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Preface

This volume contains the papers presented at the 8th International Conference on
Verified Software: Theories, Tool and Experiments (VSTTE), which was held in
Toronto, Canada, during July 17–18, 2016, co-located with the 28th International
Conference on Computer-Aided Verification. The final version of the papers was
prepared by the authors after the event took place, which permitted them to take
feedback received at the meeting into account. VSTTE originated from the Verified
Software Initiative (VSI), which is an international initiative directed at the scientific
challenges of large-scale software verification. The inaugural VSTTE conference was
held at ETH Zurich in October 2005, and was followed by VSTTE 2008 in Toronto,
VSTTE 2010 in Edinburgh, VSTTE 2012 in Philadelphia, VSTTE 2013 in Menlo
Park, VSTTE 2014 in Vienna, and VSTTE 2015 in San Francisco. The goal of the
VSTTE conference is to advance the state of the art through the interaction of theory
development, tool evolution, and experimental validation.

The call for papers for VSTTE 2016 solicited submissions describing large-scale
verification efforts that involve collaboration, theory unification, tool integration, and
formalized domain knowledge. We were especially interested in papers describing
novel experiments and case studies evaluating verification techniques and technologies.
We welcomed papers describing education, requirements modeling, specification lan-
guages, specification/verification, formal calculi, software design methods, automatic
code generation, refinement methodologies, compositional analysis, verification tools
(e.g., static analysis, dynamic analysis, model checking, theorem proving), tool inte-
gration, benchmarks, challenge problems, and integrated verification environments. We
received 21 submissions. Each submission was reviewed by at least three members
of the Program Committee. The committee decided to accept 12 papers for presentation
at the conference. The program also included six invited talks, given by Zachary
Tatlock (Washington), Mark Lawford (McMaster), Kristin Yvonne Rozier (Iowa
State), Michael Tautschnig (Amazon), and Oksana Tkachuk (NASA Ames). The
volume includes abstracts or full-paper versions of some of these talks.

We would like to thank the invited speakers and all submitting authors for their
contribution to the program. We are very grateful to our general chair, Temesghen
Kahsai, for his tremendous help with organizing this event. We also thank Azadeh
Farzan (CAV PC co-chair) and Zak Kinsaid (CAV Workshops chair) for logistical
support, and to Natarajan Shankar for his vision for this year’s VSTTE and other events
in this series. Last but definitely not least, we thank the external reviewers and the
Program Committee for their reviews and their help in selecting the papers that appear
in this volume. This volume was generated with the help of EasyChair.

September 2016 Marsha Chechik
Sandrine Blazy
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Abstracts Short Papers



Advanced Development of Certified OS
Kernels

Zhong Shao

Yale University, New Haven, USA

Abstract. Operating System (OS) kernels form the backbone of all system
software. They can have a significant impact on the resilience, extensibility, and
security of today’s computing hosts. We present a new compositional approach
[3] for building certifiably secure and reliable OS kernels. Because the very
purpose of an OS kernel is to build layers of abstraction over hardware
resources, we insist on uncovering and specifying these layers formally, and
then verifying each kernel module at its proper abstraction level. To support
reasoning about user-level programs and linking with other certified kernel
extensions, we prove a strong contextual refinement property for every kernel
function, which states that the implementation of each such function will behave
like its specification under any kernel/user (or host/guest) context. To demon-
strate the effectiveness of our new approach, we have successfully implemented
and specified a practical OS kernel and verified its (contextual) functional
correctness property in the Coq proof assistant. We show how to extend our base
kernel with new features such as virtualization [3], interrupts and device drivers
[1], and end-to-end information flow security [2], and how to quickly adapt
existing verified layers to build new certified kernels for different domains.

This research is based on work supported in part by NSF grants 1065451,
1319671, and 1521523 and DARPA grants FA8750-12-2-0293 and
FA8750-15-C-0082. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.
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Automating Software Analysis at Large Scale

Michael Tautschnig

Queen Mary University of London, London, UK
Amazon Web Services, Ashburn, USA

Abstract. Software model checking tools promise to deliver genuine traces to
errors, and sometimes even proofs of their absence. As static analysers, they do
not require concrete execution of programs, which may be even more beneficial
when targeting new platforms. Academic research focusses on improving
scalability, yet largely disregards practical technical challenges to make tools
cope with real-world code.

At Amazon, both scalability requirements as well as real-world constraints
apply. Our prior work analysing more than 25,000 software packages in the
Debian/GNU Linux distribution containing more than 400 million lines of C
code not only led to more than 700 public bug reports, but also provided a solid
preparation for the challenges at Amazon.



RACE to Build Highly Concurrent
and Distributed Systems

Oksana Tkachuk

NASA Ames Research Center, Moffett, USA
oksana.tkachuk@nasa.gov

Abstract. Instantiating, running, and monitoring highly concurrent and dis-
tributed systems presents many challenges. Such systems are prone to:
concurrency-related issues (races, deadlocks), communication problems (drop-
ped connections), functional issues (unhandled messages), and scalability (the
size of the system grows with the number of communicating components).

This talk will present solutions to the above problems implemented in
RACE: Runtime for Airspace Concept Evaluation, designed and developed at
NASA Ames Research Center. RACE is a framework for instantiating and
running highly concurrent and distributed systems. RACE employs actor pro-
gramming model, as implemented in the Akka framework. Akka actors com-
municate through asynchronous messages, do not share state, and process their
own messages sequentially. RACE is implemented in the Scala programming
language, which improves type safety compared to other JVM languages.
RACE includes many building blocks needed to create distributed systems,
including actors for exporting, importing, translating, archiving, replaying, and
visualizing data.

RACE is being evaluated in the context of building and running simulations
for National Airspace System (NAS) at NASA. For example, RACE can be used
to get flight and weather data from various FAA servers, process, and visualize it
in the NASA’s World Wind viewer. However, RACE is an open source,
highly-configurable and extensible platform, which makes it suitable for a wide
range of applications. RACE source code is available at https://github.com/
NASARace/race. More information can be found on the RACE web site at
http://nasarace.github.io/race.

https://github.com/NASARace/race
https://github.com/NASARace/race
http://nasarace.github.io/race
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