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Hu44, Wolfgang Hübner37, Xiaomeng Wang17, Xin Li49, Xinchu Shi44, Xu Zhao44, Xue Mei26, Yao

Shizeng33, Yang Hua24, Yang Li42, Yang Lu48, Yuezun Li27, Zhaoyun Chen22,23, Zehua Huang34, Zhe

Chen25, Zhe Zhang9, Zhenyu He49, and Zhibin Hong25

1University of Ljubljana, Slovenia
2Czech Technical University, Czech Republic
3University of Birmingham, United Kingdom
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Abstract

The Visual Object Tracking challenge 2015, VOT2015,

aims at comparing short-term single-object visual trackers

that do not apply pre-learned models of object appearance.

Results of 62 trackers are presented. The number of tested

trackers makes VOT 2015 the largest benchmark on short-

term tracking to date. For each participating tracker, a

short description is provided in the appendix. Features of

the VOT2015 challenge that go beyond its VOT2014 pre-

decessor are: (i) a new VOT2015 dataset twice as large

as in VOT2014 with full annotation of targets by rotated

bounding boxes and per-frame attribute, (ii) extensions of

the VOT2014 evaluation methodology by introduction of a

new performance measure. The dataset, the evaluation kit

as well as the results are publicly available at the challenge

website1.

1. Introduction

Visual tracking is diverse research area that has attracted

significant attention over the last fifteen years [20, 48, 18,

27, 49, 79, 43]. The number of accepted motion and track-

ing papers in high profile conferences, like ICCV, ECCV

and CVPR, has been consistently high in recent years

(∼40 papers annually). But the lack of established perfor-

mance evaluation methodology combined with aforemen-

tioned high publication rate makes it difficult to follow the

advancements made in the field.

Several initiatives have attempted to establish a com-

mon ground in tracking performance evaluation, starting

with PETS [80] as one of most influential tracking perfor-

mance analysis efforts. Other frameworks have been pre-

sented since with focus on surveillance systems and event

detection, e.g., CAVIAR2, i-LIDS 3, ETISEO4, change de-

tection [22], sports analytics (e.g., CVBASE5), faces, e.g.

FERET [56] and [30], and the recent long-term tracking and

detection of general targets6 to list but a few.

This paper discusses the VOT2015 challenge organized

in conjunction with the ICCV2015 Visual object tracking

workshop and the results obtained. The challenge consid-

ers single-camera, single-target, model-free, causal track-

ers, applied to short-term tracking. The model-free prop-

erty means that the only supervised training example is

provided by the bounding box in the first frame. The

short-term tracking means that the tracker does not per-

form re-detection after the target is lost. Drifting off the

1http://votchallenge.net
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
4http://www-sop.inria.fr/orion/ETISEO
5http://vision.fe.uni-lj.si/cvbase06/
6http://www.micc.unifi.it/LTDT2014/

target is considered a failure. The causality means that the

tracker does not use any future frames, or frames prior to

re-initialization, to infer the object position in the current

frame. In the following we overview the most closely re-

lated work and point out the contributions of VOT2015.

1.1. Related work

Several works that focus on performance evaluation in

short-term visual object tracking [38, 36, 34, 64, 65, 76, 61,

77, 42] have been published over the last three years. The

currently most widely used methodologies for performance

evaluation originate from three benchmark papers, in par-

ticular the Online tracking benchmark (OTB) [76], the Am-

sterdam Library of Ordinary Videos (ALOV) [61] and the

Visual object tracking challenge (VOT) [38, 36, 34]. The

differences between these methodologies are outlined in the

following paragraphs.

Performance measures. The OTB and the ALOV eval-

uate a tracker by initializing it on the first frame and letting

it run until the end of the sequence, while the VOT resets

the tracker once it drifts off the target. In all three method-

ologies the tracking performance is evaluated by overlaps

between the bounding boxes predicted from the tracker with

the ground truth bounding boxes. The ALOV measures the

tracking performance as the F-measure at 0.5 overlap. The

OTB introduced a success plot which represents the per-

centage of frames for which the overlap measure exceeds

a threshold, with respect to different thresholds, and intro-

duced an ad-hoc performance measure computed as the area

under the curve in this plot. It was only later proven theoret-

ically by other researchers [64] that the area under the curve

equals the average overlap computed from all overlaps on

the sequence. In fact, Čehovin et al. [64, 65] provided a

highly detailed theoretical and experimental analysis of a

number of the popular performance measures. Based on

that analysis, the VOT2013 [38] selected the average over-

lap with resets and number of tracking failures as the main

performance measures.

In the recent paper [34], the VOT committee analyzed

the properties of average overlap with and without resets in

terms of tracking accuracy estimator. The analysis showed

that the OTB no-reset measure is a biased estimator while

the VOT average overlap with resets drastically reduces

the bias. A more significant finding was that the variance

of the no-rest estimator [76] is orders of magnitude larger

than for the reset-based estimator [34], meaning that the

no-reset measure becomes reliable only on extremely large

datasets. And since the datasets typically do not contain

sequences of equal lengths, the variance is even increased.

The VOT2013 [38] introduced a ranking-based methodol-

ogy that accounted for statistical significance of the results

and this was extended with the tests of practical differences

in the VOT2014 [36].
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It should be noted that the large variance of no-reset es-

timator combined with small number of sequences can dis-

tort the performance measurements. An overview of the

papers published at top five conferences over the last three

years shows that in several cases the no-reset evaluation

combined with average overlap is carried out only with se-

lected sequences, not the entire datasets. Therefore it is not

clear whether the improvements over the state-of-the-art in

those papers can be attributed to theoretical improvements

of trackers or just to a careful selection of sequences. Note

that this was hinted in the paper from Pang et al. [53] who

performed meta-analysis of second-best trackers of pub-

lished tracking papers and concluded that authors often re-

port biased results in favor of their tracker.

Datasets. The recent trend in datasets construction ap-

pears to be focused on increasing the number of sequences

in the datasets [75, 77, 42, 61], but often much less atten-

tion is being paid to the quality of its construction and an-

notation. For example, some datasets disproportionally mix

grayscale and color sequences and in most datasets the at-

tributes like occlusion and illumination change are anno-

tated only globally enthough they may occupy only a short

subsequence of frames in a video. The VOT2013 [38] ar-

gued that large datasets do not imply diversity nor richness

in attributes and proposed a special methodology for dataset

construction with per-frame visual attribute labelling. The

per-frame labelling is crucial for proper attribute-wise per-

formance analysis. A recent paper [34] showed that per-

formance measures computed from global attribute annota-

tions are significantly biased toward the dominant attributes

in the sequences, while the bias is significantly reduced with

per-frame annotation, even in presence of miss annotations.

Most closely related works to the work presented in this

paper are the recent VOT2013 [38] and VOT2014 [36] chal-

lenges. Several novelties in benchmarking short-term track-

ers were introduced through these challenges. They provide

a cross-platform evaluation kit with tracker-toolkit com-

munication protocol, allowing easy integration with third-

party trackers. The datasets are per-frame annotated with

visual attributes and a state-of-the-art performance evalua-

tion methodology was presented that accounts for statistical

significance as well as practical difference of the results. A

tracking speed measure that aims at reduction of hardware

influence was proposed as well. The results were published

in joint papers with over 50 co-authors [38], [36], while

the evaluation kit, the dataset, the tracking outputs and the

code to reproduce all the results are made freely-available

from the VOT initiative homepage7. The advances proposed

by VOT have also influenced the development of related

methodologies. For example, the recent [77] now acknowl-

edges that their area under the curve is an average over-

lap measure and have also adopted a variant of resets from

7http://www.votchallenge.net

VOT. The recent [42] benchmark adapted the approach of

analyzing performance on subsequences instead of entire

sequences to study the effects of occlusion.

1.2. The VOT2015 challenge

The VOT2015 follows the VOT2014 challenge and con-

siders the same class of trackers. The dataset and eval-

uation toolkit are provided by the VOT2015 organizers.

The evaluation kit records the output bounding boxes from

the tracker, and if it detects tracking failure, re-initializes

the tracker. The authors attending the challenge were re-

quired to integrate their tracker into the VOT2014 evalua-

tion kit, which automatically performed a standardized ex-

periment. The results were analyzed by the VOT2015 eval-

uation methodology.

Participants were expected to submit a single set of re-

sults per tracker. Participants who have investigated several

trackers submitted a single result per tracker. Changes in

the parameters did not constitute a different tracker. The

tracker was required to run with fixed parameters on all

experiments. The tracking method itself was allowed to

internally change specific parameters, but these had to be

set automatically by the tracker, e.g., from the image size

and the initial size of the bounding box, and were not to be

set by detecting a specific test sequence and then selecting

the parameters that were hand-tuned to this sequence.

Further details are available from the challenge homepage8.

The VOT2015 improvements over VOT2013 and

VOT2014 are the following:

(i) A new fully-annotated dataset is introduced which

doubles the number of sequences compared to VOT2014.

The dataset is per-frame annotated with visual properties

and the objects are annotated with rotated bounding boxes.

The annotation process was subject to quality control to in-

crease annotation consistency.

(ii) A new dataset construction methodology is intro-

duced that performs end-to-end automatic sequence selec-

tion and focuses on the sequences that are considered diffi-

cult to track.

(iii) The evaluation system from VOT2014 [36] is ex-

tended for easier tracker integration.

(iv) The evaluation methodology is extended by intro-

ducing a new performance measure which is easily inter-

pretable. The trackers are ranked and the winner is selected

using this measure.

(v) The VOT2015 introduces the first sub-challenge

VOT-TIR2015 that is held under the VOT umbrella and

deals with tracking in infrared and thermal imagery. The

challenge and VOT-TIR2015 results are discussed in a sep-

arate paper submitted to the VOT2015 workshop [16].

8http://www.votchallenge.net/vot2015/participation.html
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2. The VOT2015 dataset

The VOT2013 [38] and VOT2014 [36] introduced a

semi-automatic sequence selection methodology to con-

struct a dataset rich in visual attributes but small enough

to keep the time for performing the experiments reasonably

low. In VOT2015, the methodology is extended such that

the sequence selection is fully automated and that the selec-

tion process focuses on sequences that are likely challeng-

ing to track.

The dataset was prepared as follows. The initial pool of

sequences was created by combining the sequences from

two existing datasets OTB [76, 75] (51 sequences) and

ALOV [61] (315 sequences), PTR [69] and obtained over

30 additional sequences from other sources summing to a

set of 443 sequences. After removal of duplicate sequences,

grayscale sequences and sequences that contained objects

with area smaller than 400 pixels, we obtained 356 se-

quences. The new automatic sequence selection protocol

required approximate annotation of targets in all sequences

by bounding boxes. For most sequences the annotations al-

ready existed and we annotated the targets with axis-aligned

bounding boxes for the sequences with missing annotations.

Next, the sequences were automatically clustered according

to their similarity in terms of the following globally calcu-

lated sequence visual attributes:

1. Illumination change is defined as the average of the

absolute differences between the object intensity in the

first and remaining frames.

2. Object size change is the sum of averaged local size

changes, where the local size change at frame t is de-

fined as the average of absolute differences between

the bounding box area in frame t and past fifteen

frame.

3. Object motion is the average of absolute differences

between ground truth center positions in consecutive

frames.

4. Clutter is the average of per-frame distances between

two histograms: one extracted from within the ground

truth bounding box and one from an enlarged area (by

factor 1.5) outside of the bounding box.

5. Camera motion is defined as the average of translation

vector lengths estimated by key-point-based RANSAC

between consecutive frames.

6. Blur was measured by the Bayes-spectral-entropy

camera focus measure [35].

7. Aspect-ratio change is defined as the average of per-

frame aspect ratio changes. The aspect ratio change at

frame t is calculated as the ratio of the bounding box

width and height in frame t divided by the ratio of the

bounding box width and height in the first frame.

8. Object color change defined as the change of the aver-

age hue value inside the bounding box.

9. Deformation is calculated by dividing the images into

8 × 8 grid of cells and computing the sum of squared

differences of averaged pixel intensity over the cells in

current and first frame.

10. Scene complexity represents the level of randomness

(entropy) in the frames and it was calculated as e =∑255
i=0 bi log bi, where bi is the number of pixels with

value equal to i.

11. Absolute motion is the median of the absolute motion

difference of the bounding box center points of the first

frame and current one.

Note that the first ten attributes are taken from the

VOT2014 [37, 34], with the attributes object size and object

motion redefined to make their calculation more robust. The

eleventh attribute (absolute motion) is newly introduced.

To reduce the influence of the varied scales among the

attributes a binarization procedure was applied. A k-means

clustering with k = 2 was applied to all values of a given

attribute, thus each value was assigned a value, either zero

or one. In this way each sequence was encoded as an 11D

binary feature vector and the sequences were clustered by

the Affinity propagation (AP) [17] using the Hamming dis-

tance. The only parameter in AP is the exemplar prior value

p, which was set according to the rule-of-thumb proposed

in [17]. In particular, we have set p = 1.25αsim, where

αsim is the average of the similarity values among all pairs

of sequences. This resulted in K = 28 sequence clusters,

where each cluster k contained a different number of se-

quences Nk. The clustering stability was verified by vary-

ing the scaling value in range 1.2 to 1.3. The number of

clusters varied in range of ±3 clusters, indicating a stable

clustering at the chosen parameter value.

The goal of sequence selection is to obtain a dataset of

size M in which the following five visual attributes spec-

ified in VOT2014 are sufficiently well represented: (i) oc-

clusion, (ii) illumination change, (iii) motion change, (iv)

size change, (v) camera motion. The binary attributes were

concatenated to form a feature vector fi for each sequence

i. The global presence of four of these attributes, except

from occlusion, is indicated by the automatically calcu-

lated binarized values that were used for clustering. All

sequences were manually inspected and occlusion was in-

dicated if the target was at least partially occluded at any

frame in the sequence. To estimate the sequence tracking

difficulty, three well performing, but conceptually different,

trackers (FoT [67], ASMS [69], KCF [25]) were evaluated

5



using the VOT2014 methodology on the approximately an-

notated bounding boxes. In particular, the raw accuracy (av-

erage overlap) and raw robustness (number of failures per

sequence) were computed for each tracker on each sequence

and quantized into ten levels (i.e., into interval [0,9]). The

quantized robustness was calculated by clipping the raw ro-

bustness at nine failures and the quantized accuracy was

computed by 9−⌊10Φ⌋, where Φ is the VOT accuracy. The

final tracking difficulty measure was obtained as the average

of the quantized accuracy and robustness.

With the five global attributes and tracking difficulty es-

timated for each sequence, the automatic sequence selection

algorithm proceeded as follows. First, the most difficult se-

quence from each cluster is selected as an initial pool of

sequences and a maximum number of samples {Sk}
K

k=1 for

each cluster k is calculated. From the selected pool of se-

quences the weighted balance vector b
0 is computed and

normalized afterwards. The balance vector controls the at-

tribute representation inside the pool of selected sequences.

We use weights to account for the unbalance distribution of

the attributes in the dataset and compute them as follows

w = Ns/
∑

i
fi, i.e., lowering weights to the attributes that

are most common, therefore would always over-represented

and the sequence without this attribute would be selected

most of the time (e.g. object motion attribute). After initial-

ization, the algorithm iterates until the number of selected

sequences reaches the desired number M . In each itera-

tion, the algorithm computes the attributes that are least

represented, aw, using a small hysteresis so that multiple

attributes can be chosen. Then, the Hamming distance be-

tween the desired attributes aw and all sequences is com-

puted, excluding the sequences already selected and the

sequences that belong to cluster which has already Sk se-

quences selected in the pool. From the set of most attribute-

wise similar sequences the most difficult one is selected and

added to the pool. At the end, the balance vector is recom-

puted and the algorithm iterates again. The sequence selec-

tion algorithm is summarized in Algorithm 1.

As in the VOT2014, we have manually or semi-

automatically labeled each frame in each selected sequence

with five visual attributes: (i) occlusion, (ii) illumination

change, (iii) motion change, (iv) size change, (v) camera

motion. In case a particular frame did not correspond to

any of the five attributes, we denoted it as (vi) unassigned.

To ensure quality control, the frames were annotated by an

expert and then verified by another expert. Note that these

labels are not mutually exclusive. For example, most frames

in the dataset contain camera motion.

The relevant objects in all sequences were manually

re-annotated by rotated bounding boxes. The annotation

guidelines were predefined and distributed among the an-

notators. The bounding boxes were placed such that they

approximated the target well, with a large percentage of pix-

Algorithm 1: Sequence sampling algorithm

Input : Ns, M , K, {Nk}
K

k=1, {fi}
Ns

i=1, w

Output: ids

1 Initialize, t = 0

2 {Sk}
K

k=1, Sk = ⌊NkM

Ns

⌋

3 select the most difficult sequence from each cluster

ids0 = {id1, . . . , idK}
4 b

0 = w
∑

i∈ids fi, b
0 = b

0/|b0|
5 Iterate, t = t+ 1
6 while |ids| < M do

7 aw= (h < min (h) + 0.1
n
), h = b

t−1

max (bt−1)

8 {id1, . . . } = argmin
i

dist(fi, aw)

s.t. if i ∈ cluster k then |cluster k ∩ idst−1| < Sk

9 select the most difficult sequence id∗ ∈ {id1, . . . }

10 idst = idst−1 ∪ {id∗}
11 b

t = w
∑

i∈ids fi, b
t = b

t/|bt|

12 end

els within the bounding box (at least > 60%) belonging to

the target. Each annotation was verified by two experts and

corrected if necessary. The resulting annotations were then

processed by approximating the rotated bounding boxes by

axis-aligned bounding boxes if the ratio between the short-

est and largest box edge was higher than 0.95 since the ro-

tation is ambiguous for approximately round objects. The

processed bounding boxes were again verified by an expert.

3. Performance measures

As in VOT2014 [36], the following two weakly corre-

lated performance measures are used due to their high level

of interpretability [64, 65]: (i) accuracy and (ii) robustness.

The accuracy measures how well the bounding box pre-

dicted by the tracker overlaps with the ground truth bound-

ing box. On the other hand, the robustness measures how

many times the tracker loses the target (fails) during track-

ing. A failure is indicated when the overlap measure be-

comes zero. To reduce the bias in robustness measure, the

tracker is re-initialized five frames after the failure and ten

frames after re-initialization are ignored in computation to

further reduce the bias in accuracy measure [37]. Stochas-

tic trackers are run 15 times on each sequence to obtain a

better statistics on performance measures. The per-frame

accuracy is obtained as an average over these runs. Av-

eraging per-frame accuracies gives per-sequence accuracy,

while per-sequence robustness is computed by averaging

failure rates over different runs.

To analyze performance w.r.t. the visual attributes, the

two measures can be calculated only on the subset of frames

in the dataset that contain a specific attribute (attribute sub-

set). The trackers are ranked with respect to each measure

6



separately. The VOT2013 [38] recognized that subsets of

trackers might be performing equally well and this should

be reflected in the ranks. Therefore, for each i-th tracker

a set of equivalent trackers is determined. In the VOT2013

and VOT2014 [38, 36], the corrected rank of the i-th tracker

is obtained by averaging the ranks of these trackers includ-

ing the considered tracker. The use of average operator

on ranks may lead to unintuitive values of corrected ranks.

Consider a set of trackers in which four top-performing

trackers are estimated to perform equally well under the

equivalence tests. The averaging will assign them a rank

of 2.5, meaning that no tracker will be ranked as 1. Adding

several equally performing tracker to the set will further in-

crease the corrected rank value. For that reason we replace

the averaging with the min operator in the VOT2014. In

particular, the corrected rank is computed as the minimal

rank of the equivalent trackers. As in VOT2014 [37] tests

of statistical significance of the performance differences as

well as tests of practical differences are used. The prac-

tical difference test was introduced in VOT2014 [36] and

accounts for the fact that ground truth annotations may be

noisy. As a result it is impossible to claim that one tracker is

outperforming another if the difference between these two

trackers is in the range of annotation noise on a given se-

quence. The level of the annotation ambiguity under which

the trackers performance difference is considered negligible

is called the practical difference threshold.

Apart from accuracy and robustness, the tracking speed

is also an important property that indicates practical use-

fulness of trackers in particular applications. To reduce the

influence of hardware, the VOT2014 [36] introduced a new

unit for reporting the tracking speed called equivalent fil-

ter operations (EFO) that reports the tracker speed in terms

of a predefined filtering operation that the tookit automati-

cally carries out prior to running the experiments. The same

tracking speed measure is used in VOT2015.

3.1. VOT2015 expected average overlap measure

The raw value of the accuracy and robustness mea-

sure offer a significant insight into tracker performance and

further insight is gained by ranking trackers w.r.t. each

measure since statistical and practical differences are ac-

counted for. The average of these rank lists was used in

the VOT2013 and VOT2014 [38, 36] challenges as the fi-

nal measure for determining the winner of the challenge. A

high average rank means that a tracker was well-performing

in accuracy as well as robustness relative to the other track-

ers.

While ranking does convert the accuracy and robustness

to equal scales, the averaged rank cannot be interpreted in

terms of a concrete tracking application result. To address

this, the VOT2015 introduces a new measure that combines

the raw values of per-frame accuracies and failures in a prin-

Ns

Nlo Nhi

Ns0.5 rank
123

Figure 1. The expected average overlap curve (left, up), the se-

quence length pdf (left, bottom) and the expected average overlap

plot (right).

cipled manner and has a clear practical interpretation.

Consider a short-term tracking example on a Ns frames

long sequence. A tracker is initialized at the beginning of

the sequence and left to track until the end. If a tracker drifts

off the target it remains off until the end of the sequence.

The tracker performance can be summarized in such a sce-

nario by computing the average of per-frame overlaps, Φi,

including the zero overlaps after the failure, i.e.,

ΦNs
=

1

Ns

∑
i=1:Ns

Φi. (1)

By averaging the average overlaps on a very large set of

Ns frames long sequences, we obtain the expected average

overlap Φ̂Ns
= 〈ΦNs

〉. Evaluating this measure for a range

of sequence lengths, i.e., Ns = 1 : Nmax results in the ex-

pected average overlap curve. See for example Figure 1.

The tracker performance is summarized as the VOT2015

expected average overlap measure, Φ̂, computed as the av-

erage of the expected average overlap curve values over an

interval [Nlo, Nhi] of typical short-term sequence lengths,

Φ̂ =
1

Nhi −Nlo

∑
Ns=Nlo:Nhi

Φ̂Ns
. (2)

The tracker performance can be visualized by the VOT2015

expected average overlap plot shown in Figure 1. The per-

formance measure in (2) requires computation of the ex-

pected average overlap Φ̂Ns
and specification of the range

[Nlo, Nhi]. This is detailed in the following two subsections.

3.1.1 Estimation of expected average overlap

A brute force estimation of Φ̂Ns
(1) would in principle re-

quire running a tracker on an extremely large set of Ns

frames long sequences and this process would have to be

repeated for several values of Ns to compute the final per-

formance measure Φ̂ (2). Note that this is in principle the

OTB [76] measure computed on Ns frames-long sequences.

But due to a large variance of such estimator [34], this

would require a very large dataset and significant compu-

tation resources for the many tracker runs, since the experi-

ments would have to be repeated for all values of Ns. Alter-
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natively, the measure (2) can be estimated from the output

of the VOT protocol.

Since the VOT protocol resets a tracker after each fail-

ure, several tracking segments are potentially produced per

sequence and the segments from all sequences can be used

to estimate the Φ̂Ns
as follows. All segments shorter than

Ns frames that did not finish with a failure are removed

and the remaining segments are converted into Ns frames

long tracking outputs. The segments are either trimmed or

padded with zero overlaps to the size Ns. An average over-

lap is computed on each segment and the average over all

segments is the estimate of Φ̂Ns
. Repeating this computa-

tion for different values of Ns produces an estimate of the

expected average overlap curve.

3.1.2 Estimation of typical sequence lengths

The range of typical short-term sequence lengths [Nlo, Nhi]
in (2) is estimated as follows. A probability density function

over the sequence lengths is computed by a kernel density

estimate (KDE) [33, 32] from the given dataset sequence

lengths and the most typical sequence length is estimated as

the mode on the density. The range boundaries are defined

as the closest points to the left and right of the mode for

which p(Nlo) ≈ p(Nhi) and the integral of the pdf within

the range equals to 0.5. Thus the range captures the majority

of typical sequence lengths (see Figure 1).

4. Analysis and results

4.1. Estimation of practical difference thresholds

The per sequence practical difference thresholds were

estimated following the VOT2014 [36] protocol. Briefly,

four frames with axis-aligned ground-truth bounding boxes

were identified on each sequence and the annotators anno-

tated those frames in several runs. By computing overlaps

among all bounding boxes per frame, a set of 3300 sam-

ples of differences was obtained per sequence and used to

compute the practical difference thresholds. Figure 2 shows

boxplots of difference distributions w.r.t. sequences along

side with examples of the annotations.

4.2. Estimation of sequence length range

The typical sequence range was estimated as discussed

in Section 3.1.2. A batch KDE from [32] was applied to

estimate the sequence length pdf from the lengths of sixty

sequences of the VOT2015 dataset, resulting in the range

values [Nlo = 108, Nhi = 371]. Figure 3 shows the esti-

mated distribution along with the range values.

4.3. Trackers submitted

Together 41 entries have been submitted to the VOT2015

challenge. Each submission included the binaries/source
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Figure 2. Box plots of differences per sequence along with exam-

ples of annotation variation.
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Figure 3. The estimated pdf of sequence lengths for the VOT2015

dataset (bottom).

code that was used by the VOT2015 committee for results

verification. The VOT2015 committee additionally con-

tributed 21 baseline trackers. For these, the default param-

eters were selected, or, when not available, were set to rea-

sonable values. Thus in total 62 trackers were included

in the VOT2015 challenge. In the following we briefly

overview the entries and provide the references to original

papers in the Appendix A where available.

Three trackers were based in convolutional neural net-

works, MDNet (A.29), DeepSRDCF (A.30) and SO-

DLT (A.18), two trackers were using the object propos-

als [86] for object position generation or scoring, i.e.,

EBT (A.25) and KCFDP (A.21). Several trackers were

based on Mean Shift tracker extensions [10], ASMS (A.48),

SumShift (A.28), S3Tracker (A.32) and PKLTF (A.8), one

tracker was based on distribution fields, DFT (A.59), sev-
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eral trackers were based on online boosting, OAB (A.44),

MIL (A.47), MCT (A.20), CMIL (A.35), subspace learn-

ing IVT (A.46), CT (A.58), sparse learning L1APG (A.61),

two trackers were based on tracking-by-detection learning

MUSTer (A.1), sPST (A.41) and one tracker was based

on pure color segmentation DAT (A.5). A number of

trackers can be classified as part-based trackers. These

were LDP (A.33), TRIC-track (A.22), G2T (A.17), AOG-

Tracker (A.15), LGT (A.45), HoughTrack (A.53), Mat-

Flow (A.7), CMT (A.42), LT-FLO (A.10), ZHANG (A.4),

FoT (A.49), BDF (A.6), FCT (A.14), FragTrack (A.43).

The CMT (A.42) and LT-FLO (A.10) can be considered

long-term trackers meaning that they would liberally re-

port a target loss. A number of trackers came from a

class of holistic models that apply regression-based learn-

ing for target localization. Out for these, three were based

on structured SVM learning, i.e., Struck (A.11), Rob-

Struck (A.16), SRAT (A.38), one was based on Gaus-

sian process regression, TGPR (A.51), one on logistic re-

gression HRP (A.23) and one on kernelized-least-squares

ACT (A.55). Several regression-based trackers used corre-

lation filters [7, 25] as visual models. Some correlation filter

based trackers maintained a single model for tracking, i.e.,

KCFv2 (A.2), DSST (A.56), SAMF (A.54), SRDCF (A.30),

PTZ-MOSSE (A.12), NSAMF (A.24), RAJSSC (A.34),

OACF (A.13), sKCF (A.3), LOFT-Lite (A.37), STC (A.50),

MKCF+ (A.27), and several trackers applied multiple tem-

plates to model appearance variation, i.e., SME (A.19),

MvCFT (A.9), KCFv2 (A.2) and MTSA-KCF (A.40).

Some trackers combined several trackers or single-tracker

instantiations HMMTxD (A.60), MEEM (A.62) and SC-

EBT (A.26).

4.4. Results

The results are summarized in sequence pooled and at-

tribute normalized AR rank and AR raw plots in Figure 4.

The sequence pooled AR rank plot is obtained by concate-

nating the results from all sequences and creating a single

rank list, while the attribute normalized AR rank plot is cre-

ated by ranking the trackers over each attribute and aver-

aging the rank lists. Similarly the AR raw plots were con-

structed. The raw values for the sequence pooled results are

also given in Table 1.

The following trackers appear either very robust or

very accurate among the top performing trackers on the

sequence pooled AR-rank and AR-raw plots (closest to

the upper right corner of rank plots): MDNet (A.29),

DeepSRDCF (A.31), SRDCF (A.30), EBT (A.25),

NSAMF (A.24), sPST (A.41), LDP (A.33), RAJSSC (A.34)

and RobStruck (A.16). This set of trackers is followed

by a large cluster of trackers that also perform nearly

as well in accuracy, but with slightly reduced robustness.

The situation is similar with per-attribute normalized plots,

although several additional trackers like SODLT (A.18),

OACF (A.13) and MvCFT (A.9) are pulled closer to the

top-performing cluster. The two top-performing trackers,

MDNet and DeepSRDCF, utilize convolutional neural net-

work features. Note that these trackers are overlaid one over

another in the AR-rank plots. MDNet is composed of two

part-shared layers and doman-specific layers and has been

trained on eighty sequences and ground truths that were not

included in the VOT to obtain a generic representation of

the sequence, while the DeepSRDCF is a correlation filter

that used CNN kernels for feature extraction. The CNN fea-

tures are also used in SODLT (A.18) which were trained to

distinguish objects from non-objects. Several trackers are

from a class of kernelized correlation filters [25] (KCF),

i.e., SRDCF (A.30), DeepSRDCF (A.31), LDP (A.33),

NSAMF (A.24), RAJSSC (A.34) and MvCFT (A.9). RA-

JSSC (A.34) is a KCF extended to address rotation in a cor-

relation filter framework, NSAMF (A.24) is an extension

of VOT2014 top-performing tracker that uses color in ad-

dition to edge features, SRDCF (A.30) is a regularized ker-

nelized correlation filter that reduces the boundary effects

in learning a filter and DeepSRDCF (A.31) is its extension

that applies the convolution filters from a generically trained

CNN [8] for feature extraction. MvCFT (A.9) applies a set

of correlation filters for learning multiple object views and

LDP (A.33) applies a deformable parts correlation filter to

address non-rigid deformations. The tracker sPST (A.41)

applies edge-box scores for hypothesis rescoring in combi-

nation with a linear SVM with HOG features for object de-

tection and applies optical-flow-based Hough transform for

estimation of object similarity transform. EBT (A.25) ap-

plies structured learning and object localization with edge-

box region scores [86]. RobStruck (A.16) is an extension

of the Struck [24] that uses richer features, adapts scale and

applies a Kalman filter for motion estimation. Note that

the submitted Struck (A.11) tracker is not the original [24],

but its extension that applies multi-kernel learning and ad-

ditional Haar and histogram features. According to the AR-

rank plots (Figure 4 ), the top-two performing approaches

are both based on CNNs, i.e., MDNet and DeepSRDCF.

According to the AR-raw plots, the MDNet slightly outper-

forms the DeepSRDCF in accuracy as well as robustness.

According to the ranking plots, the EBT perform on par

with MDNet and DeepSRDCF in robustness.

The raw robustness with respect to the visual attributes

are shown in Figure 5. The top three trackers with re-

spect to the different visual attributes are mostly MD-

Net, DeepSRDCF and EBT with few exceptions. In the

motion change attribute, the top-performing trackers are

MKCF+ (A.27), MDNet and NSAMF (A.24). The most

stable performance over the different attributes is observed

for the MDNet and EBT tracker, with the attribute motion

change being the most challenging. The motion change also
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Figure 4. The AR rank plots and AR raw plots generated by se-

quence pooling (upper) and by attribute normalization (below).

Figure 5. Robustness plots with respect to the visual attributes.

See Figure 4 for legend.

most significantly affects the DeepSRDCF relative to the

performance of that tracker at other attributes.

The conclusions drawn from the analysis of the AR plots

(Figure 4) are supported with the results from the expected

average overlap scores in Figure 6. Since the MDNet scores

highest in robustness and accuracy, it results in the high-

est expected average overlap, followed by the DeepSRDCF

and closely behind is the EBT. The performance difference

reflected by the expected average overlap score is also con-

sistent with the expected average overlap curve in Figure 6.

The MDNet consistently produces the highest overlap for

(1) MDNet
(2) DeepSRDCF
(3) EBT
(4) SRCDF
(5) LDP
(6) sPST

Figure 6. Expected average overlap curve (above) and expected

average overlap graph (below) with trackers ranked from right to

left. The right-most tracker is the top-performing according to the

VOT2015 expected average overlap values. See Figure 4 for leg-

end. The dashed horizontal line denotes the average performance

of the state-of-the-art trackers published at ICCV, ECCV, CVPR,

ICML or BMVC in 2014/2015 (nine papers from 2015 and six

from 2014). These trackers are denoted by gray dots in the bottom

part of the graph.

all sequence lengths, followed by DeepSRDCF and EBT.

The similarity in the expected average overlaps of EBT and

DeepSRDCF comes from the fact that the DeepSRDCF is

slightly more accurate during periods of successful tracking

than EBT, but the EBT fails less often (see AR raw plots in

Figure 4). As the result, the DeepSRDCF results in higher

expected average overlap at short sequences, but slightly

smaller on longer sequences. The fourth top-performing

tracker is the SRDCF, followed closely by LDP and sPST.

Table 1 shows all trackers ordered with respect to the ex-

pected average overlap scores. Note that the trackers that

are usually used as baselines, i.e., OAB (A.44), MIL (A.47),

IVT (A.46), CT (A.58) and L1APG (A.61) are positioned

at the lower part of the list, which indicates that major-

ity of submitted trackers are considered state-of-the-art. In

fact, several tested trackers have been recently (in the last

two years) published at major computer vision conferences.

These trackers are pointed out in Figure 6, in which the av-

erage state-of-the-art performance computed from the av-

erage performance of these trackers is indicated. Observe

that almost half of the submitted trackers are above this

line. For completeness, we have also indicated the winner

of VOT2014 in Figure 6. The advance of tested state-of-

the-art since 2014 is clear.
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Tracker A R Φ̂ Speed Impl.

MDNet* 0.60 0.69 0.38 0.87 M C G

DeepSRDCF* 0.56 1.05 0.32 0.38 M C

EBT 0.47 1.02 0.31 1.76 M C

SRDCF* 0.56 1.24 0.29 1.99 M C

LDP* 0.51 1.84 0.28 4.36 M C

sPST* 0.55 1.48 0.28 1.01 M C

SC-EBT 0.55 1.86 0.25 0.80 M C

NSAMF* 0.53 1.29 0.25 5.47 M

Struck* 0.47 1.61 0.25 2.44 C

RAJSSC 0.57 1.63 0.24 2.12 M

S3Tracker 0.52 1.77 0.24 14.27 C

SumShift 0.52 1.68 0.23 16.78 C

SODLT 0.56 1.78 0.23 0.83 M C G

DAT 0.49 2.26 0.22 9.61 M

MEEM* 0.50 1.85 0.22 2.70 M

RobStruck 0.48 1.47 0.22 1.89 C

OACF 0.58 1.81 0.22 2.00 M C

MCT 0.47 1.76 0.22 2.77 C

HMMTxD* 0.53 2.48 0.22 1.57 C

ASMS* 0.51 1.85 0.21 115.09 C

MKCF+ 0.52 1.83 0.21 1.23 M C

TRIC-track 0.46 2.34 0.21 0.03 M C

AOG 0.51 1.67 0.21 0.97 binary

SME 0.55 1.98 0.21 4.09 M C

MvCFT 0.52 1.72 0.21 2.24 binary

SRAT 0.47 2.13 0.20 15.23 M C

Dtracker 0.50 2.08 0.20 10.43 C

SAMF* 0.53 1.94 0.20 2.25 M

G2T 0.45 2.13 0.20 0.43 M C

MUSTer 0.52 2.00 0.19 0.52 M C

TGPR* 0.48 2.31 0.19 0.35 M C

HRP 0.48 2.39 0.19 1.01 M C

KCFv2 0.48 1.95 0.19 10.90 M

CMIL 0.43 2.47 0.19 5.14 C

ACT* 0.46 2.05 0.19 9.84 M

MTSA-KCF 0.49 2.29 0.18 2.83 M

LGT* 0.42 2.21 0.17 4.12 M C

DSST* 0.54 2.56 0.17 3.29 M C

MIL* 0.42 3.11 0.17 5.99 C

KCF2* 0.48 2.17 0.17 4.60 M

sKCF 0.48 2.68 0.16 66.22 C

BDF 0.40 3.11 0.15 200.24 C

KCFDP 0.49 2.34 0.15 4.80 M

PKLTF 0.45 2.72 0.15 29.93 C

HoughTrack* 0.42 3.61 0.15 0.87 C

FCT 0.43 3.34 0.15 83.37 C

MatFlow 0.42 3.12 0.15 81.34 C

SCBT 0.43 2.56 0.15 2.68 C

DFT* 0.46 4.32 0.14 3.33 M

FoT* 0.43 4.36 0.14 143.62 C

LT-FLO 0.44 4.44 0.13 1.83 M C

L1APG* 0.47 4.65 0.13 1.51 M C

OAB* 0.45 4.19 0.13 8.00 C

IVT* 0.44 4.33 0.12 8.38 M

STC* 0.40 3.75 0.12 16.00 M

CMT* 0.40 4.09 0.12 6.72 C

CT* 0.39 4.09 0.11 12.90 M

FragTrack* 0.43 4.85 0.11 2.08 C

ZHANG 0.33 3.59 0.10 0.21 M

LOFT-Lite 0.34 6.35 0.08 0.75 M

NCC* 0.50 11.34 0.08 154.98 C

PTZ-MOSSE 0.20 7.27 0.03 18.73 C

Table 1. The table shows raw accuracy and the average number

of failures, expected average overlap, tracking speed (in EFO) and

implementation details (M is Matlab, C is C or C++, G is GPU).

Trackers marked with * have been verified by the VOT2015 com-

mittee.

Figure 7. Expected average overlap scores w.r.t. the tracking

speed in EFO units. The dashed vertical line denotes the estimated

real-time performance threshold of 20 EFO units. See Figure 4 for

legend.

Apart from tracking accuracy, robustness and expected

average overlap at Ns frames, the tracking speed is also

crucial in many realistic tracking applications. We there-

fore visualize the expected overlap score with respect to

the tracking speed measured in EFO units in Figure 7. To

put EFO units into perspective, a C++ implementation of

a NCC tracker provided in the toolkit runs with average

140 frames per second on a laptop with an Intel Core i5-

2557M processor, which equals to approximately 160 EFO

units. Note that the two top-performing trackers according

to the expected overlap graph, MDNet and DeepSRDCF,

are among the slowest, which is likely due to the use of the

CNN. For example, DeepSRDCF and SRDCF differ only

in that DeepSRDCF applies CNN features which slows the

tracker down by an order of magnitude. The vertical dashed

line in Figure 7 indicates the real-time speed (equivalent to

approximately 20fps). The top-performing tracker in terms

of expected overlap among the trackers that exceed the

real-time threshold is the scale-adaptive mean shift tracker,

ASMS (A.48). From the AR rank plots we can see that this

tracker achieves decent accuracy and robustness ranks, i.e.,

it achieves rank 10 to 20 in robustness and approximately

rank 10 in accuracy. The raw values show that it tracks

with a good accuracy of approximately 0.5 overlap during

successful tracks, and the probability of still tracking after

S = 100 frames is approximately 0.6. So this tracker tracks

well in the short run. From the per-attribute failure plots

(Figure 5) we can see that this tracker is most strongly af-

fected by occlusion and motion change. The tracking speed

methodology that we have employed has some limitations,

e.g. note that SC-EBT was run distributed, so the measured

time is much lower than the actual, since the toolkit con-

sidered only a single computer that performed the speed

benchmarking.

5. Conclusions

This paper reviewed the VOT2015 challenge and its re-

sults. The challenge contains an annotated dataset of sixty
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sequences in which targets are denoted by rotated bounding

boxes to aid a precise analysis of the tracking results. All

the sequences are per-frame labeled with visual attributes

and have been selected using a novel automatic sequence

selection protocol that focuses on the sequences that are

likely difficult to track, while ensuring balance in visual at-

tributes. A new performance measure for determining the

winner of the challenge was introduced, which estimates

the expected average overlap of a tracker over a range of

short-term tracking sequence lengths. Using this setup, a

set of 62 trackers have been evaluated. A number of track-

ers submitted have been published at recent conferences, in-

cluding BMVC2015, ICML2015, ECCV2014, CVPR2015

and ICCV2015, and some trackers have not yet been pub-

lished (available at arXiv), which makes this the largest and

most challenging benchmark to date.

The results of VOT2015 indicate that the best submit-

ted tracker of the challenge according to the expected av-

erage overlap score is the MDNet (A.29) tracker. This

tracker excelled in accuracy as well as robustness, which

indicates that the tracker is tracking at a high accuracy dur-

ing successful tracks and very rarely fails. As result, the

expected average overlap over the VOT2015 defined inter-

val of sequences lengths is greater by a decent margin than

the second-best tracker. While the tracker performs very

well under the overlap measures, it is computationally quite

complex, resulting in a very slow tracking, which limits its

practical applicability. It will be interesting to see in future

whether certain steps could be simplified to achieve a faster

tracking at comparable overlap performance.

The main goal of VOT is establishing a community-

based common platform for discussion of tracking perfor-

mance evaluation and contributing to the tracking com-

munity with verified annotated datasets, performance mea-

sures and evaluation toolkits. The VOT2015 was a third at-

tempt toward this, following the very successful VOT2013

and VOT2014. The VOT2015 also introduced a new sub-

challenge VOT-TIR that concerns tracking in thermal and

infrared imagery. The results of that sub-challenge are de-

scribed in a separate paper [16] that was presented at the

VOT2015 workshop. Our future work will be focused on

revising the evaluation kit, dataset, performance measures,

and possibly launching other sub-challenges focused to nar-

row application domains, depending on the feedbacks and

interest expressed from the community.
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A. Submitted trackers

In this appendix we provide a short summary of all track-

ers that were considered in the VOT2015 challenge.

A.1. Multi­Store Tracker (MUSTer)

Zhibin Hong, Zhe Chen, Chaohui Wang, Xue Mei, Danil

Prokhorov, Dacheng Tao

{zhibin.hong, zhe.chen}@student.uts.edu.au,

chaohui.wang@u-pem.fr,

{xue.mei, danil.prokhorov}@tema.toyota.com,

dacheng.tao@uts.edu.au

MUlti-STore Tracker (MUSTer) [26] is a dual-

component approach to object tracking, proposed with the

inspiration from the Atkinson-Shiffrin Memory Model [2].

