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Abstract. This research started with an algebra for reasoning about
rely/guarantee concurrency for a shared memory model. The approach taken led
to a more abstract algebra of atomic steps, in which atomic steps synchronise
(rather than interleave) when composed in parallel. The algebra of rely/guarantee
concurrency then becomes an interpretation of the more abstract algebra. Many
of the core properties needed for rely/guarantee reasoning can be shown to hold
in the abstract algebra where their proofs are simpler and hence allow a higher
degree of automation. Moreover, the realisation that the synchronisation mecha-
nisms of standard process algebras, such as CSP and CCS/SCCS, can be inter-
preted in our abstract algebra gives evidence of its unifying power. The algebra
has been encoded in Isabelle/HOL to provide a basis for tool support.

1 Introduction

Our goal is to provide better methods for deriving concurrent programs from abstract
specifications, and to provide tool support for compositional reasoning about their cor-
rectness. The rely/guarantee approach of Jones [Jon81lJon&3|] achieves compositional-
ity by abstracting the interference a process can tolerate from and inflict on its envi-
ronment. A rely condition r is a binary relation between states that represents an as-
sumption bounding the interference that a process p can tolerate from its environment.
If the environment fails to meet its obligation r, p may deviate from its specification
and show erratic behaviour (i.e. abort). A guarantee condition g is the corresponding
notion that bounds the interference inflicted on its environment by p. For a system of
parallel processes to function correctly, each process’s guarantee must imply the rely of
every other parallel process. These concepts can be captured uniformly (and hence the
manipulation of process terms kept simple) in a framework in which both the steps of a
process and the steps of its environment are explicitly represented.

The semantic model for rely/guarantee reasoning suggested by Aczel is one such
framework [Acz83ldROI1]]. In this model, parallel composition synchronises a program
step of one process with an environment step of another, to give a program step of their
composition. Aczel’s approach, of insisting each step of one process is synchronised
with a step of the other process, differs from the commonly used approach of inter-
leaving atomic steps of processes (except when they communicate), e.g. CCS [Mil89],
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CSP [Hoa835] and ACP [BK84/BKS83|. Aczel’s approach is closer to Milner’s Syn-
chronous CCS (SCCS) [Mil89, Section 9.3] and Meije (the calculus at the basis of
the synchronous programming language Esterelle) [BC83].

Our methodology is to develop a refinement calculus for concurrent programs that
lifts rely and guarantee conditions to commandsE] JHC15IHIJC14] (from parameters to
the notion of correctness). That allows algebraic reasoning about concurrent programs
in arely/guarantee style. To this end we have designed a Concurrent Refinement Algebra
(CRA) to support the rely/guarantee approach [Hay16||. In exploring the laws in CRA,
we discovered that atomic steps have specific algebraic properties that can be captured
in an abstract algebra of atomic steps which is embedded in CRA.

The abstract algebra of atomic steps delivers a range of useful properties for ma-
nipulating process terms. For example, based on the notion of atomic steps the parallel
composition of processes can be simplified as follows

(@;e) [l (b;d) = (allb);(c|d), (D

where a and b are atomic steps and ¢ and d are arbitrary processes. Note that the above
equivalence does not hold if @ and b are arbitrary processes. For an interleaving operator
||| the corresponding law is the more complicated:

(asc)ll(bsd)=a;(cl||b;d)Mb;(asc|ld) . 2)

In , parallel composition of two atomic steps a and b gives an atomic step a || b,
where the interpretation of a || b depends on the particular model. As a consequence,
the algebra can be applied to a range of models. For example, as well as allowing an
Aczel-trace model to support shared variable concurrency, communication in process
algebras such as CSP and CCS/SCCS can be interpreted in the abstract algebra and
hence it provides a foundation for a range of concurrency models.

Kleene Algebra with Tests (KAT) by Kozen [Koz97]] combines Kleene algebra (the
algebra of regular expressions [[Con71]) with a Boolean sub-algebra representing tests.
KAT supports sequential programs with conditionals and finite iterations (partial cor-
rectness). The Demonic Refinement Algebra (DRA) of von Wright [vW04] generalises
Kozen’s work to support possibly infinite iteration and with that the concept of aborting
behaviour. The approach used in this paper is based on that of von Wright in order to
faithfully capture Jones’ theory, in particular his rely condition.

Concurrent Kleene Algebra (CKA) [HMSW11] adds a parallel operator to Kleene
algebra to support sequential and parallel programs. Prisacariu’s Synchronous Kleene
Algebra (SKA) [Pril10]] extends Kleene algebra with a synchronous parallel operator
similar to that in Milner’s SCCS [Mil89]. Like Milner he proposes a specific interpreta-
tion of the parallel composition of atomic steps. In contrast to both CKA and SKA, our
Concurrent Refinement Algebra [Hay16], which we use as a basis for this work, adds a
parallel operator to the sequential algebra DRA (rather than Kleene algebra).

The major contribution of this paper is an algebra of atomic steps which introduces
a synchronous parallel operator for atomic steps. The interpretation of two atomic steps
acting in parallel, however, is left open, hence allowing a range of different models

3 We use the terms command, program and process synonymously.
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Fig. 1. The Concurrent Refinement Algebra and its sub-algebras

(including those of Milner and Prisacariu). Further, atomic steps are treated as a Boolean
sub-algebra (similar to the way in which tests are treated as a Boolean sub-algebra in
KAT). Hence the Concurrent Refinement Algebra (CRA) contains both a sub-algebra
of tests and a sub-algebra of atomic steps (as illustrated in Figure [I] via their lattices).
Separating out these sub-algebras enables one to prove properties that are specific to
atomic steps using the full power of a Boolean algebra. This raises the level of support
for reasoning about programs provided by our algebra, as well as the level of automation
that is possible for the mechanised proof support by the theorem prover Isabelle.

To build the algebra, we start in Section 2] with CRA for reasoning about commands
in general. Commands include a sub-lattice of tests (Section 3] as well as a second sub-
lattice of atomic steps (Section ), the novel contribution of this paper. Section [5 gives
an interpretation of the abstract algebra based on Aczel’s trace model. A simplified
treatment of relies and guarantees is outlined in Section [6] Section [7] illustrates how
the communication models of CCS, CSP and SCCS can be interpreted in our abstract
algebra of atomic steps.

2 Concurrent Refinement Algebra

A Concurrent Refinement Algebra (CRA) is defined as the following structure
(Ca I_Iv |—|7 Yy ||7 J—7 T, nil, Skip)

where the carrier set C is the set of commands. Sequential composition (;) has higher
precedence than parallel (||), which has higher precedence than M and U, which have
equal precedence.

Commands form a complete distributive lattice (C,M,U, L, T) with nondetermin-
istic choice as the lattice meet (c 1 d), and conjunction of commands as the lattice join
(cUd). The top of the lattice T is the infeasible command (called “magic” in the refine-
ment calculus) and the bottom of the lattice L is the command that aborts. The partial
order defined on commands is the refinement relation ¢ C d meaning c is refined (or
implemented by) d. For any commands ¢,d € C,¢c C d = (¢ d) = ¢, and hence
1 C ¢ C T. We refer to this as the refinement lattice (see Figure . Note that since
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CRA is a refinement algebra it uses C as partial order instead of Kozen’s > and hence
our lattice of commands is the dual of Kozen’s lattice (i.e., 1 in CRA matches LI in
KAT, and LI in CRA matches N in KAT). Given commands form a complete lattice, for
any monotone function least/greatest fixed points are well defined. In particular, fixed
points are used to define iteration operators below.

