
Lecture Notes in Computer Science 9971

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Sandrine Blazy • Marsha Chechik (Eds.)

Verified Software
Theories, Tools, and Experiments

8th International Conference, VSTTE 2016
Toronto, ON, Canada, July 17–18, 2016
Revised Selected Papers

123

Editors
Sandrine Blazy
IRISA, University of Rennes 1
Rennes
France

Marsha Chechik
Department of Computer Science
University of Toronto
Toronto, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-48868-4 ISBN 978-3-319-48869-1 (eBook)
DOI 10.1007/978-3-319-48869-1

Library of Congress Control Number: 2016956493

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 8th International Conference on
Verified Software: Theories, Tool and Experiments (VSTTE), which was held in
Toronto, Canada, during July 17–18, 2016, co-located with the 28th International
Conference on Computer-Aided Verification. The final version of the papers was
prepared by the authors after the event took place, which permitted them to take
feedback received at the meeting into account. VSTTE originated from the Verified
Software Initiative (VSI), which is an international initiative directed at the scientific
challenges of large-scale software verification. The inaugural VSTTE conference was
held at ETH Zurich in October 2005, and was followed by VSTTE 2008 in Toronto,
VSTTE 2010 in Edinburgh, VSTTE 2012 in Philadelphia, VSTTE 2013 in Menlo
Park, VSTTE 2014 in Vienna, and VSTTE 2015 in San Francisco. The goal of the
VSTTE conference is to advance the state of the art through the interaction of theory
development, tool evolution, and experimental validation.

The call for papers for VSTTE 2016 solicited submissions describing large-scale
verification efforts that involve collaboration, theory unification, tool integration, and
formalized domain knowledge. We were especially interested in papers describing
novel experiments and case studies evaluating verification techniques and technologies.
We welcomed papers describing education, requirements modeling, specification lan-
guages, specification/verification, formal calculi, software design methods, automatic
code generation, refinement methodologies, compositional analysis, verification tools
(e.g., static analysis, dynamic analysis, model checking, theorem proving), tool inte-
gration, benchmarks, challenge problems, and integrated verification environments. We
received 21 submissions. Each submission was reviewed by at least three members
of the Program Committee. The committee decided to accept 12 papers for presentation
at the conference. The program also included six invited talks, given by Zachary
Tatlock (Washington), Mark Lawford (McMaster), Kristin Yvonne Rozier (Iowa
State), Michael Tautschnig (Amazon), and Oksana Tkachuk (NASA Ames). The
volume includes abstracts or full-paper versions of some of these talks.

We would like to thank the invited speakers and all submitting authors for their
contribution to the program. We are very grateful to our general chair, Temesghen
Kahsai, for his tremendous help with organizing this event. We also thank Azadeh
Farzan (CAV PC co-chair) and Zak Kinsaid (CAV Workshops chair) for logistical
support, and to Natarajan Shankar for his vision for this year’s VSTTE and other events
in this series. Last but definitely not least, we thank the external reviewers and the
Program Committee for their reviews and their help in selecting the papers that appear
in this volume. This volume was generated with the help of EasyChair.

September 2016 Marsha Chechik
Sandrine Blazy

Organization

Program Committee

June Andronick NICTA and UNSW, Australia
Frédéric Besson Inria, France
Nikolaj Bjorner Microsoft Research, USA
Sandrine Blazy IRISA, France
Marsha Chechik University of Toronto, Canada
Ernie Cohen Amazon, USA
Deepak D’Souza Indian Institute of Science, Bangalore, India
Jean-Christophe Filliatre CNRS, France
Vijay Ganesh University of Waterloo, Canada
Arie Gurfinkel Software Engineering Institute, Carnegie Mellon

University, USA
William Harris Georgia Institute of Technology, USA
Temesghen Kahsai NASA Ames/CMU, USA
Vladimir Klebanov Karlsruhe Institute of Technology, Germany
Rustan Leino Microsoft Research, USA
Tiziana Margaria Lero, Ireland
David Naumann Stevens Institute of Technology, USA
Nadia Polikarpova MIT CSAIL, USA
Kristin Yvonne Rozier University of Cincinnati, USA
Natarajan Shankar SRI International, USA
Natasha Sharygina University of Lugano, Switzerland
Richard Trefler University of Waterloo, Canada
Michael Whalen University of Minnesota, USA
Naijun Zhan Institute of Software, Chinese Academy of Sciences,

China

Additional Reviewers

Alt, Leonardo
Berzish, Murphy
Bormer, Thorsten
Chen, Mingshuai
Fedyukovich, Grigory
Graham-Lengrand, Stephane
Guelev, Dimitar

Hyvärinen, Antti
Kuraj, Ivan
Marescotti, Matteo
Tiwari, Ashish
Zhang, Wenhui
Zheng, Yunhui
Zulkoski, Ed

Abstracts Short Papers

Advanced Development of Certified OS
Kernels

Zhong Shao

Yale University, New Haven, USA

Abstract. Operating System (OS) kernels form the backbone of all system
software. They can have a significant impact on the resilience, extensibility, and
security of today’s computing hosts. We present a new compositional approach
[3] for building certifiably secure and reliable OS kernels. Because the very
purpose of an OS kernel is to build layers of abstraction over hardware
resources, we insist on uncovering and specifying these layers formally, and
then verifying each kernel module at its proper abstraction level. To support
reasoning about user-level programs and linking with other certified kernel
extensions, we prove a strong contextual refinement property for every kernel
function, which states that the implementation of each such function will behave
like its specification under any kernel/user (or host/guest) context. To demon-
strate the effectiveness of our new approach, we have successfully implemented
and specified a practical OS kernel and verified its (contextual) functional
correctness property in the Coq proof assistant. We show how to extend our base
kernel with new features such as virtualization [3], interrupts and device drivers
[1], and end-to-end information flow security [2], and how to quickly adapt
existing verified layers to build new certified kernels for different domains.

This research is based on work supported in part by NSF grants 1065451,
1319671, and 1521523 and DARPA grants FA8750-12-2-0293 and
FA8750-15-C-0082. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.

References

1. Chen, H., Wu, X., Shao, Z., Lockerman, J., Gu, R.: Toward compositional verification of
interruptible OS kernels and device drivers. In: PLDI 2016: 2016 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 431–447(2016)

2. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow security for C and
assembly programs. In: PLDI 2016: 2016 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 648–664 (2016)

3. Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X., Weng, S-C., Zhang, H., Guo. Y.:
Deep specifications and certified abstraction layers. In: POPL 2015: Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming languages,
pp. 595–608 (2015)

Automating Software Analysis at Large Scale

Michael Tautschnig

Queen Mary University of London, London, UK
Amazon Web Services, Ashburn, USA

Abstract. Software model checking tools promise to deliver genuine traces to
errors, and sometimes even proofs of their absence. As static analysers, they do
not require concrete execution of programs, which may be even more beneficial
when targeting new platforms. Academic research focusses on improving
scalability, yet largely disregards practical technical challenges to make tools
cope with real-world code.

At Amazon, both scalability requirements as well as real-world constraints
apply. Our prior work analysing more than 25,000 software packages in the
Debian/GNU Linux distribution containing more than 400 million lines of C
code not only led to more than 700 public bug reports, but also provided a solid
preparation for the challenges at Amazon.

RACE to Build Highly Concurrent
and Distributed Systems

Oksana Tkachuk

NASA Ames Research Center, Moffett, USA
oksana.tkachuk@nasa.gov

Abstract. Instantiating, running, and monitoring highly concurrent and dis-
tributed systems presents many challenges. Such systems are prone to:
concurrency-related issues (races, deadlocks), communication problems (drop-
ped connections), functional issues (unhandled messages), and scalability (the
size of the system grows with the number of communicating components).