It consists of a short-term memory and a long-term mem-

ory. The short-term memory provides an instant response

via two-stage filtering. When a failure or an occlusion is

detected, the long-term memory estimates the state of the

target and the short-term memory of the target appearance

is refreshed accordingly. The reader is referred to [26] for

details.

A.2. Restore Point guided Kernelized Correlation
Filters (KCFv2)

Liang Ma, Kai Xue

mllx01161110@hotmail.com, xuekai@hrbeu.edu.cn

For target tracking, Kernelized Correlation Filters [25]

use an online Support Vector Machine learning process in

Fourier domain. Th KCFv2 tracker enhances its robustness

by examining the similarity between each candidate patch

generated by the KCF tracker and the Restore Point patch.

This base patch characterizes target appearance in a short

time period. The similarity likelihood of top k candidate po-

sitions produced by the KCF tracker at neighbouring scales

are also measured and the likelihood function involves the

histogram of colour and gradient.

A.3. Scalable Kernel Correlation Filter with Sparse
Feature Integration (sKCF)

Andrés Solı́s Montero, Jochen Lang, Robert Laganière

asolismon@uottawa.ca,

{jlang,laganiereg}@eecs.uottawa.ca

sKCF extends Kernalized Correlation Filter (KCF)

framework by introducing an adjustable Gaussian window
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function and keypoint-based model for scale estimation to

deal with the fixed size limitation in the Kernelized Cor-

relation Filter. Fast HoG descriptors and Intels Complex

Conjugate Symmetric (CCS) are also integrated into sKCF

to boost achievable frame rates.

A.4. ZHANG

Zhe Zhang, Hing Tuen Yau, Kin Hong Wong

zhangzhe9011@gmail.com,

{htyau, khwong}@cse.cuhk.edu.hk

ZHANG tracker is composed by two phases, learning

and matching. In the learning phase, a dictionary is built

using dense patch sampling and a target histogram of the de-

sired object is generated. In the second phase, dense patches

are sampled and candidate coefficients and candidate his-

tograms are also generated which are compared with the

coefficients and histogram generated in the first phase. A

mean transform is run to yield tracking in all of orientation,

rotation and scale, simultaneously.

A.5. Distractor Aware Tracker (DAT)

Horst Possegger, Thomas Mauthner, Horst Bischof

{possegger, mauthner, bischof}@icg.tugraz.at

The Distractor Aware Tracker is an appearance-based

tracking-by-detection approach. A discriminative model us-

ing color histograms is implemented to distinguish the ob-

ject from its surrounding region. Additionally, a distractor-

aware model term suppresses visually distracting regions

whenever they appear within the field-of-view, thus reduc-

ing tracker drift. The reader is referred to [57] for details.

A.6. Best Displacement Flow (BDF)

Mario Maresca, Alfredo Petrosino

mariomaresca@hotmail.it, petrosino@uniparthenope.it

Best Displacement Flow is a short-term tracking algo-

rithm based on the same idea of Flock of Trackers [66] in

which a set of local tracker responses are robustly combined

to track the object. Firstly, BDF performs a clustering to

identify the Best Displacement vector which is used to up-

date the object’s bounding box. Secondly, BDF performs a

procedure named Consensus-Based Reinitialization used to

reinitialize candidates which were previously classified as

outliers. Interested readers are referred to [46] for details.

A.7. Matrioska Best Displacement Flow (MatFlow)

Mario Maresca, Alfredo Petrosino

mariomaresca@hotmail.it, petrosino@uniparthenope.it

MatFlow enhances the performance of the first version

of Matrioska [47] with response given by the short-term

tracker BDF (see A.6). By default, MatFlow uses the tra-

jectory given by Matrioska. In the case of a low confidence

score estimated by Matrioska, the algorithm corrects the tra-

jectory with the response given by BDF. The Matrioska’s

confidence score is based on the number of keypoints found

inside the object in the initialization. If the object has not a

good amount of keypoints (i.e. Matrioska is likely to fail),

the algorithm will use the trajectory given by BDF that is

not sensitive to low textured objects.

A.8. Point­based Kanade Lukas Tomasi color­
Filter (PKLTF)

Rafael Martin-Nieto, Alvaro Garcia-Martin, Jose M.

Martinez

{rafael.martinn, alvaro.garcia, josem.martinez}@uam.es

PKLTF is a single-object long-term tracker that supports

high appearance changes in the target, occlusions, and is

also capable of recovering a target lost during the track-

ing process. PKLTF consists of two phases: The first one

uses the Kanade Lukas Tomasi approach (KLT) [60] to

choose the object features (using color and motion coher-

ence), while the second phase is based on mean shift gradi-

ent descent [9] to place the bounding box into the position

of the object. The object model is based on the RGB color

and the luminance gradient and it consists of a histogram in-

cluding the quantized values of the color components, and

an edge binary flag. The interested reader is referred to []

for details.

A.9. Multi­view visual tracking via correlation fil­
ters (MvCFT)

He Zhenyu, Xin Li, Nana Fan

zyhe@hitsz.edu.cn

MvCFT tracker selects HoG features and intensity infor-

mation to build up a model of the desired object. Correla-

tion filters are used to generate different views of the model.

An additional simple scale method is used to scale the size

of the object.

A.10. Long Term Featureless Object Tracker (LT­
FLO)

Karel Lebeda, Simon Hadfield, Jiri Matas, Richard Bow-

den

{k.lebeda, s.hadfield, r.bowden}@surrey.ac.uk,

matas@cmp.felk.cvut.cz

The tracker is based on and extends previous work of the

authors on tracking of texture-less objects [40]. It signif-

icantly decreases reliance on texture by using edge-points

instead of point features. LT-FLO uses correspondences

of lines tangent to the edges and candidates for a corre-

spondence are all local maxima of gradient magnitude. An

estimate of the frame-to-frame transformation similarity is

obtained via RANSAC. When the confidence is high, the

current state is learnt for future corrections. On the other

hand, when a low confidence is achieved, the tracker cor-

rects its position estimate restarting the tracking from pre-

viously stored states. LT-FLO tracker also has a mechanism
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to detect disappearance of the object, based on the stabil-

ity of the gradient in the area of projected edge-points. The

interested reader is referred to [39] for details.

A.11. Struck

Stuart Golodetz, Sam Hare, Amir Saffari, Stephen L.

Hicks, Philip H. S. Torr

sgolodetz@gxstudios.net, sam@samhare.net,

amir@ymer.org, stephen.hicks@ndcn.ox.ac.uk,

philip.torr@eng.ox.ac.uk

Struck is a framework for adaptive visual object track-

ing based on structured output prediction. The method

uses a kernelized structured output support vector ma-

chine (SVM), which is learned online to provide adaptive

tracking. Current version of Struck uses multi-kernel learn-

ing (MKL) and larger feature vectors than were used in the

past. The tracking performance is significantly improved by

combining a Gaussian kernel on 192D Haar features with an

intersection kernel on 480D histogram features, but at a cost

in speed. Note that this version of the tracker is an improve-

ment over the initial Struck from ICCV2011 [24] and was

in the time of writing this paper under review as a journal

submission.

A.12. PTZ­MOSSE

ByeongJu Lee, Kimin Yun, Jongwon Choi, Jin Young

Choi

adolys@snu.ac.kr, ykmwww@snu.ac.kr,

jwchoi.pil@gmail.com, jychoi@snu.ac.kr

PTZ-MOSSE tracker improves the robustness against

occlusions and appearance changes by using motion likeli-

hood map and scale change estimation as well as appear-

ance correlation filter. A motion likelihood map is con-

structed from motion detection result in addition to the cor-

relation filter. This map is generated by blurring the motion

detection result, which shows high probability in the center

of the target. The combination of the correlation filter and

the motion likelihood map is formulated as an optimization

problem.

A.13. Object­Aware Correlation Filter
Tracker (OACF)

Luca Bertinetto, Ondrej Miksik, Stuart Golodetz, Philip

H. S. Torr

{luca.bertinetto, ondrej.miksik}@eng.ox.ac.uk,

stuart.golodetz@ndcn.ox.ac.uk, philip.torr@eng.ox.ac.uk

OACF tracker extends the scale adaptive DSST

tracker [11] by using a per-pixel likelihood map of the target

which is built using RGB histograms. Then, for each pixel

x is estimated the probability that the pixel belongs to the

object to track refining the estimation of a correlation filter.

Details are available in [6].

A.14. Optical flow clustering tracker (FCT)

Anton Varfolomieiev

a.varfolomieiev@kpi.ua

FCT is based on the same idea as the best displacement

tracker (BDF) [46]. It uses sparse pyramidal Lucas-Kanade

optical flow to track individual points of the object at several

pyramid levels. The results of point tracking are clustered in

the same way as in BDF [46] to estimate the best object dis-

placement. The initial point locations are generated by the

FAST detector [59]. The tracker estimates the scale and an

in-plane rotation of the object. These procedures are similar

to the scale calculation of the median flow tracker [29], ex-

cept that the clustering is used instead of median. In case of

rotation calculation an angles between the respective point

pairs are clustered. In contrast to BDF, the FCT does not

use consensus-based reinitialization, but regenerate a regu-

lar grid of missed points, when the number of these points

becomes less than certain predefined threshold.

A.15. AOGTracker

Tianfu Wu, Yang Lu, Song-Chun Zhu

{tfwu, yanglv}@ucla.edu, sczhu@stat.ucla.edu

AOGTracker tracker simultaneously tracks, learns and

parses objects in video sequences with a hierarchical and

compositional And-Or graph (AOG). The AOG explores la-

tent discriminative part configurations to represent objects.

AOGTracker takes into account the appearance of the ob-

ject (e.g., lighting and partial occlusion) and structural vari-

ations of the object (e.g., different poses and viewpoints),

as well as objects in the background which are similar to

the desired object to track. The AOGTracker is formulated

under the Bayesian framework and a spatial-temporal dy-

namic programming (DP) algorithm is derived to infer the

state of the object. During an online learning phase, the

AOG is updated iteratively with two steps in the latent struc-

tural SVM framework: (i) Identifying the false positives and

false negatives of the current AOG in a new frame by ex-

ploiting the spatial and temporal constraints observed in the

trajectory; (ii) updating the structure of the AOG based on

the intractability of the current AOG and re-estimating the

parameters based on the augmented training dataset.

A.16. Structure Tracker with the Robust Kalman
filter (RobStruck)

Ivan Bogun, Eraldo Ribeiro

ibogun2010@my.fit.edu, eribeiro@cs.fit.edu

RobStruck is a modified version of the Struck

tracker [24] extended to work on multiple scales. Feature

representation of the bounding box is done by extracting

histograms of oriented gradients and intensity histograms.

Intersection kernel is used as a kernel function. To make

the tracker more resilient to false positives, Robust Kalman
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filter is used. Each detection of the SVM is corrected with

the filter to find out if incorrect detection occurred.

A.17. Geometric Structure Hyper­Graph based
Tracker (G2T)

Yuezun Li, Dawei Du, Longyin Wen, Lipeng Ke, Ming-

Ching Chang, Honggang Qi, Siwei Lyu

{liyuezun, cvdaviddo, wly880815, lipengke1, mingching,

honggangqi.cas, heizi.lyu}@gmail.com

G2T tracker is especially designed for tracking de-

formable objects. G2T represents the target object by a

geometric structure hyper-graph, which integrates the local

appearance of the target with higher order geometric struc-

ture correlations among target parts. In each video frame,

tracking is formulated as a hyper-graph matching between

the target geometric structure hyper-graph and a candidate

hyper-graph. Multiple candidate associations between the

nodes of both hyper-graphs are built. The weight of the

nodes indicate the reliability of the candidate associations

based on the appearance similarity between the correspond-

ing parts of each hyper-graph. A matching between the tar-

get and a candidate is solved by applying the extended pair-

wise updating algorithm of [45].

A.18. Structure Output Deep Learning
Tracker (SO­DLT)

Naiyan Wang, Siyi Li, Abhinav Gupta, Dit-Yan Yeung

winsty@gmail.com, sliay@cse.ust.hk,

abhinavg@cs.cmu.edu, dyyeung@cse.ust.hk

SO-LDT proposes a novel structured output CNN which

transfers generic object features for online tracking. First,

a CNN is trained to distinguish objects from non-objects.

The output of the CNN is a pixel-wise map to indicate

the probability that each pixel in the input image belongs

to the bounding box of an object. Besides, SO-LDT uses

two CNNs which use different model update strategies. By

making a simple forward pass through the CNN, the prob-

ability map for each of the image patches is obtained. The

final estimation is then determined by searching for a proper

bounding box. If it is necessary, the CNNs are also updated.

The reader is referred to [71] for more details.

A.19. Scale­adaptive Multi­Expert Tracker (SME)

Jiatong Li, Zhibin Hong, Baojun Zhao

{Jiatong.Li-3@student., Zhibin.Hong@student.,

yida.xu@}uts.edu.au, zbj@bit.edu.cn

SME is a multi-expert based scale adaptive tracker in-

spired by [81]. Unlike [81], SME proposes a trajectory con-

sistency based score function as the expert selection crite-

ria. Furthermore, an effective scale adaptive scheme is in-

troduced to handle scale changes on-the-fly. Multi-channel

based correlation filter tracker [25] is adopted as the base

tracker, where HOG and colour features [13] are concate-

nated to enhance the performance.

A.20. Motion Context Tracker (MCT)

Stefan Duffner, Christophe Garcia

{stefan.duffner, christophe garcia}@liris.cnrs.fr

The Motion Context Tracker (MCT) is a discriminative

on-line learning classifier based on Online Adaboost (OAB)

which is integrated into the model collecting negative train-

ing examples for updating the classifier at each video frame.

Instead of taking negative examples only from the surround-

ings of the object region or from specific distracting objects,

MCT samples the negatives from a contextual motion den-

sity function in a stochastic manner.

A.21. Kernelized Correlation Filter with Detection
Proposal (KCFDP)

Dafei Huang, Zhaoyun Chen, Lei Luo, Mei Wen, Chun-

yuan Zhang

chenzhaoyun@nudt.edu.cn

KCFDP couples the Kernelized Correlation Filter(KCF)

tracker [25] with the class-agnostic detection proposal gen-

erator EdgeBoxes [86]. KCF is responsible for the prelimi-

nary estimation of target location. Then EdgeBoxes is em-

ployed to search for detection proposals nearby. While the

unpromising proposals are rejected before evaluation, the

most promising candidate is used to refine the target lo-

cation and update the target scale and aspect ratio with a

damping factor. The feature used in original KCF is ex-

tended to a combination of HOG, intensity, and colour nam-

ing similarly to [13, 44], and the robust model updating

scheme in [13] is also adopted.

A.22. Tracking by Regression with Incrementally
Learned Cascades (TRIC­track)

Xiaomeng Wang, Michel Valstar, Brais Martinez,

Muhammad Haris Khan, Tony Pridmore

{psxxw, Michel.Valstar, brais.martinez, psxmhk,

tony.pridmore}@nottingham.ac.uk

TRIC-track is a part-based tracker which directly pre-

dicts the displacements between the centres of sampled

image patches and the target part location using regres-

sors. TRIC-track adopts the Supervised Descent Method

(SDM) [78] to perform the cascaded regression for dis-

placement prediction, estimating the target location with in-

creasingly accurate predictions. To adapt to variations in

target appearance and shape over time, TRIC-track takes

inspiration from the incremental learning of cascaded re-

gression of [1] applying a sequential incremental update.

TRIC-track also possesses a multiple temporal scale motion

model [31] which enables it to fully exert the trackers ad-

vantage by providing accurate initial prediction of the target
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part location every frame. For more details, the interested

reader is referred to [74].

A.23. Baseline Tracker (HRP)

Naiyan Wang, Jianping Shi, Dit-Yan Yeung, Jiaya Jia

{winsty, shijianping5000}@gmail.com,

dyyeung@cse.ust.hk, leojia@cse.cuhk.edu.hk

The HRP tracker is the best combination of tracking

parts produced by the analysis in [72]. The tracker is com-

posed of a HoG visual model with logistic regression and

particle filter for localization. The authors of the original

paper [72] have submitted this tracker to VOT2015 under

the name ”Baseline tracker”, but to avoid confusion with

the VOT baselines, we have abbreviated it into HRP (indi-

cating HoG features, regression and particle filter).

A.24. NSAMF

Yang Li, Jianke Zhu

{liyang89, jkzhu}@zju.edu.cn

NSAM is based on the correlation filter framework [25,

7]. NSAM tracker is an improved version of the previous

method SAMF [44]. While the latter uses colour name, the

former employs colour probability. In addition, the final

response map is a fusion of multi-models based on the dif-

ferent features.

A.25. Edge Box Tracker (EBT)

Gao Zhu, Fatih Porikli, Hongdong Li

{gao.zhu, fatih.porikli, hongdong.li}@anu.edu.au

EBT tracker uses sparse yet informative contours to

score proposals based on the number of contours they

wholly enclose into a detection-by-tracking process for vi-

sual tracking. EBT executes search in the entire image and

focus only on those high-quality candidates to test and up-

date the discriminative classifier. To reduce the spurious

false positives and improve the tracking accuracy, high-

quality candidates are used to choose better positive and

negative samples. Since EBT employs only a few candi-

dates to search the object, it has potential to use higher-

dimensional features if needed. The reader is referred

to [85] for details.

A.26. Self­Correction Ensemble Based
Tracker (SC­EBT)

Naiyan Wang, Zehua Huang, Siyi Li, Dit-Yan Yeung

winsty@gmail.com, zehuah@cmu.edu,

{sliay, dyyeung}@cse.ust.hk

SC-EBT ensembles the output of several individual

trackers in order to make the final prediction more accu-

rate and robust. This problem can be cast into a challeng-

ing crowd sourcing problem on structured data with tem-

poral dimension. To solve it, a factorial hidden Markov

model (FHMM) is proposed for ensemble-based tracking

by learning jointly the unknown trajectory of the target and

the reliability of each tracker in the ensemble. A condi-

tional particle filter algorithm by exploiting the structure of

the joint posterior distribution of the hidden variables is ap-

plied for online inference of the FHMM. Four complemen-

tary trackers were chosen to be used in ensemble, namely,

DAT [57], DSST [11], Baseline [72] and ASMS [69]. For

more details, the interested reader is referred to [73].

A.27. Multi­kernelized Correlation Filter
Plus (MKCF+)

Ming Tang, Jiayi Feng, and Xu Zhao

{tangm, jiayi.feng, xu.zhao}@nlpr.ia.ac.cn

MKCF+ tracker is based on the multi-kernelized correla-

tion filter tracker (MKCF) [62] and background modelling

algorithm ViBe [5]. The model drift problem suffered by

MKCF is tackled by MKCF+ by adapting ViBe to alarm

its locating failures. ViBe is launched only on frames with

stable scenes. And in such case, it is probable for ViBe

to find out the possible locations of the target in searching

area. The candidate locations are then tested by MKCF to

determine which one should be the target.

A.28. SumShift

Jae-Yeong Lee, Sunglok Choi, Jae-chan Jeong, Ji-Wan

Kim, Jae-il Cho

{jylee, sunglok, channij80, giraffe, jicho}@etri.re.kr

SumShift tracker is an implementation of the histogram-

based tracker suggested in [41]. SumShift improves

conventional histogram-based trackers (e.g., mean-shift

tracker) in two ways. Firstly, it uses a partition-based object

model represented by multiple patch histograms to preserve

geometric structure of the colour distribution of the object.

Secondly, the object likelihood is computed by the sum of

the patch probabilities which are computed from each cor-

responding patch histograms, enabling more robust and ac-

curate tracking. The reader is referred to [41] for details.

A.29. Multi­Domain Convolutional Neural Net­
work Tracker (MDNet)

Hyeonseob Nam and Bohyung Han

{namhs09,bhhan}@postech.ac.kr

MDNet tracker represents the target object using a Con-

volutional Neural Network (CNN). MDNet pre-trains the

CNN using a set of videos with tracking ground-truth an-

notations to obtain a generic representation for an arbitrary

new sequence. The network is composed of two partsshared

layers and domain specific layers, where domains corre-

spond to individual tracking sequences and each domain has

a separate branch for binary classification. After training,

a generic representation in the shared layers across all do-

mains is obtained. The tracking is performed by sampling
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target candidates around the previous target state, evaluat-

ing them on the CNN, and identifying the sample with the

maximum score. For more details, the interested reader is

referred to [51].

A.30. Spatially Regularized Discriminative Corre­
lation Filter Tracker (SRDCF)

Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan,

Michael Felsberg

{martin.danelljan, gustav.hager, fahad.khan,

michael.felsberg}@liu.se

Standard Discriminative Correlation Filter (DCF) based

trackers such as [11, 13, 25] suffer from the inherent peri-

odic assumption when using circular correlation. The re-

sulting periodic boundary effects leads to inaccurate train-

ing samples and a restricted search region.

The SRDCF mitigates the problems arising from as-

sumptions of periodicity in learning correlation filters by

introducing a spatial regularization function that penalizes

filter coefficients residing outside the target region. This

allows the size of the training and detection samples to be

increased without affecting the effective filter size. By se-

lecting the spatial regularization function to have a sparse

Discrete Fourier Spectrum, the filter is efficiently optimized

directly in the Fourier domain. Instead of solving for

an approximate filter, as in previous DCF based trackers

(e.g. [11, 13, 25]), the SRDCF employs an iterative opti-

mization based on Gauss-Seidel that converges to the exact

filter. The detection step employs a sub-grid maximization

of the correlation scores to achieve more precise location

estimates. In addition to the HOG features used in [12], the

submitted variant of SRDCF also employs Colour Names

and greyscale features. These features are averaged over

the 4× 4 HOG cells and then concatenated, giving a 42 di-

mensional feature vector at each cell. For more details, the

reader is referred to [12].

