Skip to main content

Integrating Supervised Laplacian Objective with CNN for Object Recognition

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing - PCM 2016 (PCM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9917))

Included in the following conference series:

Abstract

Methods to improve object recognition accuracies of convolutional neural networks (CNNs) mainly focus on increasing model complexity and training samples, introducing training strategies, etc. Alternatively, in this paper, inspired by “manifolds untangling” mechanism from human visual cortex, we propose a novel and general method to improve object recognition accuracies of CNNs by embedding the proposed supervised Laplacian objective (SLO) into a high layer of the models during the training process. The SLO explicitly enforces the learned feature maps with a better within-manifold compactness and between-manifold margin, and it can be universally applied to different CNN models. Experiments with shallow and deep models on four benchmark datasets including CIFAR-10, CIFAR-100, SVHN and MNIST demonstrate that CNN models trained with the SLO achieve remarkable performance improvements compared to the corresponding baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The model is available from Caffe package [9].

  2. 2.

    The MNIST dataset can’t be used to test the model because images in the dataset are \(28 \times 28\) in size, and the model only takes \(32 \times 32\) images as its input.

  3. 3.

    The kSLO produces quite similar visualization results to SLO.

  4. 4.

    For NIN model, the conclusion is the same as that of Quick-CNN.

References

  1. Chen, B., Zhao, S., Zhu, P., Principe, J.C.: Quantized kernel recursive least squares algorithm. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1484–1491 (2013)

    Article  Google Scholar 

  2. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  3. DiCarlo, J., Zoccolan, D., Rust, N.: How does the brain solve visual object recognition? Neuron (2012)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  5. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: ICML (2013)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_23

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. CoRR (2015)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM MM (2014)

    Google Scholar 

  10. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis (2009)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. Lee, C., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: NIPS (2014)

    Google Scholar 

  14. Lin, M., Chen, Q., Yan, S.: Network in network. In: ICLR (2014)

    Google Scholar 

  15. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. JMLR 9, 2579–2605 (2008)

    MATH  Google Scholar 

  16. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.: Reading digits in natural images with unsupervised feature learning. In: NIPS (2011)

    Google Scholar 

  17. Springenberg, J., Riedmiller, M.: Improving deep neural networks with probabilistic maxout units. In: ICLR (2014)

    Google Scholar 

  18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. JMLR 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  20. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  21. Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural networks using dropconnect. In: ICML (2013)

    Google Scholar 

  22. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual tracking. In: NIPS (2013)

    Google Scholar 

  23. Zeiler, M., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. In: ICLR (2013)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program of China (973 Program) under Grant No. 2015CB351705, and the National Natural Science Foundation of China (NSFC) under Grant No. 61332018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Shi, W., Gong, Y., Wang, J., Zheng, N. (2016). Integrating Supervised Laplacian Objective with CNN for Object Recognition. In: Chen, E., Gong, Y., Tie, Y. (eds) Advances in Multimedia Information Processing - PCM 2016. PCM 2016. Lecture Notes in Computer Science(), vol 9917. Springer, Cham. https://doi.org/10.1007/978-3-319-48896-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48896-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48895-0

  • Online ISBN: 978-3-319-48896-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics