 50% 80%
Friend Rate Friend Rate
(a) (b)

Fig. 4. Number of correctly approximation of missing 1s in a) Xo and b) X;. In both
cases, the richer additional data is joint decomposition, the higher prediction rate is
achieved.

5.3 Missing entry recovery

We compare our proposed WTEN with existing CMTF-OPT [2] and Sampling
CMTF in which imbalanced data is first randomly under-sampling and then
factorized by CMTF-OPT on missing entry recovery. Our target is to assess how
well these algorithms approximate missing entries of the imbalanced ABS and
MovieLens tensors. A missing entry (i,j,k) of X is classified as 0 (a majority or a
negative label) if the reconstructed f)ACi,j,k < eor 1 (aminority or a positive label)
otherwise. Recall, Precision and the area under a ROC curve [9] (AUC) which are
widely used metrics in imbalanced data learning are our measurements. CMTF-
OPT is optimized by three different optimization methods including Nonlinear
Conjugate Gradient (NCG), Limited-memory BFGS (LBFGS) and Truncated
Newton (TN) whereas WTEN is optimized by Stochastic Gradient Descent.
Table 4 summarizes the result of CMTF-OPT, Sampling CMTF and our
proposed WTEN on missing imbalanced data recovery for both ABS dataset
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Table 4. Performance of missing entries estimation with real-world ABS and Movie-
Lens datasets. In both cases, WTEN achieves the highest accuracy on positive labels.

ABS dataset MovieLens dataset
Precision Recall AUC Precision Recall AUC

CMTF-OPT (NCG) 0.7658 0.7246 0.8495 0.5477 0.3143 0.6199
CMTF-OPT (LBFGS) 0.7602 0.7784 0.8751 0.4512 0.3330 0.6084
CMTF-OPT (TN) 0.7697 0.7605 0.8671 0.4372 0.2165 0.5683

Sampling CMTF (NCG) 0.4139 0.8922 0.8733 0.3653 0.7247 0.6818
Sampling CMTF (LBFGS) 0.3495 0.8623 0.8387 0.3249 0.4451 0.5900
Sampling CMTF (TN) 0.3830 0.8623 0.8511 0.3468 0.6679 0.6536

WTEN 0.4825 0.9102 0.8989 0.4055 0.7393 0.7142

Algorithms

and MovieLens dataset. Boldface numbers highlight the best among the algo-
rithms for each dataset. As shown in Table 4, CMTF-OPT produces the highest
Precision for both datasets as it approximates most of the tested entries to the
majority labels (e.g. 0s), leading to a low false positive rate. This is confirmed
for both datasets by CMTF-OPT’s lowest Recall measurements, which denote
the percentage of correctly estimating the minority labels (e.g. 1s), compared
to the others. Sampling CMTFs with different optimization methods improve
CMTF-OPT’s performance on imbalanced data with higher Recalls. However,
their performances are outweighed by WTEN which accurately estimates the
positive labels even more (shown by the highest Recall in both cases) without
jeopardizing the negative ones (illustrated by just a little lower Precision com-
pared with the best CMTF-OPT). AUC also confirms the dominance of WTEN
over existing algorithms on imbalanced data as WTEN achieves the highest
AUC for both ABS and MovieLens datasets. All of these results demonstrate
the performance of missing entry recovery on imbalanced data does not improve
significantly by using a more sophisticated optimizer or applying sampling on
the input imbalanced data, but in fact, our proposed strategy enables CTF to
achieve a better performance.

To illustrate the advantage of our proposed WTEN, we present in Figure 5
the convergence of all the algorithms on MovieLens training data. There are two
insights we can observe in this figure. Firstly, CMTF-OPTSs’ least squares errors
are generally lower than that of WTEN. This is because WTEN decomposes
the input tensor with respect to both majority and minority labels optimiza-
tion, whereas CMTF-OPTs focuses on minimizing the lost of the majority ones
leading to lower least squares errors. Secondly, the convergence speed of WTEN
is the same as, if not better than, different optimizers of CMTF-OPT. They
almost reach the optimum after about 10 seconds. This convergence evidence
together with WTEN’s enhanced performance of missing entries on both real-
world datasets confirms its significance on improving the accuracy of minor class
estimation, suggesting WTEN as the most appropriate method for CTF to han-
dle imbalanced data learning.
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Fig. 5. Convergence of WTEN and CMTF-OPT on MovieLens training data. It is
worth to note that the least squares error here is not the error rate that we evaluate

in the experiment for final performance comparisons. Since the data is imbalanced, we
use AUC as the comparison metric, as shown in Table 4.

6 Conclusion

We proposed a weighting strategy to provide Coupled Tensor Factorization
method a capability to handle imbalanced data. Our work suggests three key
learning insights. Firstly, our novel weighting strategy enables CTF to perform
significantly better on the minority class prediction without jeopardizing the
classification of the majority case. Secondly, our experiments demonstrate the
impact of the additional matrix on CTF’s performance over TF. This finding
can serve as a foundation for a general purpose latent factor on imbalanced data
learning. Thirdly, our factorization algorithm with weighting scheme can be eas-
ily extended to different imbalanced data sets and applications. Although this
paper targets binary missing label estimation problem, the weighting strategy
can be straightforwardly applied to multiple labels, such as integer ratings where
the frequencies of integers are imbalanced. In the future, we are planning to scale
up our idea using distributed computing environments.
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