A.31. Spatially Regularized Discriminative Cor­
relation Filter with Deep Features (Deep­
SRDCF)

Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan,

Michael Felsberg

{martin.danelljan, gustav.hager, fahad.khan,

michael.felsberg}@liu.se

The DeepSRDCF incorporates deep convolutional fea-

tures in the SRDCF framework proposed in [12]. Instead of

the commonly used hand-crafted features, the DeepSRDCF

employs convolutional features from a pre-trained network.

A Principal Component Analysis is used to reduce the fea-

ture dimensionality of the extracted activations. The reader

is referred to [12] for details.

A.32. Scaled SumShift Tracker (S3Tracker)

Jae-Yeong Lee, Sunglok Choi, Jae-chan Jeong, Ji-Wan

Kim, Jae-il Cho

{jylee, sunglok, channij80, giraffe, jicho}@etri.re.kr

S3Tracker is based on the authors previous work

SumShift [41], with adaptive scale and aspect ratio selec-

tion. S3Tracker is also one of RGB histogram-based track-

ers. In addition to SumShift, S3Tracker chooses the scale

and aspect ratio through maximizing likelihood density with

consideration of size and area of object candidates. Such

maximum likelihood density criterion enables robust and

adaptive object tracking.

A.33. Layered Deformable Parts tracker (LDP)

A. Lukežič, L. Čehovin, Matej Kristan

alan.lukezic@gmail.com

LDP is a part-based correlation filter composed of a

coarse and mid-level target representations. Coarse rep-

resentation is responsible for approximate target localiza-

tion and uses HoG as well as color features. The mid-level

representation is a deformable parts correlation filter with

fully-connected parts topology and applies a novel formu-

lation that threats geometric and visual properties within a

single convex optimization function. The mid-level as well

as coarse level representations are based on the kernelized

correlation filter from [25].

A.34. Rotation adaptive joint scale­spatial correla­
tion filter based tracker (RAJSSC)

Mengdan Zhang, Junliang Xing, Jin Gao, Xinchu Shi,

Qiang Wang, Weiming Hu

{mengdan.zhang, jlxing, jgao, xcshi, qiang.wang,

wmhu}@nlpr.ia.ac.cn

RAJSSC tracker is a correlation filter based tracking,

which is able to simultaneously model target appearance

changes from spatial displacements, scale variations, and

rotation transformations. RAJSSC performs scale-spatial

correlation jointly using a novel block-circulant structure

for the object template with a joint space Gaussian response.

By transferring the target template from the Cartesian coor-

dinate system to the Log-Polar coordinate system, the cir-

culant structure is preserved and the object rotation can be

evaluated.

A.35. Multi­Channel Multiple­Instance­Learning
Tracker (CMIL)

Hilke Kieritz, Stefan Becker, Wolfgang Hubner, Michael

Arens

{hilke.kieritz, stefan.becker, wolfgang.huebner,

michael.arens}@iosb.fraunhofer.de

CMIL is an extension of the multiple-instance-learning

tracker MIL [3] with the use of integral channel fea-

tures [14]. The CMIL uses multiple features channels and
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only the sum of one region per feature. The following fea-

tures are used: LUV-color channels, six per gradient direc-

tion quantized gradient magnitude channels and the gra-

dient magnitude channel. To track the object over scale

changes the feature responses are scaled using a scaling fac-

tor depended on the feature channel as [14].

A.36. DTracker

Jae-Yeong Lee, Jae-chan Jeong, Sunglok Choi, Ji-Wan

Kim, Jae-il Cho

{jylee, channij80, sunglok, giraffe, jicho}@etri.re.kr

DTracker extends the SumShift tracker [41] with an op-

tical flow tracker and the NCC tracker. The colour dis-

tribution of an object is modelled by kernel density es-

timation (KDE) to provide continuous measure of colour

similarity. Similarity evaluation of the KDE colour model

and the NCC template matching acts as global localizer

to bound possible drift of the tracker and the optical flow

tracker has a role of adopting frame to frame variation.

A.37. Likelihood of Features Tracking­Lit (LOFT­
Lite)

Rengarajan Pelapur, Kannappan Palaniappan, Filiz

Bunyak, Guna Seetharaman, Mahdieh Pootschi, Ke Gao,

Yao Shizeng

{rvpnc4, pal, bunyak, guna, mpr69, kg954,

syyh4}@missouri.edu

LOFT (Likelihood of Features Tracking) [52, 54, 55] is

an appearance based single object tracker that uses a set of

image based features and correlation maps including his-

tograms of gradient magnitude, gradient orientation, neigh-

bourhood intensity, and shape based on the eigenvalues of

the Hessian matrix. LOFT performs feature fusion by com-

paring a target appearance model within a search region us-

ing Bayesian maps which estimate the likelihood of each

pixel within the search window belonging to part of the tar-

get [54]. Newly added per-color channel histograms are

used to improve accuracy and robustness. The search re-

gion is updates by a Kalman filter [55].

A.38. Scale Ratio Adaptive Tracker (SRAT)

Hyemin Lee, Daejin Kim

{lhmin, dkim}@postech.ac.kr

The Scale Ratio Adaptive Tracker (SRAT) is an extended

version of structured output tracker(Struck) [24]. The ob-

ject model is learnt by structured output SVM using Gaus-

sian kernelized raw feature. The tracking process consists

of three steps: First, find the 2-D transition which maxi-

mizes the SVM response based on the trained model. Sec-

ond, estimate the scale changes including width and height

variance. Since the 2-D scale estimation is very costly, the

subspace of scale estimation space is used. Among the all

possible scale changes, the guide line for x-y scale ratio and

allowed only small variation are set. Third, a translation

tracking step within the range made by scale change is per-

formed. The ambiguity when more confident targets are

similar to the object model is solved by using a weight on

current target location based on Gaussian distribution.

A.39. Scene Context­Based Tracker (SCBT)

Salma Moujtahid, Stefan Duffner, Atilla Baskurt

{salma.moujtahid, stefan.duffner,

atilla.baskurt}@liris.cnrs.fr

The Scene Context-Based Tracker (SCBT) [50] com-

bines several independent on-line trackers using visual

scene context. The framework decides automatically at

each point in time which specific tracking algorithm works

best under the given scene or acquisition conditions. A set

of generic global context features computed on different re-

gions of each frame of a set of training videos is defined. It

is also recorded the performance of each individual tracker

on these videos in terms of object bounding box overlap

with the ground truth. Using these information, the classi-

fier is trained to estimate which tracker gives the best re-

sult given the global scene context in a particular frame. In

this framework, 3 Online AdaBoost trackers [23] were used

based on Haar, HoG and HoC features, respectively. The

context classifier estimates a probability for each tracker to

be the best for the current frame. Then, to avoid frequent

and unnecessary switching between different trackers, the

classifier response in time using a Hidden Markov Model is

filtered.

A.40. Multi­Template Scale Adaptive Kernelized
Correlation Filters (MTSA­KCF)

Adel Bibi, Bernard Ghanem

{adel.bibi, bernard.ghanem}@kaust.edu.sa

This tracker is an improvement over the popular ker-

nelized correlation filter tracker best known as KCF [25].

MTSA-KCF addresses two main issues, model-filter update

and the fixed scaling issue. As for scaling, a simple voting

over-grid method similar to [11, 44] is proposed. But, in-

stead of maximizing over the likelihood term of the scale

grid by assuming the scales are equiprobable, the poste-

rior distribution is maximized by assuming the scales fol-

low a Gaussian prior centered around the scale in the pre-

vious frame. The other contribution consists of using mul-

tiple templates, with multi-dimensional features and non-

linear kernel functions in the dual formulation. By relaxing

the original problem and solving an alternating fixed point

method optimization, a significant improvement in perfor-

mance is achieved with real-time speeds.

A.41. simplified Proposal Selection Tracker (sPST)

Yang Hua, Karteek Alahari, Cordelia Schmid

firstname.lastname@inria.fr
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The simplified Proposal Selection Tracker (sPST) is

based on current work [28]. sPST operates in two phases.

Firstly, a set of candidate object locations computed by

common tracking-by-detection framework is proposed. The

frame is used as is and rotate them according to the ground

truth annotation in the initial frame if applicable. Secondly,

the best candidate as the tracking result is determined by

two cues: detection confidence score and an objectness

measure computed with edges [86]. The reader is referred

to [28] for details.

A.42. CMT

Submitted by VOT Committee

The CMT tracker is a keypoint-based method in a com-

bined matching-and-tracking framework. To localise the

object in every frame, each key point casts votes for the ob-

ject center. A consensus-based scheme is applied for outlier

detection in the voting behaviour. By transforming votes

based on the current key point constellation, changes of the

object in scale and rotation are considered. The use of fast

keypoint detectors and binary descriptors allows the current

implementation to run in real-time.

A.43. FragTrack

Submitted by VOT Committee

FragTrack represents the model of the object by multi-

ple image fragments or patches. The patches are arbitrary

and are not based on an object model. Every patch votes

on the possible positions and scales of the object in the cur-

rent frame, by comparing its histogram with the correspond-

ing image patch histogram. A robust statistic is minimized

in order to combine the vote maps of the multiple patches.

The algorithm overcomes several difficulties which cannot

be handled by traditional histogram-based algorithms like

partial occlusions or pose change.

A.44. OAB

Submitted by VOT Committee

OAB employs feature selection by online boosting for

object tracking. This allows to adapt a classifier while track-

ing the object. Therefore appearance changes of the ob-

ject (e.g. out of plane rotations, illumination changes) are

handled quite naturally. Moreover, depending on the back-

ground the algorithm selects the most discriminating fea-

tures for tracking resulting in stable tracking results. By

using fast computable features (e.g. Haar-like wavelets,

orientation histograms, local binary patterns) the algorithm

runs in real-time. OAB has been seminal in introducing the

tracking-by-detection paradigm to model-free object track-

ing.

A.45. Local­Global Tracking tracker (LGT)

Submitted by VOT Committee

The core element of LGT is a coupled-layer visual

model that combines the target global and local appear-

ance by interlacing two layers. By this coupled constraint

paradigm between the adaptation of the global and the local

layer, a more robust tracking through significant appearance

changes is achieved. The reader is referred to [63] for de-

tails.

A.46. Incremental Learning for Robust Visual
Tracking (IVT)

Submitted by VOT Committee

The idea of the IVT tracker [58] is to incrementally learn

a low-dimensional sub-space representation, adapting on-

line to changes in the appearance of the target. The model

update, based on incremental algorithms for principal com-

ponent analysis, includes two features: a method for cor-

rectly updating the sample mean, and a forgetting factor to

ensure less modelling power is expended fitting older ob-

servations.

A.47. Multiple Instance Learning tracker (MIL)

Submitted by VOT Committee

MIL tracker [3] uses a tracking-by-detection approach,

more specifically Multiple Instance Learning instead of tra-

ditional supervised learning methods and shows improved

robustness to inaccuracies of the tracker and to incorrectly

labelled training samples.

A.48. ASMS

Submitted by VOT Committee

The mean-shift tracker optimize the Hellinger distance

between template histogram and target candidate in the im-

age. This optimization is done by a gradient descend. The

ASMS [70] method address the problem of scale adapta-

tion and present a novel theoretically justified scale estima-

tion mechanism which relies solely on the mean-shift proce-

dure for the Hellinger distance. The ASMS also introduces

two improvements of the mean-shift tracker that make the

scale estimation more robust in the presence of background

clutter – a novel histogram color weighting and a forward-

backward consistency check.

A.49. Flock of Trackers (FoT)

Submitted by VOT Committee

The Flock of Trackers (FoT) [67] is a tracking frame-

work where the object motion is estimated from the dis-

placements or, more generally, transformation estimates of

a number of local trackers covering the object. Each local

tracker is attached to a certain area specified in the object

coordinate frame. The local trackers are not robust and as-

sume that the tracked area is visible in all images and that

it undergoes a simple motion, e.g. translation. The Flock
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of Trackers object motion estimate is robust if it is from lo-

cal tracker motions by a combination which is insensitive to

failures.

A.50. Spatio­temporal context tracker (STC)

Submitted by VOT Committee

The STC [83] is a correlation filter based tracker, which

uses image intensity features. It formulates the spatio tem-

poral relationships between the object of interest and its lo-

cally dense contexts in a Bayesian framework, which mod-

els the statistical correlation between features from the tar-

get and its surrounding regions. For fast learning and detec-

tion the Fast Fourier Transform (FFT) is adopted.

A.51. Transfer Learning Based Visual Tracking
with Gaussian Processes Regression (TGPR
tracker)

Submitted by VOT Committee

The TGPR tracker [19] models the probability of target

appearance using Gaussian Process Regression. The obser-

vation model is learned in a semi-supervised fashion using

both labeled samples from previous frames and the unla-

beled samples that are tracking candidates extracted from

current frame.

A.52. Normalized Cross­Correlation (NCC)

Submitted by VOT Committee

The NCC tracker is a VOT2015 baseline tracker and fol-

lows the very basic idea of tracking by searching for the

best match between a static grayscale template and the im-

age using normalized cross-correlation.

A.53. HoughTrack

Submitted by VOT Committee

HoughTrack is a tracking-by-detection approach based

on the Generalized Hough-Transform. The idea of Hough-

Forests is extended to the online domain and the center

vote based detection and back-projection is coupled with a

rough segmentation based on graph-cuts. This is in con-

trast to standard online learning approaches, where typi-

cally bounding-box representations with fixed aspect ratios

are employed. The original authors claim that HoughTrack

provides a more accurate foreground/background separa-

tion and that it can handle highly non-rigid and articulated

objects. The reader is referred to [21] for details and to

http://lrs.icg.tugraz.at/research/houghtrack/for code.

A.54. A kernel correlation filter tracker with Scale
Adaptive and Feature Integration (SAMF)

Authors implementation. Submitted by VOT Committee

SAMF tracker is based on the idea of correlation filter-

based trackers [15,27,26,5] with aim to improve the over-

all tracking capability. To tackle the problem of the fixed

template size in kernel correlation filter tracker, an effective

scale adaptive scheme is proposed. Moreover, features like

HoG and colour naming are integrated together to further

boost the overall tracking performance.

A.55. Adaptive Color Tracker (ACT)

Authors implementation. Submitted by VOT Committee

The Adaptive Color Tracker (ACT) [15] extends the

CSK tracker [] with colour information. ACT tracker con-

tains three improvements to CSK tracker: (i) A tempo- rally

consistent scheme for updating the tracking model is ap-

plied instead of training the classifier separately on single

samples, (ii) colour attributes are applied for image repre-

sentation, and (iii) ACT employs a dynamically adaptive

scheme for selecting the most important combinations of

colours for tracking.

A.56. Discriminative Scale Space Tracker (DSST)

Authors implementation. Submitted by VOT Committee

The Discriminative Scale Space Tracker (DSST) [11]

extends the Minimum Output Sum of Squared Errors

(MOSSE) tracker [7] with robust scale estimation. The

DSST additionally learns a one-dimensional discriminative

scale filter, that is used to estimate the target size. For

the translation filter, the intensity features employed in the

MOSSE tracker is combined with a pixel-dense representa-

tion of HOG-features.

A.57. Kernelized Correlation Filter tracker (KCF2)

Modified version of the authors implementation. Submit-

ted by VOT Committee

This tracker is basically a Kernelized Correlation Fil-

ter [25] operating on simple HOG features. The KCF is

equivalent to a Kernel Ridge Regression trained with thou-

sands of sample patches around the object at different trans-

lations. The improvements over the previous version are

multi-scale support, sub-cell peak estimation and replacing

the model update by linear interpolation with a more robust

update scheme.

A.58. Compressive Tracking (CT)

Implementation from authors website. Submitted by VOT

Committee

The CT tracker [84] uses an appearance model based on

features extracted from the multi-scale image feature space

with data-independent basis. It employs non-adaptive ran-

dom projections that preserve the structure of the image fea-

ture space of objects. A very sparse measurement matrix is

adopted to efficiently extract the features for the appearance

model. Samples of foreground and background are com-

pressed using the same sparse measurement matrix. The

tracking task is formulated as a binary classification via a
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naive Bayes classifier with online update in the compressed

domain.

A.59. Distribution fields Tracking (DFT)

Implementation from authors website. Submitted by VOT

Committee

The tacker introduces a method for building an image de-

scriptor using distribution fields (DFs), a representation that

allows smoothing the objective function without destroying

information about pixel values. DFs enjoy a large basin of

attraction around the global optimum compared to related

descriptors. DFs also allow the representation of uncer-

tainty about the tracked object. This helps in disregarding

outliers during tracking (like occlusions or small missalign-

ments) without modeling them explicitly.

A.60. HMMTxD

Submitted by VOT Committee

The HMMTxD [68] method fuses observations from

complementary out-of-the box trackers and a detector by

utilizing a hidden Markov model whose latent states corre-

spond to a binary vector expressing the failure of individ-

ual trackers. The Markov model is trained in an unsuper-

vised way, relying on an online learned detector to provide

a source of tracker-independent information for a modified

Baum-Welch algorithm that updates the model w.r.t. the

partially annotated data.

A.61. L1APG

Implementation from OTB. Submitted by VOT Committee

L1APG [4] considers tracking as a sparse approximation

problem in a particle filter framework. To find the target in a

new frame, each target candidate is sparsely represented in

the space spanned by target templates and trivial templates.

The candidate with the smallest projection error after solv-

ing an ℓ1 regularized least squares problem. The Bayesian

state inference framework is used to propagate sample dis-

tributions over time.

A.62. MEEM

Implementation from authors website. Submitted by VOT

Committee

MEEM [82] uses an online SVM with a redetection

based on the entropy of the score function. The tracker cre-

ates an ensamble of experts by storing historical snapshots

while tracking. When needed the tracker can be restored

by the best of these experts, selected using an entropy min-

imization criterion.
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[65] L. Čehovin, A. Leonardis, and M. Kristan. Visual object

tracking performance measures revisited. arXiv:1502.05803

[cs.CV], 2013.

[66] T. Vojir and J. Matas. Robustifying the flock of trackers.

In Computer Vision Winter Workshop, pages 91–97. IEEE,

2011.

[67] T. Vojir and J. Matas. The enhanced flock of trackers. In

R. Cipolla, S. Battiato, and G. M. Farinella, editors, Regis-

tration and Recognition in Images and Videos, volume 532

of Studies in Computational Intelligence, pages 113–136.

Springer Berlin Heidelberg, Springer Berlin Heidelberg, Jan-

uary 2014.

[68] T. Vojir, J. Matas, and J. Noskova. Online adaptive

hidden markov model for multi-tracker fusion. CoRR,

abs/1504.06103, 2015.

[69] T. Vojir, J. Noskova, and J. Matas. Robust scale-adaptive

mean-shift for tracking. Image Analysis, pages 652–663,

2013.

[70] T. Vojir, J. Noskova, and J. Matas. Robust scale-adaptive

mean-shift for tracking. Pattern Recognition Letters,

49(0):250 – 258, 2014.

[71] N. Wang, S. Li, A. Gupta, and D. Y. Yeung. Transferring rich

feature hierarchies for robust visual tracking, 2015.

[72] N. Wang, J. Shi, D.-Y. Yeung, , and J. Jia. Understanding and

diagnosing visual tracking systems. In International Confer-

ence on Computer Vision, 2015.

[73] N. Wang and D.-Y. Yeung. Ensemble-based tracking: Aggre-

gating crowdsourced structured time series data. In ICML,

pages 1107–1115, 2015.

[74] X. Wang, M. Valstar, B. Martinez, H. Khan, and T. Pridmore.

Tracking by regression with incrementally learned cascades.

In International Conference on Computer Vision, 2015.

[75] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 37(9):1834–1848, 2014.

[76] Y. Wu, J. Lim, and M. H. Yang. Online object tracking: A

benchmark. In Computer Vision and Pattern Recognition,

2013.

[77] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.

IEEE-PAMI, 2015.

[78] Xuehan-Xiong and F. D. la Torre. Supervised descent

method and its application to face alignment. In Computer

Vision and Pattern Recognition, 2013.

[79] A. Yilmaz and M. Shah. Object tracking: A survey. Journal

ACM Computing Surveys, 38(4), 2006.

[80] D. P. Young and J. M. Ferryman. Pets metrics: On-line per-

formance evaluation service. In ICCCN ’05 Proceedings of

the 14th International Conference on Computer Communi-

cations and Networks, pages 317–324, 2005.

[81] J. Zhang, S. Ma, and S. Sclaroff. Meem: Robust tracking via

multiple experts using entropy minimization. In Computer

Vision and Pattern Recognition, 2014.

[82] J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking

via multiple experts using entropy minimization. In ECCV,

2014.

[83] K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang. Fast

visual tracking via dense spatio-temporal context learning. In

European Conference on Computer Vision, pages 127–141,

2014.

[84] K. Zhang, L. Zhang, and M. H. Yang. Real-time compressive

tracking. In European Conference on Computer Vision, Lec-

ture Notes in Computer Science, pages 864–877. Springer,

2012.

[85] G. Zhu, F. Porikli, and H. Li. Tracking randomly moving

objects on edge box proposals. In CoRR, 2015.

[86] C. L. Zitnick and P. Dollar. Edge boxes: Locating object

proposals from edges. In European Conference on Computer

Vision, pages 391–405, 2014.

23