This talk will present solutions to the above problems implemented in
RACE: Runtime for Airspace Concept Evaluation, designed and developed at
NASA Ames Research Center. RACE is a framework for instantiating and
running highly concurrent and distributed systems. RACE employs actor pro-
gramming model, as implemented in the Akka framework. Akka actors com-
municate through asynchronous messages, do not share state, and process their
own messages sequentially. RACE is implemented in the Scala programming
language, which improves type safety compared to other JVM languages.
RACE includes many building blocks needed to create distributed systems,
including actors for exporting, importing, translating, archiving, replaying, and
visualizing data.

RACE is being evaluated in the context of building and running simulations
for National Airspace System (NAS) at NASA. For example, RACE can be used
to get flight and weather data from various FAA servers, process, and visualize it
in the NASA’s World Wind viewer. However, RACE is an open source,
highly-configurable and extensible platform, which makes it suitable for a wide
range of applications. RACE source code is available at https://github.com/
NASARace/race. More information can be found on the RACE web site at
http://nasarace.github.io/race.

https://github.com/NASARace/race
https://github.com/NASARace/race
http://nasarace.github.io/race

Contents

Stupid Tool Tricks for Smart Model Based Design 1
Mark Lawford

Specification: The Biggest Bottleneck in Formal Methods and Autonomy . . . 8
Kristin Yvonne Rozier

Order Reduction for Multi-core Interruptible Operating Systems 27
Jonas Oberhauser

Producing All Ideals of a Forest, Formally (Verification Pearl) 46
Jean-Christophe Filliâtre and Mário Pereira

Constructing Semantic Models of Programs with the Software
Analysis Workbench . 56

Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman,
Dylan McNamee, and Aaron Tomb

Bidirectional Grammars for Machine-Code Decoding and Encoding 73
Gang Tan and Greg Morrisett

Automated Verification of Functional Correctness of Race-Free
GPU Programs . 90

Kensuke Kojima, Akifumi Imanishi, and Atsushi Igarashi

The Matrix Reproved (Verification Pearl). 107
Martin Clochard, Léon Gondelman, and Mário Pereira

Enabling Modular Verification with Abstract Interference Specifications
for a Concurrent Queue . 119

Alan Weide, Paolo A.G. Sivilotti, and Murali Sitaraman

Accelerating the General Simplex Procedure for Linear Real
Arithmetic via GPUs . 129

Steven T. Stewart, Derek Rayside, Vijay Ganesh,
and Krzysztof Czarnecki

JavaSMT: A Unified Interface for SMT Solvers in Java. 139
Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer

Relational Program Reasoning Using Compiler IR 149
Moritz Kiefer, Vladimir Klebanov, and Mattias Ulbrich

http://dx.doi.org/10.1007/978-3-319-48869-1_1
http://dx.doi.org/10.1007/978-3-319-48869-1_2
http://dx.doi.org/10.1007/978-3-319-48869-1_3
http://dx.doi.org/10.1007/978-3-319-48869-1_4
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_5
http://dx.doi.org/10.1007/978-3-319-48869-1_6
http://dx.doi.org/10.1007/978-3-319-48869-1_7
http://dx.doi.org/10.1007/978-3-319-48869-1_7
http://dx.doi.org/10.1007/978-3-319-48869-1_8
http://dx.doi.org/10.1007/978-3-319-48869-1_9
http://dx.doi.org/10.1007/978-3-319-48869-1_9
http://dx.doi.org/10.1007/978-3-319-48869-1_10
http://dx.doi.org/10.1007/978-3-319-48869-1_10
http://dx.doi.org/10.1007/978-3-319-48869-1_11
http://dx.doi.org/10.1007/978-3-319-48869-1_12

Resolution in Solving Graph Problems. 166
Kailiang Ji

SMT-based Software Model Checking: An Experimental Comparison
of Four Algorithms . 181

Dirk Beyer and Matthias Dangl

Author Index . 199

XIV Contents

http://dx.doi.org/10.1007/978-3-319-48869-1_13
http://dx.doi.org/10.1007/978-3-319-48869-1_14
http://dx.doi.org/10.1007/978-3-319-48869-1_14

	Preface
	Organization
	Abstracts Short Papers
	Advanced Development of Certified OS Kernels
	Automating Software Analysis at Large Scale
	RACE to Build Highly Concurrent and Distributed Systems
	Contents

