Skip to main content

Iteratively-Supported Formulas and Strongly Supported Models for Kleene Answer Set Programs

(Extended Abstract)

  • Conference paper
  • First Online:
Book cover Logics in Artificial Intelligence (JELIA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10021))

Included in the following conference series:

Abstract

In this extended abstract, we discuss the use of iteratively-supported formulas (ISFs) as a basis for computing strongly-supported models for Kleene Answer Set Programs (ASP\(^{K}\)). ASP\(^{K}\) programs have a syntax identical to classical ASP programs. The semantics of ASP\(^{K}\) programs is based on the use of Kleene three-valued logic and strongly-supported models. For normal ASP\(^{K}\) programs, their strongly supported models are identical to classical answer sets using stable model semantics. For disjunctive ASP\(^{K}\) programs, the semantics weakens the minimality assumption resulting in a classical interpretation for disjunction. We use ISFs to characterize strongly-supported models and show that they are polynomially bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that minimality is sometimes not required or may even be undesirable [2, 3, 15, 17], e.g., in the context of programs that use disjunctive rules.

  2. 2.

    We always remove double strong negations using \(\lnot (\lnot \ell )\mathop {=}\limits ^{\mathrm {def}}\ell \).

References

  1. Chan, P.: A possible world semantics for disjunctive databases. IEEE Trans. Knowl. Data Eng. 5(2), 282–292 (1993)

    Article  Google Scholar 

  2. Doherty, P., Szałas, A.: Stability, supportedness, minimality and kleene answer set programs. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Representation. LNCS, vol. 9060, pp. 125–140. Springer, Heidelberg (2015)

    Google Scholar 

  3. Ferraris, P., Lifschitz, V.: On the minimality of stable models. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 64–73. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents -The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  6. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 451–465. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  8. Lierler, Y.: cmodels – SAT-based disjunctive answer set solver. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans. Comput. Log. 7(2), 261–268 (2006)

    Article  MathSciNet  Google Scholar 

  11. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal logic programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the IJCAI-03, pp. 853–858. Morgan Kaufmann (2003)

    Google Scholar 

  12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming. In: Brewka, G., T., E., McIlraith, S. (eds.) Proceedings of the KR 2012. AAAI Press (2012)

    Google Scholar 

  14. Pelov, N., Ternovska, E.: Reducing inductive definitions to propositional satisfiability. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 221–234. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic programs and deductive databases. J. Autom. Reasoning 13(1), 145–172 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Son, T., Pontelli, E.: A constructive semantic characterization of aggregates in answer set programming. TPLP 7(3), 355–375 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Swedish Research Council (VR) Linnaeus Center CADICS, the ELLIIT network organization for Information and Communication Technology, the Swedish Foundation for Strategic Research (CUAS Project, SymbiKCloud Project), the EU FP7 project SHERPA (grant agreement 600958), and Vinnova NFFP6 Project 2013-01206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Szałas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Doherty, P., Kvarnström, J., Szałas, A. (2016). Iteratively-Supported Formulas and Strongly Supported Models for Kleene Answer Set Programs. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48758-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48757-1

  • Online ISBN: 978-3-319-48758-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics