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Abstract. Unsatisfiability proofs in the DRAT format became the de
facto standard to increase the reliability of contemporary SAT solvers.
We consider the problem of generating proofs for the XOR reasoning
component in SAT solvers and propose two methods: direct translation
transforms every XOR constraint addition inference into a DRAT proof,
whereas T-translation avoids the exponential blow-up in direct transla-
tions by using fresh variables. T-translation produces DRAT proofs from
Gaussian elimination records that are polynomial in the size of the input
CNF formula. Experiments show that a combination of both approaches
with a simple prediction method outperforms the BDD-based method.

1 Introduction

The satisfiability problem (SAT) is a paramount problem in computer science
and artificial intelligence. Modern SAT solvers based on the DPLL algorithm [10]
use many advanced techniques such as clause learning [27], clause removal [2,
12], formula simplifications [11, 19] and specialized reasoning procedures such
as XOR reasoning [20, 21, 29, 31]. These improvements led to a spectacular
performance of conflict-driven satisfiability solvers. However, even intensively-
tested systems contain bugs [7, 24], and today, unsatisfiability proofs in the
DRAT proof format [32] are the de facto standard in the SAT community. In
fact, DRAT format proof generation is a requirement in the main track of the
SAT competition 2016. Recently, the DRAT format received media attention
because SAT solvers solved the Pythagorean Triples Problem and its 200 TB
proof was expressed in this format [17].

XOR constraints frequently arise in applications such as logical cryptoanal-
ysis [9] and pseudo-Boolean encodings [13]; 71% of instances in the application
track of the SAT Competition 2014 contain XOR constraints. Gaussian elimina-
tion can be used as an efficient reasoning procedure over XOR constraints [31].
Currently, none of the state-of-the-art SAT solvers, like Lingeling [5], Riss [23]
and CryptoMiniSAT [30], are able to produce proofs for XOR reasoning. Inabil-
ity to produce unsatisfiability proofs for XOR reasoning can seriously hinder the
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Fig. 1. Certificate-based approach for XOR reasoning: F is the input formula, P an
XOR formula which is simplified to P ′; F ′ represents the encoding as a CNF formula of
P ′, which is then refuted. DRAT proofs π and σ are generated from Gaussian elimina-
tion preprocessing and CDCL execution. Together, they provide a full unsatisfiability
certificate for F .

performance of SAT solvers when certificate generation is required, since XOR
reasoning must then be disabled. This makes the solver much less efficient for
some problems, e.g. in cryptography.

The problem we address here is to generate DRAT proofs in XOR reason-
ing, stated as an open problem in [16, 28]. As shown in Figure 1, SAT solvers
with XOR reasoning modules [29, 31] detect XOR constraints P in the input
formula F and apply Gaussian elimination to find small (unary and binary in
CoProcessor), implied XOR constraints P ′, which are then encoded back to
the formula as F ′. A standard CDCL-driven SAT solver solves the new formula,
producing a DRAT refutation π for F ∪F ′. Still, the DRAT refutation does not
include a witness that the XOR detection and reasoning procedure in the SAT
solver was correct. To obtain a full unsatisfiability proof of F , a DRAT proof σ
of F ∪ F ′ from F is needed. In this paper, we discuss how to generate such a
DRAT proof.

Sinz and Biere proposed a BDD-based approach [28] which can be modified
to express DRAT proofs for XOR reasoning. Heule et al. have shown that sym-
metry breaking [1] can be expressed in DRAT [15]. Although these techniques
could be covered by allowing additional inference rules in the proof system, novel
efficient methods for proof checking would need to be developed. Hence, verifi-
cation of proof checkers would become much more costly; by generating DRAT
proofs verification is avoided, since the proof itself is a certificate of correctness.
Furthermore, the obtained DRAT proof is a refutation of the original clauses, so
the XOR constraint detection algorithm needs not be verified.

Our contributions

1. We present direct translations which are based on DP-like variable elimina-
tion, and T-translations that avoid the exponential blow up by introducing
Tseitin variables. Moreover, we describe how one can adapt the BDD-based
approach [28] to handle XOR constraints.



2. We prove that T-translations are polynomial in the size of the input formula,
when Gaussian elimination was used, whereas the direct translation is an
exponential proof in general.

3. Experiments show that the T-translation is practical as it produces proofs
of reasonable size for the problems in the SAT Competition 2014. Moreover,
the direct and the T-translation outperform the BDD-based approach.

2 Background

2.1 Propositional Logic and XOR Constraints

We consider a totally ordered, countably infinite set of propositional variables. A
literal L is either a variable A or its negation ¬A. The complement of a literal L
is denoted by L. A clause is a finite disjunction of literals (L1 ∨ · · · ∨ Ln). XOR
constraints are expressions of the form [A1, . . . , An]k, where Ai is a variable for
every 1 ≤ i ≤ n, and k ∈ {0, 1}. A finite set of clauses (XOR constraints, resp.)
F is called a CNF formula (XOR formula, resp.).

Semantics are given by interpretations that map formulas to truth values:
the interpretation I satisfies a clause C = (L1 ∨ · · · ∨ Ln), if I satisfies some
literal among L1, . . . , Ln; it satisfies an XOR constraint X = [A1, . . . , An]k if
the number of the variables Ai satisfied by I has the parity of k (i.e. odd if k = 1
and even if k = 0); and it satisfies a formula F if I satisfies all elements of F .
We follow the usual notion of semantic equivalence.

We assume that clauses and XOR constraints are normalized: a literal may
appear only once in a clause, and a variable at most once in an XOR constraint.
The normal form can be obtained by removing duplicated literals in CNF clauses
as well as pairs of occurrences of the same variable in XOR constraints. Observe
that these operations preserve semantic equivalence, e.g. [p, q, r, r, q]0 is seman-
tically equivalent to [p]0. Consider two XOR constraints

X = [A1, . . . , An, B1, . . . , Bp]k Y = [A1, . . . , An, B
′
1, . . . , B

′
q]l

where the Ai, Bi and B′i are pairwise distinct variables. The addition of X and
Y , denoted by X 4 Y , is [B1, . . . , Bp, B

′
1, . . . , B

′
q]k⊕l where ⊕ represents the

binary XOR operation. The resolvent of clauses C and D upon L is the clause
obtained by removing L from C, and L from D, and afterwards combining them
disjunctively. A tautology is a clause containing a complementary pair of literals.

2.2 Gaussian Elimination-based XOR Reasoning in SAT Solvers

Contemporary SAT solvers such as CryptoMiniSAT detect XOR constraints in
their direct encoding in the input formula [18]. The direct encoding [14] D(X)
of an XOR constraint X = [A1, . . . , An]k is the CNF formula that contains all
clauses of the form (L1 ∨ · · · ∨ Ln), where the Li are either Ai or ¬Ai, and the
number of negated literals Li is not equal to k modulo 2. The direct encoding
of an XOR constraint is the unique CNF formula semantically equivalent to it.
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Fig. 2. XOR proof system inference rules: addition (left) and XOR definition (right),
where A is a fresh variable and k ∈ {0, 1}

Example 1 (Direct encoding). Let X = [p, q, r]0, Y = [p, q, s]1 and Z = [r, s]1.
Their direct encodings are:

D(X) = {(¬p ∨ ¬q ∨ ¬r), (¬p ∨ q ∨ r), (p ∨ ¬q ∨ r), (p ∨ q ∨ ¬r)}
D(Y ) = {(p ∨ q ∨ s), (p ∨ ¬q ∨ ¬s), (¬p ∨ q ∨ ¬s), (¬p ∨ ¬q ∨ s)}
D(Z) = {(r ∨ s), (¬r ∨ ¬s)}

Note that D([]0) is the empty formula, while D([]1) is the unsatisfiable singleton
formula consisting of the empty clause. ut

For an XOR formula P , we define D(P ) as the union of the direct encodings
of XOR constraints in P . We formalize XOR reasoning as a proof system with
two inference rules, given in Fig. 2. An XOR proof of an XOR formula Q from a
formula P is a proof using only additions and XOR definitions, where all premises
are in P and all XOR constraints in Q are either in P or occurring along the
proof. Note that the addition rule subsumes Gaussian elimination steps [29], and
therefore XOR proofs subsumes Gaussian elimination procedures.

Example 2. Consider the XOR formula P =
{

[p, q, r]0, [p, q]1
}

. We obtain the
following XOR proofs of [r]1, with and without the use of a single XOR definition:

def
[x, p, q]0 [p, q, r]0

add
[x, r]0

def
[x, p, q]0 [p, q]1

add
[x]1

add
[r]1

[p, q, r]0 [p, q]1
add

[r]1

ut

2.3 DRAT Proofs

The DRAT (Deletion Resolution Asymmetric Tautology) format [32] is based
on the notion of asymmetric literal addition [19]. Given a CNF formula F and a
clause C, the set AL(F,C) contains all literals L such that, for literals L1, . . . , Ln

occurring in C, the clause (L1 ∨ . . . ∨ Ln ∨ L) belongs to F . We define the
asymmetric literal addition function ALAF that maps a clause C to the clause
ALAF (C) = C ∨

∨
L∈AL(F,C) L. We consider the repeated application of ALAF :

ALAF (C) ↑ 0 = C ALAF (C) ↑ n+ 1 = ALAF (ALAF (C) ↑ n)

A clause C is an asymmetric tautology (AT) w.r.t. F if, for some n ≥ 0,
ALAF (C) ↑ n is a tautology. Asymmetric tautologies can also be character-
ized in terms of unit propagation, i.e. (L1∨ . . .∨Ln) is AT w.r.t. F if and only if



unit propagation in F ∧¬L1 ∧ . . .∧¬Ln detects an inconsistency [3]. A clause C
is a resolution asymmetric tautology (RAT) [19] upon L w.r.t. F if the resolvent
of C and D upon L is an AT w.r.t. F for all clauses D ∈ F with L ∈ D.

Example 3. Consider the formula F = {(p ∨ q), (p ∨ ¬q ∨ r), (¬q ∨ ¬r)} Then,
the application of asymmetric literal addition for p shows that the unit clause p
is an AT in F , while the unit clause q is not an AT:

ALAF (p) ↑ 1 = (p ∨ ¬q) ALAF (q) ↑ 1 = (q ∨ ¬p)
ALAF (p) ↑ 2 = (p ∨ ¬q ∨ ¬r ∨ r) ALAF (q) ↑ 2 = ALAF (q) ↑ 1
ALAF (p) ↑ 3 = (p ∨ ¬q ∨ ¬r ∨ r ∨ q)
ALAF (p) ↑ 4 = ALAF (p) ↑ 3

Moreover, the unit clause ¬q is a RAT, since it can only be resolved with (p∨q),
yielding p which is an AT. ut

Introduction of asymmetric tautologies to a formula preserves semantic equiva-
lence, while introduction of resolution asymmetric tautologies to a formula pre-
serves satisfiability [19]. A DRAT proof in a formula F is then a sequence of
clauses such that every clause is either AT or RAT with respect to the formula
F together with the preceding clauses. In the following we will use the fact that
resolvents of C and D are asymmetric tautologies in {C,D} [19]. This allows to
regard any resolution proof using resolution inferences of the form

C ∨ L D ∨ L
res

C ∨D
as a DRAT proof by traversing the proof tree in a breadth-first top-down manner.

3 Variable-Elimination-Based Approach

In this section we present the direct translation, a method to construct DRAT
proofs from XOR proofs based on the direct encoding of XOR constraints. Each
inference in the XOR proof system is translated to a DRAT proof; concatenation
of partial translations is the direct translation of an XOR proof into a DRAT
proof. In the following, we give translations for the two inference rules in XOR
reasoning, namely additions and XOR definitions. In general, the direct encoding
of an addition is not a DRAT proof from the direct encoding of its premisses:

Example 4. Consider the XOR constraints [p, q]0 and [p, q]1. By addition we
obtain []1, whose direct encoding only contains the empty clause. However, the
empty clause is not a RAT in the direct encoding of the premises, given by
D([p, q]0) ∪ D([p, q]1) = {(¬p ∨ q), (p ∨ ¬q), (¬p ∨ ¬q), (p ∨ q)} ut

In fact, the problem arises when two or more variables are eliminated by addition.
We propose to eliminate the variables stepwise. Consider XOR constraints X,
Y and Z = X 4 Y defining a general addition inference of the form:

[A1, . . . , An, B1, . . . , Bp]k4[A1, . . . , An, B
′
1, . . . , B

′
q]l = [B1, . . . , Bp, B

′
1, . . . , B

′
q]k⊕l



The proof is constructed in a bottom-up fashion: starting from each clause
C in D(Z), a resolution proof of C from D(X) ∪ D(Y ) is generated. We know
that C is a clause of the form C = (L1 ∨ · · · ∨Lp ∨L′1 ∨ · · · ∨L′q), where literals
Li are either Bi or ¬Bi, and similarly for L′i.

C can be obtained by resolving the two clauses C∨A1 and C∨¬A1 upon A1.
These clauses contain the literals corresponding to all the Bi, B

′
i as well as to

A1. In general, we can consider a clause C ′ of the form C ∨K1 ∨ · · · ∨Kj , where
the literals Ki are either Ai or ¬Ai. C

′ can be further obtained as the resolvent
of (C ∨K1 ∨ · · · ∨Kj ∨Aj+1) and (C ∨K1 ∨ · · · ∨Kj ∨¬Aj+1). Generating these
resolution steps recursively gives a resolution proof, where clauses in level j are
of the form C ∨K1 ∨ · · · ∨Kj .

. . .
...

res
C ∨A1 ∨A2

. . .
...

res
C ∨A1 ∨ ¬A2

res
C ∨A1

. . .
...

res
C ∨ ¬A1 ∨A2

. . .
...

res
C ∨ ¬A1 ∨ ¬A2

res
C ∨ ¬A1

res
C

Clauses in the (n− 1)-th level are of the form C ∨K1 ∨ · · · ∨Kn−1. Such clauses
can be guaranteed to be AT in the CNF formula D(X)∪D(Y ). Let P(X,Y ) be
the sequence of clauses obtained from traversing the above proof tree in breadth-
first, top-down manner. Then, P(X,Y ) is a DRAT proof of the D(X4 Y ) from
D(X) ∪ D(Y ).

On the other hand, translation of XOR definitions is straightforward. If the
XOR constraint X contains a variable that does not occur in F , and D(X) =
{C1, . . . , Cn}, then (C1, . . . , Cn) is a DRAT proof of D(X) from F .

The direct translation of an XOR proof is then given by the concatenation
of such partial translations of the addition and XOR definition inferences along
the XOR proof.

4 T-Translation of XOR Proofs

In this section we introduce T-translations that avoid the exponential blow-up in
the proof length by expressing single XOR constraints as conjunction of several
XOR constraints of fixed size. We assume from now on that variables in XOR
constraints are sorted. The natural splitting [14] of X = [A1, . . . , An]k, denoted
by S(X), is {X} if |X| ≤ 3, and otherwise the set containing the following XOR
constraints:

splitting matrix︷ ︸︸ ︷
[A1, A2, s0]0 [s0, A3, s1]0 . . . [sn−4, An−2, sn−3]0

independent constraint︷ ︸︸ ︷
[sn−3, An−1, An]k (1)

where the si are fresh variables. The set of XOR constraints in the left is called
the splitting matrix of X, denoted by Ŝ(X). The rightmost XOR constraint is
called the independent constraint of X, denoted by IX ; in the case when |X| ≤ 3
we define Ŝ(X) = ∅ and IX = X.



Example 5. We show three XOR constraints with their respective splittings,
where the xi, zi are fresh variables. Each independent constraint is underlined.

X =[p1, p2, p3, p4, p5]1 S(X) = {[p1, p2, x0]0, [x0, p3, x1]0, [x1, p4, p5]1}

Y = [p4, p5, p6]0 S(Y ) = {[p4, p5, p6]0}

Z = [p1, p2, p3, p6]1 S(Y ) = {[p1, p2, z0]0, [z0, p3, p6]1} ut
The linear encoding of X, is L(X) = D(S(X)), i.e. the direct encoding of the

splitting. Notice that the linear encoding is equivalent w.r.t. satisfiability to the
direct encoding of the XOR constraint itself, and has polynomial size. Given an
XOR proof of an XOR formula Q from an XOR formula P , its T-translation is
a DRAT proof of D(Q) from D(P ) constructed as follows:

1. Obtain a splitter XOR proof of S(P ) from P ; its direct translation, called
the prefix proof, is a DRAT proof of L(P ) from D(P ).

2. Generate an intermediate XOR proof of S(Q) from S(P ); its direct transla-
tion, called the lift proof, is a DRAT proof of L(Q) from L(P ).

3. Derive D(Q) from L(Q) through the suffix proof ; the concatenation of prefix,
lift and suffix is a proof of D(Q) from D(P ).

4.1 Prefix Proof – Towards the Splitted Representation

In general, given the direct encoding of the splitted XOR constraint L(X) =
D(S(X)) = {C1, . . . , Cn}, the sequence (C1, . . . , Cn) is not a DRAT proof from
D(X). We therefore propose to generate a splitter XOR proof of S(X) from an
XOR constraint X; applying the direct translation to this splitter yields a DRAT
proof of L(X) from D(X) as follows.

Consider X = [A1, . . . , An]k. Observe that X = 4Y ∈S(X)Y . Hence, we can

conclude that IX = X 4 (4Y ∈Ŝ(X)Y ). The procedure to construct the splitter

of X consists on, firstly, introducing all XOR constraints in Ŝ(X) as XOR defini-
tions, which is possible as long as this is done in the order shown in (1). Secondly,
the missing constraint IX can be derived by, starting with X, iteratively apply-
ing addition inferences with all constraints from Ŝ(X). Furthermore, provided
this operation is performed in the order from (1), we are able to guarantee that
this process never involves an XOR constraint larger than X, which is essential
to bound the length of the obtained DRAT proof.

Example 6. Consider again the constraints in Example 5. Since the splitting of
Y is {Y }, its splitter is the empty proof. The splitter of X is given by:

[p1, p2, p3, p4, p5]1
def

[p1, p2, x0]0
add

[x0, p3, p4, p5]1
def

[x0, p3, x1]0
add

[x1, p4, p5]1 ut

Applying direct translation results in a DRAT proof of L(X) from D(X),
which we refer to as the prefix proof. In the case the aforementioned orders are
used, the obtained proof is polynomial in the size of the input CNF formula.



4.2 Lifted Proof

We generate now an intermediate XOR proof of S(Q) from S(P ); its direct
translation will be the lift DRAT proof. It suffices to give proofs of S(Z) from
S(X) ∪ S(Y ) for every addition inference Z = X 4 Y ; the intermediate XOR
proof is the concatenation of such proofs for every addition inference along the
original XOR proof. Assume that the XOR constraints X,Y, Z contain exactly
the variables A1 < · · · < An.

Similarly to the prefix proof, XOR constraints in the matrix Ŝ(Z) can be
introduced in the same order as in (1) as XOR definitions. The rest of the proof
is directed towards deriving the independent XOR constraint IZ by addition. It
is possible to show that:

IZ = (4X′∈S(X)X
′)4 (4Y ′∈S(Y )Y

′)4 (4Z′∈Ŝ(Z)Z
′)

As before, the result holds regardless of the order on which addition inferences are
applied. However, it is possible to choose an order which produces intermediate
XOR constraints of size bounded by 5, which is needed to avoid an exponential
blow-up. This is attained by first adding the XOR constraints containing the
literal A1, afterwards adding those containing A2, and so on.

Example 7. Consider X,Y and Z = X 4 Y as in Example 5. Then, one can
derive S(Z) from S(X) ∪ S(Y ) as follows:

[p1, p2, x0]0
def

[p1, p2, z0]0
add

[x0, z0]0 [x0, p3, x1]0
add

[x1, z0, p3]0 [x1, p4, p5]1
add

[z0, p3, p4, p5]1 [p4, p5, p6]0
add

[z0, p3, p6]1

The only XOR constraint in the matrix of Z has been introduced by XOR
definition on z0. To derive the independent constraint [z0, p3, p6]1, we have first
used up the XOR constraints containing p1, then the remaining ones containing
p2 (in this case, none), then the remaining ones containing p3 and so forth. ut
The lift proof is a DRAT proof of L(Q) from L(P ) obtained by applying the
direct translation to the intermediate translation described above for every ad-
dition inference along the original XOR proof.

4.3 Suffix Proof – Towards the Direct Encoding

Suffix proofs are generated by listing all clauses in the direct encoding of X,
since every such clause is an AT w.r.t. L(X). Once the three parts of the proof
have been generated, the T-translation consists of their concatenation.

Theorem 8 (Main Theorem). Let P,Q be XOR formulae, and π be an XOR
proof of Q from P . Consider the prefix πp, lift πl and suffix πs obtained from P ,
π and Q respectively. Then, πp πl πs is a DRAT proof of D(Q) from D(P ).

Proof. See [25, Corollary 7.30]. ut



X = [p, q, r]0 Y = [p, r, s]1 X ⊕ Y f(X,Y ) = X 4 Y
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Fig. 3. BDD representation of two XOR constraints X, Y , as well as of X ⊕ Y and
f(X,Y ). A dotted (solid) line from variable A indicates the BDD after assigning A to
false (true, resp.). The correct BDD for the XOR constraint X4Y is that of f(X,Y ).

5 Proof generation using BDDs

An alternative to the proposed method consists in expressing XOR constraint
addition as an operation over binary decision diagrams (BDDs) [8]. A DRAT
proof can then be generated using a method proposed by Sinz and Biere [28].

Let us consider two XOR constraintsX and Y , and assume we have computed
their BDDs BX and BY . The binary Boolean function f is defined by f(x, y) = 1
if and only if x = y. Then, as shown by Figure 3, the BDD of the XOR constraint
X 4 Y can be computed by applying the binary Boolean function f to BX and
BY using a well-known algorithm to apply Boolean functions to BDDs [8].

Sinz and Biere [28] propose a proof method for BDD operations as extended
resolution proofs. In particular, for the encoding of a BDD B as a CNF formula
E(B) described in [28], a method to derive E(B1 ∧ B2) from E(B1) ∪ E(B2) by
an extended resolution proof is proposed. Due to space constraints, we do not
discuss this method in detail; it can however be adapted to our problem:

– By performing minor changes in the case where the operated BDDs are
leaves, it is possible to extend the method so that BDDs are operated with
the aforementioned Boolean function f instead of ∧. This outlines another
method to lift an XOR proof into an extended resolution proof.

– Extended resolution proofs can be easily transformed into DRAT proofs [19].
– Given a clause C and its BDD encoding BC , clauses in E(BC) can be derived

by simply enumerating them. The encoding E(BX) of the BDD of an XOR
constraint X is derived by conjoining all the clauses in D(X) as BDDs, and
then lifting this operation into a DRAT proof as above.

– In an analogous way to the T-translation suffix, clauses in the direct encoding
of an XOR constraint X can be derived as asymmetric tautologies in E(BX).

Example 9. Consider XOR constraints X and Y with direct encodings:

D(X) = {C1, C2} D(Y ) = {C3, C4} D(X 4 Y ) = {D1, D2, D3, D4}

The encodings of the BDDs corresponding to clauses Ci can be derived by enu-
merating the clauses in E(Ci). Now, since X is semantically equivalent to C1∧C2



Translation Length

Direct addition Z = X 4 Y 2u(X,Y )−1 − 2d(X,Y )−1 if d(X,Y ) > 0,

2u(X,Y )−1 if d(X,Y ) = 0

Direct XOR definition X 2l(X)−1 if l(X) > 0, and
1 if l(X) = 0

Prefix proof of XOR constraint X 4(l(X)− 4) + 3 · 2l(X)−1

Lifted proof of addition Z = X 4 Y 36u(X,Y )

Suffix proof of XOR constraint X 5 · 2l(X)−1

Table 1. Above, (exact) proof lengths of direct translations for each inference in the
input XOR proof. Below, proof length bounds for each T-translation part. We use the
following measures: l(X) = |X?|, u(X,Y ) = |X? ∪ Y ?| and d(X,Y ) = |(X 4 Y )?|
where X? = {A1, . . . , An} for an XOR constraint X = [A1, . . . , An]k.

and ROBDDs are canonical [8], we have that BX = BC1 ∧ BC2 . Applying the
method from [28] yields a DRAT proof of E(BX) from E(BC1) ∪ E(BC2); and
analogously for Y . Our variation in this method replacing ∧ by f can then pro-
vide a DRAT proof of E(BX4Y ) from E(BX) ∪ E(BY ). The direct encoding of
X 4 Y can be derived from E(BX4Y ) by introducing every clause as an AT.

C1

C2

C3

C4

E(BC1)

E(BC2)

E(BC2)

E(BC2)

 

 

 

 

∧ E(BC1∧C2) = E(BX)

∧ E(BC3∧C4) = E(BY )

f E(BX4Y ) {D1, . . . , D4} = D(X 4 Y ) 

ut

6 Length Analysis of the Constructed DRAT Proofs

Table 1 presents the exact length measures of direct translations. Translation
of addition inferences is exponential on the u measure, which is the motivation
behind T-translations: by bounding the maximum size of intermediate XOR
constraints, we are able to asymptotically reduce the size of the lift translation.

In order to relate the number of variables occurring in the input formula
to the size of the input formula, we assume that the XOR proof was obtained
by Gaussian elimination, which is a safe assumption in all practical cases. In
particular, we consider an XOR proof of an XOR formula Q from an XOR
formula P of size n2, where n is the number of variables in P .

Theorem 10. If Gaussian elimination was used to obtain an XOR proof π of
Q from P , then the length of the DRAT proof obtained from π by T-translation
is bounded by O((|D(P )|+ |D(Q)|)3).



Proof. See [25, Theorem 8.2] for a proof for a regularized version of the T-
translation. The proof can easily be adapted to the setting explained here. Ob-
serve this is a very loose bound, since the cubic exponent only applies to the
involved XOR constraints in every inference. ut

Note that the size of the suffix subproof can be ignored if simplified XOR
constraints are introduced back in the SAT solver with the linear encoding.
T-translations are then polynomial in the size of the input CNF formula. This
bound does not contradict the exponential bounds for prefix and suffix proofs: the
size of XOR constraints is logarithmic in the usual measure of a proof generation
method, which is the size of the input CNF formula, in our case D(P ). This
bound allows us to show a complexity gap between direct and T-translations.
While the T-translation has polynomial length in the size of the input formula,
this is not true in general for the direct translation. The following example shows
a family of XOR proofs whose direct translation is of exponential length on the
size of the input CNF formula.

Example 11. Consider XOR constraints Xk = [pk−1, pk+1, qk+1]0 and Yk =
[pk, pk+1, q1, . . . , qk+1]0 for k ≥ 0, and the XOR formula Pk = {Y0, X1, . . . , Xk}.
A family of XOR proofs is given by ϕk = Y1, . . . , Yk, where the i-th XOR con-
straint is obtained by the addition Yi = Yi−1 4Xi; these correspond to records
of Gaussian elimination over Pk. Note that all premises in Pk are of length
3, so the size of D(Pk) is 4(k + 1). However, the i-th addition has measures
u(Yi−1, Xi) = i + 4 and d(Yi−1, Xi) = i + 3. Thus, the direct translation of the
i-th addition is of length 2i+2, totaling to translation length 2O(k) for ϕk. ut

7 Experimental Evaluation

We implemented the three approaches for proof generation in the Scala pro-
gramming language. Our algorithms for BDD manipulation are described in [6],
and we based our implementation in the one released by J.C. Filliâtre3. We ran
experiments over the instances of the application track of the SAT Competition
2014 and obtained XOR proofs from the preprocessor CoProcessor [22]. 210 out
of 300 instances yielded nonempty XOR proofs, which constituted our bench-
marks. The average length of these benchmarks was 36, 000 XOR constraints,
with some instances up to 10 times longer; benchmarks contain XOR constraints
averaging 3.47 in size. For each benchmark we computed DRAT proofs using the
direct translation, the T-translation, and the BDD-based approach. The exper-
iments were run on an 2-core 3.5 GHz AMD Opteron machine with 192 GB
RAM. A 5 minute timeout was set, and proofs were generated in memory but
not stored in disk. Figures 4a, 4b and 4c compare these lengths.

Our results show that the BDD-based approach performs consistently worse
than both direct and T-translations. In particular, it times out on 15% of the
benchmarks, compared to 13% for direct translations and none for T-translations;

3 https://github.com/zhihan/bdd-scala
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Fig. 4. Graphs (a), (b), (c) compare the three different forms of proof construction:
the direct translation, the T-translation, and the BDD-based approach. The gray line
indicates equal length. In Graph (c), green points correspond to the instances where
BDD-based generation yields shorter proofs than direct translation; black points are the
instances where the converse holds; and purple points are those where direct translation
times out, where length was computed using Table 1. Graph (d) compares relative
length of direct translations w.r.t. T-translations to the maximum value of the u-
measure along the input XOR proof. Gray line indicates equal length of direct and
T-translations; the proposed threshold value of 15 is indicated by a red dashed line.

all terminating instances for the BDD-based approach terminate for direct and
T-translation, as shown by Figures 4a and 4b.

Comparison between direct and T-translation is more complex, partly due to
timeouts for direct translations. Given the sheer size of some direct translations,
they would have been impossible to generate within any reasonable time. A
length comparison is nevertheless possible, since direct translation length can
be predicted by using the results from Table 1. Figure 4c shows these results,
where predicted data is provided where the direct translation times out. Direct
translations are strictly shorter than T-translations on 46% of the instances.
Moreover, whereas in some cases direct translation yields up to 300 times shorter
proofs, in some other instances direct translation produces proofs 25 orders of
magnitude larger than T-translation, which is consistent with our theoretical
analysis in Section 6. Furthermore, Figure 4c shows that, whenever T-translation
is outperformed by direct translation, then so is the BDD-based approach. This
suggests that the latter should not be considered for proof generation.

Further data are presented in Figure 4d, showing a tight relation between the
maximum umeasure (defined in Table 1) along the input XOR proof and a length
comparison of direct and T-translations. In particular, we find that T-translation
outperforms direct translation in proof size whenever the former measure is



Size of XOR constraint 3 5 7 9 11 13

Minimum length of BDD prefix 209 1704 15436 151855 1633456 19384645
Maximum length of BDD prefix 216 1879 16507 156914 1668015 19523431

Length of T-translation prefix 0 44 196 780 3092 12316

Table 2. Sizes of generated prefixes with the BDD-based method and with T-
translation. BDD prefixes were generated by conjoining BDDs in random orders, for a
sample of size 30; minimum and maximum recorded prefix lengths are shown.

larger than 15. The obtained data suggest an approach for proof generation by
computing the maximum u measure in the input, and then comparing it to a
threshold value of 15 to decide for the direct encoding or the linear encoding.

The particular order on which clauses in D(X) are conjoined to construct
the BDD of the XOR constraint X does not have a significant influence on the
length of the prefix, as shown in Table 2. In particular, data suggests an average
difference of around 4% between the minimum and the maximum BDD-based
prefix length, and in all cases a worse behaviour than the T-translation prefix.

8 Conclusion

Contemporary SAT solvers employ XOR reasoning techniques to efficiently solve
the propositional satisfiability problem. It was an open problem [16, 28] to effi-
ciently express XOR reasoning in terms of the DRAT format. We have adapted a
known BDD-based approach [28] to generate such proofs, although this method
is resource-intensive and generated proofs are very long. We propose two al-
ternatives: direct translation transforms every XOR step into a DRAT proof,
whereas T-translation avoids the exponential blow-up of the direct translation
by first generating a new XOR proof using Tseitin variables, and afterwards ap-
plying the direct translation. For XOR proofs produced by Gaussian elimination,
T-translations are polynomial in the size of the input CNF formula. Experiments
have shown that direct and T-translations outperform the BDD-based approach.
The direct encoding sometimes generates proofs of enormous size; however, it
is possible to predict instances where this happens, so that T-translation is ap-
plied instead. Our approach allows efficient XOR reasoning when certificates of
correctness are needed, producing unsatisfiability proofs of adequate size.

In the future, we plan to implement both translations in CoProcessor and
apply similar ideas to obtain proofs for cardinality resolution [26], as suggested
in [16]. Another interesting problem is adapting the presented approaches to SAT
solvers where XOR reasoning takes place within the CDCL procedure[20, 21].

Acknowledgements We would like to thank an anonymous reviewer who pointed
out that the BDD-based approach could be used as a baseline.
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