

Edinburgh Research Explorer

Mechanised Verification Patterns for Dafny

Citation for published version:
Grov, G, Lin, Y & Tumas, V 2016, Mechanised Verification Patterns for Dafny. in FM 2016: Formal Methods
- 21st International Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings. Lecture Notes in
Computer Science , vol. 9995, Springer, Cham, pp. 326-343, 21st International Symposium on Formal
Methods, Limassol, Cyprus, 7/11/16. https://doi.org/10.1007/978-3-319-48989-6_20

Digital Object Identifier (DOI):
10.1007/978-3-319-48989-6_20

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
FM 2016: Formal Methods - 21st International Symposium, Limassol, Cyprus, November 9-11, 2016,
Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-319-48989-6_20
https://doi.org/10.1007/978-3-319-48989-6_20
https://www.research.ed.ac.uk/en/publications/23ad6b3f-4c30-4c34-9b55-b013fbbe4ae4

Mechanised Verification Patterns for Dafny?

Gudmund Grov, Yuhui Lin and Vytautas Tumas

Heriot-Watt University, Edinburgh, UK, {G.Grov,Y.Lin,vt50}@hw.ac.uk

Abstract. In Dafny, the program text is used to both specify and imple-
ment programs in the same language [24]. It then uses a fully automated
theorem prover to verify that the implementation satisfies the specifica-
tion. However, the prover often needs further guidance from the user, and
another role of the language is to provide such necessary hints and guid-
ance. In this paper, we present a set of verification patterns to support
this process. In previous work, we have developed a tactic language for
Dafny, where users can encode their verification patterns and re-apply
them for several proof tasks [16]. We extend this language with new fea-
tures, implement our patterns in this tactic language and show, through
experiments, generality of the patterns, and applicability of the tactic
language.

1 Introduction

Dafny [24] is a program verifier and programming language where the speci-
fication of desired properties is intertwined with their implementation in the
program text. It uses an automated theorem prover to prove that the specifi-
cation is satisfied by the program. A specification serves two purposes: (1) it
specifies the properties to be proven and acts as a documentation of the pro-
gram, which is desirable to include in the program text; (2) it is used to guide
the prover if a property cannot be verified without help. This is a necessary evil,
which is not desirable and may obfuscate the readability of the program text.
We will call this type of specification elements for proofs.

The process of creating a proof typically involves changing, and in most cases
adding, auxiliary annotations such as assertions and loop (in)variants, as well as
manipulation of a ghost state: a state that can be updated and used as normal,
but is only used for verification purposes and will not be compiled. In addition
to increasing the size of the program text, the process of generating proofs can
be very time consuming.

In this paper, we investigate and document a set of verification patterns that
captures common proofs of Dafny programs (§3). We have previously developed
Tacny, a tactic language for Dafny, which enable users to encode and apply
verification patterns [16]. In §4 we extend this with new features, before we
mechanise the patterns in Tacny and evaluate them on a set of examples (§5).
We conclude and discuss relevant and future work in §6.

? This work has been supported by EPSRC grants EP/M018407/1 and
EP/N014758/1. Special thanks to Rustan Leino and his colleagues at MSR.

2 Background on Dafny & Tacny

Dafny combines imperative, object-oriented and functional programming lan-
guage paradigms. It support features such as inductive [25], co-inductive [26]
and higher-order [23] types. It uses familiar notations for assignment (x := e),
declarations (var x := e;), conditionals (if and if−else) and loops (e.g. while).
It also supports pattern matching (match) and a ‘such as’ operator, where x : |
p means that x is assigned a value such that p holds.

Dafny has been designed for verification. Properties are specified by contracts
for methods/functions in terms of preconditions (requires) and postconditions
(ensures). To verify a program, Dafny translates it into an intermediate verifi-
cation language called Boogie [4]. From Boogie a set of VCs is generated and
sent to the Z3 SMT solver [28]. If it fails, then the failure is translated back to
the Dafny code, via Boogie.

In the case of failure, a user must provide guidance in the program text in
terms of proof details. The simplest form is to add assertions (assert) of true
properties in the program text. In the case of loops, we might also provide loop
invariants (invariant). Loops and recursion have to be shown to terminate and
for advanced cases a user needs to provide a variant (decreases) to help Dafny
prove this.

For more advanced verification tasks, one can make use of the ghost state.
A ghost variable (ghost var) or ghost method can be introduced and used by
the verifier. A lemma (lemma) is a type of ghost method that can be used to
express richer properties, where assumptions are preconditions, and the conclu-
sion becomes the postcondition. The proof is a method body that satisfies the
postcondition, given the precondition. We will see examples of this below, but
note that standard programming language elements are used in the body of the
lemma, which illustrates the close correspondence between proofs and programs.

Tacny is a conservative extension of Dafny with features to implement verifica-
tion patterns as tactics [16]. This tactic language is a meta-language for Dafny,
where evaluation of a tactic works at the Dafny level: it takes a Dafny program
with tactics and tactic applications, evaluates the applications and produces a
new valid Dafny program, where tactic calls are replaced by Dafny constructs
which tactics have generated.

A tactic is a special Dafny ghost method, recognised by the tactic keyword. It
contains many features to talk about a program, and features to generate proofs
in terms of Dafny by transforming the program. A crucial property is that neither
the program, nor the actual (non-proof) specification, can be changed – which
we call contract-preserving transformations [16].

The application of a tactic will transform a tactic call into the Dafny code
generated. To illustrate, the following tactic

t a c t i c n a t a s s e r t ()
{ t a c t i c var n : | n i n v a r i a b l e s () ;

a s s e r t n ≥ 0 ; }

2

will first bind n to a local variable where it was called. This binding is in the
tactic world. If there are more than one variables then a search branch will be
created for each variable (and it will fail if there are none). The result of applying
this tactic is that an assertion, which asserts that the variable is positive, replaces
the tactic call. A tactic will either be evaluated until the tactic reach the end of
the code, or a proof is found. The top-level tactic application (a tactic that is not
applied by another tactic) will only succeed if a proof is found on termination.
A formal evaluation semantics is given in [16]1.

A design goal for Tacny is to make Tacny intuitive for Dafny users. It there-
fore makes use of many Dafny constructs, and follows standard Dafny con-
ventions otherwise. As far as possible, the language supports declarative (or
schematic) tactics, i.e. a schematic representation of a proof patterns is given
and Tacny is used to fill in the details. A more detailed account of the Tacny fea-
tures is given in §4, where we describe the new features developed here. Next, we
outline some more informal verification patterns that are independent of Tacny.

3 Verification patterns for Dafny

Although Dafny relies on an automatic prover, Dafny proofs should not be seen as
automatic. Instead they are called auto-active as the proof guidance is abstracted
from the underlying prover to the program text. This has had positive usability
effects on a syntactic level, as one do not need to learn an additional language
to conduct proofs; and conceptually, as one can think of proofs in terms of
programming, rather than the prover. The verification patterns introduced in
this section capture proofs at the Dafny level. They are a result of analysing
programs in the Dafny repository [1], analysing programs we have developed,
and discussion with the developers of IronFleet [19], a large Dafny development
consisting of 40K lines of proofs [18]. The source code and additional details of
the examples can be found on a dedicated web-page [2].

3.1 Patterns as macros
A very simple pattern is to capture repetitive code, possibly with slight varia-
tions. This can be seen as a macro, as found in some programming languages
(e.g. C). In our sense, we see a macro as a named entity of some repetitive code,
as illustrated by the following lemmas:

lemma minu s d i s t () ensures ∀ m, n • minus (add (m, n) , n) = m;
{ a s s e r t ∀ m, n • add (Suc (m) , n) = Suc (add (m, n)) ;

a s s e r t ∀ m, n • add (m, n) = add (n , m) ; }

lemma g e q d i s t () ensures ∀ m, n • geq (add (Suc (m) , n) , n) = True ;
{ a s s e r t ∀ m, n • add (Suc (m) , n) = Suc (add (m, n)) ;

a s s e r t ∀ m, n • add (m, n) = add (n , m) ; }

Here the proofs (i.e. body) of these lemmas are identical, and can thus be turned
into a macro (see §5). Possible reasons for using macros is to hide details in

1 The requirement that a tactic has to find a proof is a result of user feedback, and is
not required in the semantics described in [16].

3

code, or to reuse code across verifications tasks. Note that the macro pattern is
common in the IronFleet proofs [19].

3.2 Proof by cases and induction
Two common and general proof patterns are proof by cases and proof by in-
duction. We discuss these together as their representation are very similar in
Dafny.

In its simplest form, a proof by cases step is achieved by an if statement,
where the condition is the case to split on. For a proof by natural induction, the
lemma being proven typically has a natural number n as an argument, and the
condition is used to separate base from step cases (often n =0). In the step case,
a recursive call is made to the lemma with n decremented.This will reveal the
induction hypothesis (i.e. the postcondition of the lemma for n−1).

To illustrate, consider a mutually recursive definition of even and odd. The
following lemma proves that all natural numbers are either even or odd:

lemma e v en o r odd (n : nat)
ensures even (n) ∨ odd (n)
{ i f n = 0 ∨ n = 1{ }

e l s e { e v en o r odd (n−1); }}

Note that Dafny has a hard-coded tactic for this type of induction proofs [25].
It normally proves these simple cases where the step case only involves a call
to itself. However, it did not work in this case, possibly due to the mutually
recursive nature of even and odd. In cases where the step case needs more work,
Dafny’s induction tactic will not work (automatically), and more interaction
is required (see e.g. [18] for examples). The pattern could also be written in
different ways, such as:

i f n = 0 { re tu rn ; } . . . i f n 6= 0 { . . . }

The dots (. . .) represents the step case. A proof by cases is similar, but without
the recursive call. Multiple cases can be achieved by multiple if statements.

Another type of induction is when each case is a constructor in an inductively
defined data type. In that case, a match statement is used, which will also
perform a suitable binding of the variables in the constructor. For constructors
with recursive arguments, a recursive call to the same lemma is made. This
is a proof technique called structural induction [7]. To illustrate, consider the
following inductive data type:

datatype aexp = N(n : i n t) | V(x : vname) | Plus (0 : aexp , 1 : aexp)

Here, the Plus constructor has two recursive arguments (i.e. they are of the same
aexp type). Omitting irrelevant parts, a proof of a lemma by structural induction
will then look as follows in Dafny:

lemma AsimpConst (a : aexp , s : s t a t e) . . .
{ match a

case N(n) ⇒
case V(x) ⇒
case Plus (a0 , a1) ⇒ AsimpConst (a0 , s) ; AsimpConst (a1 , s) ; }

4

This is a very common proof technique when working with inductive data types.
In fact, most interactive theorem provers will automatically generate an induc-
tion principle when defining inductive data types such as aexp. As shown in [16],
a similar pattern can be applied for co-induction [26].

3.3 Proof by contradiction

Another common proof pattern (for classical logics) is proof by contradiction. In
order to prove a property P , this amounts to assuming ¬P and derive false from
it. Again, this technique is frequently used in [18]. To implement it in Dafny,
the negated property ¬P becomes the condition of an if statement, with false
asserted at the of the body of the if statement. The following example illustrates
this pattern:

lemma s e t i n t e r em p t y c o n t r (A: set<i n t >, B: set<i n t >, x : i n t)
r e qu i r e s x i n A ∧ A ∗ B = {}
ensures ¬(x i n B)
{ i f x i n B {

a s s e r t x i n A ∗ B;
s e t e q s im p l e (A∗B,{} , x) ;
a s s e r t x i n {} ;
a s s e r t f a l s e ; }}

Here, set eq simple states that if x is in A∗B (the intersection of A and B) then
x is in {}. This (rather trivial) lemma application was required for the proof.

3.4 Loop invariants

The discovery of sufficiently strong loop invariants is one of the most impor-
tant parts of verifying imperative code. A substantial amount of work has been
conducted to automate such discovery. Techniques include abstract interpreta-
tion [11], constraint-based techniques [10,17], inductive logic programming [13],
symbol elimination [20] and predicate abstraction [29]. Dafny uses abstract in-
terpretation (at the Boogie-level) [4]. Still, there are many cases where the user
has to provide loop invariants manually in order to verify code. Below we outline
three patterns for “manual” loop invariant discovery.

The Gries & van de Snepscheut approach In their systematic approaches
to program development, Gries [15] and van de Snepscheut [32] developed sev-
eral heuristics for verified program construction. Here, we adapt their heuristics
for loop invariant discovery (assuming the actual code has been provided), re-
sulting in the following patterns where an invariant is created by: (i) deleting a
conjunction in a postcondition; (ii) replacing a constant of a postcondition with
a local variable; and (iii) enlarging the range of a variable of a loop guard. The
following example illustrates all of these loop patterns:

method FindMax (a : array<i n t >) r e tu rn s (i : i n t)
r e qu i r e s a 6= nu l l ∧ a . Length > 0
ensures (0 ≤ i < a . Length)
ensures (∀ k • 0 ≤ k < a . Length =⇒ a [i] ≥ a [k])

5

{ var i dx , j , i := 0 , 0 , 0 ;
whi le (i d x < a . Length)

i n v a r i a n t i d x ≤ a . Length // (i i i)
i n v a r i a n t 0 ≤ i < a . Length // (i)
i n v a r i a n t ∀ k • 0 ≤ k < i d x =⇒ a [i] ≥ a [k] // (i i)

{ i f (a [i d x] > a [i]) { i := i d x ; }
i d x := i d x + 1 ; }}

Use of guards Another pattern seen (albeit not as commonly) combines (negated)
loop guards and guards of conditionals in the invariant. This is illustrated in the
following example:

method Main () {
var a , b , c , i := 0 ,−1 ,0 ,100;
whi le a 6= b
i n v a r i a n t ¬(c < i) =⇒ ¬(a 6= b)
decreases i−c
{ b , c := a , c + 1 ;

i f (c < i) {
a := a + 1;}}}

Use of recursive functions One may argue that it is easier to reason in
the functional fragment of Dafny compared with imperative code. A pattern
exploring this generates a recursive function that is defined in the same way as
the loop, and proves that this function satisfies the desired postcondition (of the
method). This is typically proven by induction. A loop invariant is required to
relate the function to the loop body. To illustrate, the following code has a loop
invariant that relates the code to a function called find max aux:

method f i n d max i d x (a : seq<i n t >) r e tu rn s (x : i n t)
r e qu i r e s a 6= []
ensures 0 ≤ x ≤ | a | − 1
ensures ∀ i • 0 ≤ i ≤ | a | − 1 =⇒ a [i] ≤ a [x]
{ var x , y ,N,A := 0 , | a | −1 ,0 , | a | −1;

whi le (x 6= y) . . .
i n v a r i a n t f i nd max aux (a , x , y) = f i nd max aux (a ,N,A)
{ i f (a [x] ≤ a [y]) { x := x + 1 ;}

e l s e {y := y − 1 ;}}
p r o o f f i n d max au x (a , N, A) ; }

The function is defined as follows:

f unct ion f i nd max aux (a : seq<i n t >, x : i n t , y : i n t) : i n t . . . {
i f | a [x . . y +1] | = 1 then x
e l s e i f (a [x] ≤ a [y]) then f i nd max aux (a , x + 1 , y)
e l s e f i nd max aux (a , x , y − 1) }

As can be seen, the code of find max aux captures the body of the while loop2.
The proof find max aux lemma relates the function to the postcondition:

2 The generation of this function happens to be the inverse of the well-known tail-
recursion to loop compiler optimisation [8].

6

lemma p r o o f f i n d max au x (a : seq<i n t >,x : i n t , y : i n t) . . .
ensures ∀ i • x ≤ i ≤ y =⇒ a [i] ≤ a [f i nd max aux (a , x , y)]{}

4 Tactics for Dafny (Tacny)

To mechanise the verification patterns as Dafny tactics (§5), new features of the
Tacny language [16] are required. Here we describe these features, and outline
some existing important language properties used in the tactics of §5. It will be
clear which parts are from [16] – the rest, which is summarised in Appendix A,
should be considered as a contribution.

A design goal of Tacny is to make the language as familiar as possible to users
by exploiting known Dafny constructs and conventions. As far as possible, we try
to support declarative features in the tactics, where schematic representations
of proof patterns are given as opposed to a set of procedures. Consequently, a
tactic should look like Dafny code, which we believe will be more familiar and
intuitive for users. This has been inspired by declarative tactic languages for
interactive theorem provers (e.g. [3]).

A tactic is a ghost method, identified by the tactic keyword, for example:

t a c t i c e x t a c (v : Element , t : Term , tac : Tac t i c)
r e qu i r e s P
ensures Q

{ . . . }

Types As this is a meta-level language, constructs to talk about a program are
required. To achieve this, two new types were introduced in [16]: Element cap-
tures a named element of the Dafny program text, such as a variable, method
or lemma; while Term refers to the term representation of a formula (which can
then be manipulated). Here, we introduce a third type Tactic, which makes a
tactic a first class value. A (fully instantiated) tactic application can be passed
to another tactic and used therein. A limitation is that it has to be fully instan-
tiated, meaning that proper higher-order programming, where tactics can take
arguments, is not (yet) supported. We use the Tactic type extensively in §5.

Statements 3 When used within Tacny, Dafny constructs have two different
uses: in a declarative tactic they are part of an outline of code to be generated
by Tacny, and we call this the object-level ; they can also be used to control
evaluation of tactics, and in this case they are at the tactic-level. It is a design
decision if these should be separated syntactically, i.e. separate constructs for
each level (meaning additional syntax) vs. the same constructs for both levels
(meaning different semantics for the same syntax). We are using a combinations
of these approaches.

Both if and while statements are used across the object-level and the tactic-
level: they belong to the tactic-level if Tacny can evaluate the condition (to either

3 All the statements, including the atomic tactics (modular some name changes) were
introduced in [16].

7

true or false); and to the object-level if not4. The justification for this is that
such constructs are familiar for users. Variable declarations, on the other hand,
have been syntactically separated as the distinction is less clear. This is achieved
by preceding a tactic-level declaration by tactic5:

t a c t i c var x := e ;

If tactic is omitted, then variable x will be in the object-level and thus part of
the code to be generated. One can shorten tactic var and just write tvar.

In addition to assignment (x := e), the ‘such as’ operator (x : | p) is sup-
ported, albeit in a restricted form. Here, we need to be able to enumerate all
possible values that x can have, and Tacny will generate a branch in its search
space for each possibility. The Tacny statement, s || t, will either apply state-
ment s, or statement t. Tactic calls are supported, which become normal method
calls. To develop new tactics, a set of hard-coded and low-level atomic tactics
are provided by the Tacny system, while expressions are extended with a set of
lookup functions about the program. These are discussed next.

Atomic tactics The simplest atomic tactic involves (generating code for) a lemma
or ghost method application. Following our declarative approach, this is repre-
sented exactly like a method call. For example, assume tvar m,a := lem,v, where
lem is a lemma and v is a variable. The statement m(a+1); within a tactic will
result in code containing the method call lem(v+1)6. Assertions, invariants and
variants are handled using existing Dafny constructs, as can be seen below:

a s s e r t a = 1 ; i n v a r i a n t a = 1 ; decreases a ;

Tacny will instantiate the tactic-level constructs (a) to the object-level counter-
part (v). Note that if invariant or decreases is used in the body of a loop (or
method for the latter), then they will be added to the loop invariant (or method
declaration for variants) and not at the point of the tactic call as normally hap-
pens. They can also be called where the invariant/contract is stated.

The explore (m : Element,args : Seq<Element>) tactic generates all possible
application of ghost method/lemma m with arguments taken from args. The
proof of AsimpConst (§3.2) illustrated the use of the match statement to do a
case analysis of all constructors for a variable v of an inductively defined type.
The tactic tactic match v { . . .} will generate such a match. Here, v is of type
Element, and its body (. . .) contains tactics to be applied for each constructor.
tmatch is a shorthand notation for tactic match7.

Lookup functions and expression-level atomic tactics One often need properties
of the program in tactics, and Tacny keeps track of a context that contains

4 Meaning, code such as while true {. . .} cannot be generated.
5 This naming convention is used for ghost variables in Dafny, which in certain cases

needs to be declared as ghost var.
6 If a sequence is given as argument for a method that does not expect a sequence,

then Tacny will automatically unroll the sequence into multiple arguments.
7 In [16], explore was called perm and tactic match called cases.

8

such information. Several “look-up” functions from the context are provided.
lemmas(), methods() and functions () return the name of available lemmas, meth-
ods and functions as sequences of Elements (Seq<Element>). caller () returns
the name (type Element) of the method/lemma/function in which the tactic
call was made8. The functions below works on the original caller. They also
accept an optional argument (omitted below), allowing users to look up these
properties on other methods and lemmas. preconditions () and postconditions ()
return sequences of Terms holding all the preconditions or postconditions; args ()
and variables () return the local arguments and variables of the element (type
Seq<Element>); if guards () and loop guards() return sequences of Terms, hold-
ing the guard of all conditionals and loops, respectively, while loop guard() re-
turns the loop guard of the loop where the tactic call is made (and fails other-
wise).

The predicates is inductive (v : Element) and is nat (v : Element) check if the
given elements are variables of an inductively defined type or a natural number,
respectively; is inductive can also be applied to a constructor to check if any
of its arguments are recursive. eq type(x : Expr,y : Expr) checks if two expressions
are of the same type. When applied within the body of a match or tmatch,
get constructor () will return a pair of the constructor name (Element) and its
arguments (Seq<Element>).

consts(t : Term) returns all constants of t (as a sequence of Terms);
split (t : Term,sep : Term) splits all occurrences of sep in t into (a sequence of)
separate terms9; replace (x : Element,y : Element,z : seq<Element>) replaces all
occurrences of x with y in z; subst(t : Term,m : map<T,U>) applies the sub-
stitutions of map m in t. The map is overloaded: it allows T and U to be of types
Term, Element or string , where the latter two are treated as named constants.
Finally, explore can also be applied as an expression, and returns a term with a
function application.

Tactic calls within expressions A limitation of [16] was that tactics could only be
used within statements. Here, we extend the framework with tactic applications
within expressions. These have the syntax10:

f unct ion t a c t i c e x p r t a c (. . .) {. . .}

Note that a function tactic will not necessarily generate any code; it will return
a Term which may generate code depending on where the call is made (and
possible generate multiple search branches). E.g. it will not generate code on the
r.h.s of a tvar, but it will when called in a Tacny tactic such as:

a s s e r t e x p r t a c (. . .) ;

8 If this is a nested tactic call, then it refers to the name of the method/lemma/function
that called the parent tactic.

9 For example, split (A ∧B, ∧) will return [A,B].
10 This syntax is inspired by the syntax for function method used in Dafny.

9

Tactic-level contracts and annotations A new feature added is to support anno-
tations/contracts at the tactic-level. These are interpreted dynamically, and are
used to cut-off invalid branches as early as possible: e.g. if a tactic-level asser-
tion or precondition fail (returns false), then the tactic will fail. We can write
an assertion P as

t a c t i c a s s e r t P ;

or just tassert , while ex tac illustrates the tactic contracts. This is used in §5.

Runtime improvements We have made improvements in the runtime and mem-
ory usage of tactics as a result of improved static checking, lazy evaluation and
improved support for different search strategies. On our test data [31], an av-
erage speed-up of 44% and memory usage reduction of 23% was achieved (and
these increased with the size and complexity of tactics). The details are omitted
for space reasons – see Tumas’ honours thesis for details [31].

5 Verification patterns implemented as Dafny tactics

With the new extensions to the Tacny language, we can now implement the
verification patterns from §3 as Dafny tactics, and apply them in the Tacny
tool. The results from this application is summarised at the end of this section,
while all the code is available from [2]11.

5.1 Tactics as macro expansions

In §3, we saw that a common pattern is to extract repeated code, possibly with
slight variations, as a macro. It does not have to contain an underlying high-
level pattern, so in many ways this is just syntactical. Instantiating macros is
normally called macro expansion, and we therefore see tactic applications as
macro expansions.

The proof of lemmas minus dist and geq dist are identical (see §3), so the
macro becomes the code within their proofs:

t a c t i c d i s t mac r o ()
{ a s s e r t ∀ m, n • add (Suc (m) , n) = Suc (add (m, n)) ;

a s s e r t ∀ m, n • add (m, n) = add (n , m) ; }

The lemmas using this tactic will then only contain a tactic call:

lemma minu s d i s t () ensures ∀ m, n • minus (add (m, n) , n) = m;
{ d i s t mac r o () ; }
lemma g e q d i s t () ensures ∀ m, n • geq (add (Suc (m) , n) , n) = True ;
{ d i s t mac r o () ; }

When there are slight variations one can either provide the parts that varies as
arguments, or introduce search into the tactic.

In Dafny, commonalities can often be captured as as a lemma or a method.
However, due to modularity, they require that all assumptions are explicitly

11 The supported tool syntax has some minor limitations and thus deviates slightly.

10

stated as preconditions, and that all the relevant outcomes are explicitly stated as
postconditions. If the goal is to capture some repetitive code as a macro, then, in
most cases, stating these assumptions and outcomes can be very tedious, making
lemmas unsuitable for this task. As tactics replaces a call with the generated
code, such explicit statements are not required, thus making it a more suitable
representation.

5.2 Proof by cases and induction
As in §3, we treat induction and case-split together as the former needs a case-
split first in Dafny. The following tactic is a generic tactic for natural induction:

t a c t i c n a t i n d (cond : Tact i c , base : Tact i c , s t e p : Tac t i c)
{ i f cond () { base () ; }

e l s e { t a c t i c var m := c a l l e r () ;
tva r a : | a i n a r g s ()
t a c t i c a s s e r t i s n a t (a) ;
m(a−1);
s t ep () ; }}

The tactic takes three tactics as arguments: the first (cond) is used to generate
the condition (e.g. n =0 when n is the inductive argument); the second (base)
is used to handle the base case; and the third (step) is used for the step case.
The first four lines of the step case will generate a recursive call to reveal the
induction hypothesis. This is the only difference with proof by cases, where these
four lines are omitted.

For the even or odd lemma, the condition is defined using a function tactic:

f unct ion t a c t i c na t i n d c ond ()
{ tva r a : | a i n a r g s () ∧ i s n a t (a) ;

a=0 ∨ a=1 }

The lemma can then be proved by the call: nat ind(nat ind cond (), id (), id ()) .
For structural induction, a match statement is generated using our tactic match

tactic, with recursive calls for the recursive constructors:

t a c t i c s t r u c t i n d (v : Element , t : Tac t i c)
r e qu i r e s i s i n d u c t i v e (v) ;
{ t a c t i c match v {

tva r c , c a r g s := g e t c o n s t r u c t o r () ;
i f i s i n d u c t i v e (c) {

tva r m, a rg s := c a l l e r () , a r g s () ;
tva r i := 0 ;
whi le i < | c a r g s |
{ i f eq t ype (v , c a r g s [i])
{ m(r e p l a c e (v , c a r g s [i] , a r g s) }
i := i + 1 ; }

t () ; }}

The tactic takes as arguments: a variable v of an inductively defined type (en-
sured by the precondition); and a tactic t to be applied to each case. For the
recursive constructors, a recursive call to the caller is made for each (constructor)
argument of the same type of v, with v replaced by this argument.

11

5.3 Proof by contradiction

Proof by contradiction involves assuming the negation of the desired property
and deriving false. For Dafny, the property is often (one of) the postcondition(s).
The following contr tactic picks one postcondition, and shows, using an if con-
dition, that its negation will result in a contradiction. The method takes a tactic
as argument that is used to derive the contradiction:

t a c t i c con t r (t ac : Tac t i c)
{ t a c t i c var pos t : | pos t i n p o s t c o n d i t i o n s () ;

i f ¬pos t {
t ac () ;
a s s e r t f a l s e ; }}

For our set inter empty contr lemma, we can follow the macro expansion ap-
proach and give the code directly:

t a c t i c tbody ()
{ a s s e r t x i n A ∗ B;

s e t e q s im p l e (A∗B,{} , x) ;
a s s e r t x i n {} ; }

The lemma is verified by the following call: cntr(tbody()).

5.4 Loop patterns

The Gries & van de Snepscheut approach In §3.4, we described an ap-
proach that we called the ‘Gries & van de Snepscheut approach’. It contains
three patterns, and we implement each of them as a tactic:

t a c t i c d e l e t e c o n j p o s t ()
{ tva r pos t : | pos t i n p o s t c o n d i t i o n s () ;

tva r i n v : | i n v i n s p l i t (post ,∧) ;
i n v a r i a n t i n v ; }

t a c t i c c o n s t t o v a r ()
{ tva r pos t := p o s t c o n d i t i o n s () ;

tva r i n v0 : | i n v i n s p l i t (post ,∧) ;
tva r cons : | con s t i n c on s t s (post ’) ;
tva r v : | v i n v a r i a b l e s () ;
i n v a r i a n t s ub s t (inv0 , map [c := v]) ; }

t a c t i c s t r e n g t h e n gua r d ()
{ i n v a r i a n t s ub s t (l o op gua rd () ,map [”<” :=”≤” , ”>” :=”≥”]) ; }

A simple implementation of an overall pattern applies them one after another:

t a c t i c GvdS approach ()
{ d e l e t e c o n j p o s t () ; c o n s t t o v a r () ; s t r e n g t h e n gua r d () ; }

Note that this rules out multiple application of one pattern and would fail if
either of them fail. For space reasons we have omitted more generic and complex
versions. This tactic is able to discover the invariants for the FindMax lemma
and thus verify it.

12

Use of guards The second loop pattern is a combination of (possibly negated)
guards:

t a c t i c i n v g u a r d ()
{ tva r xx : | xx i n i f g u a r d () + l o op gua r d s () ;

tva r yy : | yy i n i f g u a r d () + l o op gua r d s () ;
tva r x : | x = xx ∨ x = ¬xx ;
tva r y : | y = yy ∨ y = ¬yy ;
i n v a r i a n t x =⇒ y ; }

The inv guard tactic projects all the guards from if and while statements. It
then creates an invariant, which is an implication where both the antecedent and
consequent is a guard or a negated guard. This tactic generates the invariant
and proves the Main method of §3.4:

Use of recursive functions Tacny only partly supports the ‘use of recursive
functions’ pattern of §3.4. The pattern requires: generation of a function (from
the loop body); generation of a lemma (to connect the function and postcondi-
tion); and a lemma call outside the loop body (i.e. on the loop exit). Currently,
lemma and function generation is not (yet) supported. This is however planned
future work (see §6). A limited version can be implemented if we assume the
existence of such function, lemma and lemma call. Tacny can then generate the
required loop invariant, which link the function with the loop body:

t a c t i c r e c f u n c (func : Element)
{ tva r a r g s := v a r i a b l e s () + a rg s () ;

tva r l h s := e x p l o r e (func , a r g s) ;
tva r r h s := e x p l o r e (func , a r g s) ;
i n v a r i a n t l h s = r h s ; }

A tactic could have generated the lemma call too, however this requires the loop
invariant to be generated within the loop, whilst the call has to be outside the
loop body. Generated such code multiple places from a tactic is not currently
supported and discussed further in §6.

5.5 Summary & results
Fig. 1 summarises the results from our experiments with the patterns as tactics.
Further details and code can be found on a dedicated web-page [2]. The table
on the l.h.s. shows the total number of pattern instances (Inst) and the number
of different tactics implemented (Tactics). In order to get an idea of time and
memory usage, the r.h.s. summarises the run-time (X-axis) and search space
size in terms of the number of nodes/steps (Y -axis) using logarithmic scales.
Many tactics were re-used across methods and programs, but in some cases
slightly different implementations were required (e.g. multiple different macro
expansions). In most cases, Tacny used less than 10 seconds to run on a standard
laptop (Intel i7 with 8GB RAM). On average, Boogie accounted for around 95%
of the execution time, highlighting the importance of improving the integration
with Boogie and Dafny. This is the reasons for the two outliers in Fig. 1 (right),
which has a considerable larger search space and runtime compared with the
other examples.

13

Pattern
Insts

Tactics

Cases
15
4

Macro
8
5

Cntr
3
1

GvdS
6
3

Guard
1
1

Recur
4
2

PROGAM CASES CNTR&
MACRO

MACRO GVD
S

REC
UR

GUAR
D

Evenodd 1.9 14

NK-chap3 42.4 139

Substitution 22.1 39

IndVSCoind 7.7 21

Streams 11.9 7

InsertSortt 6.3 2

Heap 3.4 8

Leq 5.7 7

NumberRep 2.2 8

Rippling 4.6 24

Power-i 9.0 10

Findmax 9.0 152

Classics 4.2 23

Cubes 4.3 43

Intervals 1499.0 16307

PriorityQueue 5.9 61

SumMax 5.3 25

Vt2011_ch1 43.6 385

Pow

FindZero 2.9 11

Lcq 322.0 4555

if_cntrl 3.9 47

1
10

10
0

10
00

1.0 10.0 100.0 1000.0

Cases
Cntr&Macro
Macro
GvdS
Recur
Guard

Table 1

1.9 1.6 0.842105263157895
42.4 41.8 0.985849056603774
22.1 21.6 0.97737556561086
7.7 7.5 0.974025974025974
11.9 11.6 0.974789915966387
6.3 6.2 0.984126984126984
3.4 3.2 0.941176470588235
5.7 5.5 0.964912280701754
2.2 2.1 0.954545454545454
4.6 4.4 0.956521739130435
9 8.8 0.977777777777778

Time in seconds

Se

ar
ch

 S
pa

ce

�1

Fig. 1. Evaluation results

6 Related work, conclusion & future work

One contribution has been a set of (informal) verification patterns, extracted
from various sources including [1,18,15,32], which we believe could support novices
with their proofs. Surprisingly little work has been done in capturing and doc-
umenting verification patterns for mechanised systems12. Freitas and Whiteside
[14] captures a set of proof patterns for formal methods conjectures in an inter-
active theorem proving (ITP) setting. Bundy’s proof plans [5] is a more formal
representation of proof patterns for meta-level reasoning, and includes work for
algebraic equations in the PRESS system [30] and the rippling strategy for induc-
tive proofs [6]. There is also a book by Joshi on proof patterns for mathematics
[21], but this does not address mechanised proofs.

Although undocumented, patterns are still used within most theorem proving
based system, implemented as heuristics or tactics in some cases. For example,
Dafny has an “induction tactic” [25] to automate simple, yet common, cases
of inductive proofs, while ITP systems such as Isabelle and Coq, will have a
large collection of tactics to support users. These systems have also started
to move the language where tactics are implemented from its implementation
language (typically ML variants) to the proof language (e.g. LTac for Coq [12]
and EisBach for Isabelle [27]). Autexier and Dietrich [3] has taken this even
further and developed a declarative tactic language where tactics are written
schematically. Inspired by declarative tactics, our work is analogous to [3,27,12],
as users can encode proof patterns (tactics) in the program text of Dafny, as
opposed to its implementation language (C#), as was the case in e.g. [25].

Building on our initial tactic language [16], our main contributions have
been the encoding of the discovered proof patterns as Dafny tactics, together
with the necessary extensions to the language. We have shown that the patterns
and tactics are generic by applying them to multiple examples, with a reason-
able running time. In addition to being an exercise in encoding Dafny tactics,
we have shown feasibility and highlighted invaluable language features. Firstly,
the language gives a tactic developer freedom to focus on encoding the patterns
without concerns of soundness issues (which was the case in [25]), as the actual
verification is still conducted by Dafny13. The ability to pass tactics as argu-

12 Klein’s FM 2014 keynote also addressed this limitations and its importance.
13 Under the proviso of contract preservation as discussed in §2 and formalised in [16].

14

ments has enabled us to develop more generic tactics. However, in many cases
it would have been useful to improve tactic composition by supporting tactics
with arguments to be passed between tactics. Dafny’s type system now supports
higher-order features [23]. A next step is to improve the type system in Tacny,
and incorporating such features would be beneficial.

The code fragment x : | x in P is used extensive in our tactics and a shorthand
notation for this will be useful14. We are also considering automatically binding
variables that occurs frequently (as in [27]) to reduce the code that users have
to write, e.g. vars (or Tacny.vars) for variables (). Instead of explicitly introduce
branches through assigning a variable with : |, a similar notation could be used.
For example, in cases where sequences are not expected, split (P ∧Q,∧) could
automatically be bound to P in one branch and Q in another branch.

We would also like to include features to generate new lemmas and functions,
and investigate how to encode tactics that generate code at different places in
a method. This will help us to encode the full ‘recursive function’ loop pattern.
Dafny’s (experimental) refinement feature uses a ‘. . .’ notation to step over code
[22], which would serve as a starting point. Another limitation is that we need to
hard-code functions, such as replace in the struct ind tactic, which could have
been implemented in Dafny directly (user-defined Dafny functions are not sup-
ported at the tactic-level). This will require us to write an interpreter, or possible
utilise Dafny’s existing compiler into C# (our implementation language).

Following from user feedback, we have improved the language of [16], and
user evaluations will also play crucial role to ensure a user friendly language
in the future. We are now in the process of developing a tighter integration
with Dafny, Boogie and the Dafny IDE, where failure-handling and features for
debugging tactics are high on our agenda; we believe that these are crucial for
adaptation. This will hopefully help us addressing the Boogie bottleneck (see
§5.5).

Some of our tactics can be found in ITP systems: e.g. proof by contradiction,
natural induction and structural induction are common; while Dafny can already
automate simple inductive lemmas. The explore tactic is a simple form of term
synthesis at the Dafny level, as used in e.g. HipSpec for Haskell [9]. We plan
to implement tactics for richer explorations, supporting more than single state-
ments and conditionals. We have already discussed automated approaches for
loop invariant discovery in §3.4. A key distinction from these techniques is that
tactics follows a more human-oriented approach, where the developer’s (mental)
pattern is encoded as a tactic.

Other important challenges include the discovery of new patterns and their
corresponding tactic implementations, and to address scalability of the approach.
For example, a common pattern used in IronFleet is to first unfold universal
quantification, set up a proof by contradiction and then apply some lemmas af-
terwards [19]. We support some of these components, but would like to complete
the circle and see if we can develop a tactic for the complete pattern, which also
handles the size of this program.

14 For example, Event-B has an operator x :∈ P to express this.

15

References

1. Dafny Website. research.microsoft.com/dafny.
2. The Tacny project: FM 2016 information. https://sites.google.com/site/

tacnyproject/fm-2016. Accessed: 29.05.2016.
3. S. Autexier and D. Dietrich. A Tactic Language for Declarative Proofs. In ITP’10,

volume 6172 of LNCS, pages 99–114. Springer, 7 2010.
4. M. Barnett, B-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In FMCO, volume 4111
of LNCS, pages 364–387. Springer, 2006.

5. A. Bundy. A science of reasoning. In Computational Logic - Essays in Honor of
Alan Robinson, pages 178–198, 1991.

6. A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning, volume 56 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2005.

7. Rod M Burstall. Proving properties of programs by structural induction. The
Computer Journal, 12(1):41–48, 1969.

8. Rod M Burstall and John Darlington. A transformation system for developing
recursive programs. Journal of the ACM (JACM), 24(1):44–67, 1977.

9. K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Automating inductive
proofs using theory exploration. In CADE-24, pages 392–406. Springer, 2013.

10. M. A. Colón, S. Sankaranarayanan, and H. B. Sipma. Linear invariant generation
using non-linear constraint solving. In CAV, pages 420–432. Springer, 2003.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 84–96. ACM, 1978.

12. D. Delahaye. A Tactic Language for the System Coq. In LPAR-7, pages 85–95,
2000.

13. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, A. S. Tschantz,
and C. Xiao. The Daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1):35–45, 2007.

14. Leo Freitas and Iain Whiteside. Proof Patterns for Formal Methods. In Cliff
Jones, Pekka Pihlajasaari, and Jun Sun, editors, Formal Methods, pages 279–295.
Springer, 2014.

15. David Gries. The Science of Programming. Springer, 1st edition, 1987.
16. Gudmund Grov and Vytautas Tumas. Tactics for the Dafny Program Verifier. In

Marsha Chechik and Jean-François Raskin, editors, 22nd International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 36–
53. Springer, 2016.

17. A. Gupta and A. Rybalchenko. Invgen: An efficient invariant generator. In CAV,
volume 5643 of LNCS, pages 634–640. Springer, 2009.

18. Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno,
Michael L Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving practical
distributed systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 1–17. ACM, 2015.

19. Chris Hawblitzel, Jay Lorch, and Bryan Parno. Personal discussions (December,
2015).

20. K. Hoder, L. Kovács, and A. Voronkov. Invariant generation in Vampire. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 60–64.
Springer, 2011.

16

https://sites.google.com/site/tacnyproject/fm-2016
https://sites.google.com/site/tacnyproject/fm-2016

21. Mark Joshi. Proof Patterns. Springer, 2015.
22. Jason Koenig and K Rustan M Leino. Programming language features for refine-

ment. 2015.
23. K. R. M. Leino. Types in Dafny. http://research.microsoft.com/en-us/um/

people/leino/papers/krml243.html. Manuscript KRML 243. 27 February 2015.
24. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.

In LPAR, volume 6355 of LNCS, pages 348–370. Springer-Verlag, 2010.
25. K. R. M. Leino. Automating induction with an SMT solver. In VMCAI, volume

7148 of LNCS, pages 315–331. Springer, 2012.
26. K. R. M. Leino and M. Moskal. Co-induction simply. In FM 2014: Formal Methods,

pages 382–398. Springer, 2014.
27. D. Matichuk, M. Wenzel, and T. Murray. An Isabelle proof method language. In

Interactive Theorem Proving, pages 390–405. Springer, 2014.
28. L. Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963

of LNCS, pages 337–340. Springer, 2008.
29. S. Srivastava and S. Gulwani. Program verification using templates over predicate

abstraction. In ACM Sigplan Notices, volume 44, pages 223–234. ACM, 2009.
30. Leon Sterling, Alan Bundy, Lawrence Byrd, Richard O’Keefe, and Bernard Silver.

Solving symbolic equations with press. Computer Algebra, pages 109–116, 1982.
31. V. Tumas. Search space reduction for Tacny tactics. Honours thesis,

Heriot-Watt University, 2016. Available from https://sites.google.com/site/

tacnyproject/.
32. Jan L. A. van de Snepscheut. What Computing is All About. Springer, 1993.

A Summary of new Tacny features

This paper has extended and improved Tacny from the version presented in [16]
as follows:

– A new type Tactic that makes a tactic a first class value is introduced.
– function tactic and tactic applications within expressions are now supported.
– Contracts for tactics, and tactic-level assertions have been added.
– Several new atomic tactics and lookup functions are supported, includ-

ing: caller (); preconditions (); postconditions (); if guards (); loop guards();
is inductive (v : Element); is nat (v : Element); eq type(x : Expr,y : Expr);
get constructor (); consts(t : Term); split (t : Term,sep : Term);
replace (x : Element,y : Element,z : seq<Element>);
subst(t : Term,m : map<T,U>); and explore as an expression.

– Considerable runtime improvements have been achieved.
– The syntax is improved to align with Dafny conventions and declarative

tactics. For example: cases has become tactic match (or tmatch); tactic-
level variable declarations have changed from var to tactic var (or tvar);
Dafny-level variable declarations have changed from fresh var to var.

17

http://research.microsoft.com/en-us/um/people/leino/papers/krml243.html
http://research.microsoft.com/en-us/um/people/leino/papers/krml243.html
https://sites.google.com/site/tacnyproject/
https://sites.google.com/site/tacnyproject/

	Mechanised Verification Patterns for Dafny