Sequential composition of commands (c ; d) is associative and has identity nil. As
an abbreviation, the sequential composition operator may be elided. Sequential compo-
sition has both T and _L as left (but not right) annihilator ie. Tec=Tand Lc= 1.
It distributes over arbitrary choices on the right (3)),

16 d =T.cc(cd) - 3)

The iteration of a command is inductively defined as ¢ = nil and ¢'*! = c¢'. More
general iteration operators are captured via greatest (v/) and least (u) fixed points: ¢* =
vx.nil M cx for finite iteration zero or more times, and ¢ = px.nil M cx for finite or
possibly infinite iteration. Infinite iteration is defined as ¢ = ¢“T. The unfolding laws
(@) and (5) result from the fixed point definitions for iterations, and (6) follows from
and the definition of ¢> which also justifies (8). Law (7)) follows from (6)) by induction.

¢ =nilMNcc? @) .
N . . ¢ =cc™ 7
c*=nilMNcc 5)
- - c*d=c> €)
¢ =cc (6)

Some models also distribute sequential composition over non-empty choices on the
left (9) (i.e., in refinement calculus terms the operator is conjunctive).

D#{} = c([1D) =[Neplcd) )

This axiom is not assumed to generally hold in CCS and CSP but it holds for our
relational model in Section[5]and is required to show laws (I0) and (TTJ). Laws (12) and

follow from (T10), (8) and (6).

¢ =c*"Nce™ (10) d=c*dnc> (12)

¢ =Tien @ (11) cc®d=cc*dnc® (13)

Parallel composition of commands is associative, commutative, has the identity
skip, and T serves as an annihilator: ¢ || T = T. Parallel distributes over non-

deterministic choice of any set of commands, ¢ || ([D) = [],cp(c || d). Note the
identities for sequential and parallel composition, nil and skip respectively, differ. How-
ever, they are related by skip C nil and nil || nil = nil.

3 The Boolean sub-algebra of tests

Tests are special commands that are used to model conditionals and loops and hence
form an essential construct when reasoning about programs. Assume 7 is a test, — ¢ is its

* Here our approach based on DRA differs from approaches based on Kleene algebra, like CKA
and SKA, in which T is also a right annihilator.
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negation, and ¢ and d are commands, an abstract algebraic representation of condition-
als and while loops for sequential programs is given by

ifrthencelsed =tcM—td and whilesdoc = (r¢)* —t

Blikle [BIi78] used this style of representation of programs in a relational algebra and
[GM93]] and [vWO04] in the refinement calculus. Kozen [Koz97] provided a more ab-
stract Kleene Algebra with Tests (KAT) as a framework for reasoning about programs.
Kleene algebra is the algebra of regular expressions, where for the interpretation as
programs, alternation becomes non-deterministic choice with unit T, concatenation be-
comes sequential composition with unit nil, and iteration becomes finite iteration of
commands. Tests, in Kozen’s approach, form a Boolean sub-algebra within the Kleene
algebra.

We follow this construction for the Concurrent Refinement Algebra. That means in
CRA tests form a subset of commands for which a negation operator — is defined. This
results in an extended algebra

(C’ B”_‘7|—|) ; ) ||7J_7 —|—7 nil7 Skip’ _|)

where the additional carrier set B is the set of test commands (B C C). As in Kozen’s
work, tests form a Boolean algebra (B,M,, — , T, nil) which is a sub-lattice of com-
mands (see Figure |I)).

The sub-lattice of tests shares its top element (the false test) with the top of the
lattice of commands, T, but does not share its bottom element, the true test, that instead
corresponds to the command nil, that has no effect and immediately terminates. Tests
are closed under lattice meet and join, as well as sequential and parallel composition as
both are defined via the join operator LI on commands. For any ¢ and ¢’ in B,

tf =ttt (14) t|f =ttt (15)

where the join of two test acts as logical conjunction. Property can be generalised
to the following interchange axiom. For any commands ¢ and d in C and any tests ¢ and
¢ in B the following hold.

(te) | (Fd) = (Ud) (e d) (16)  (t)U(d)=(tUr)(cUd) (7

A range of useful laws follow from this axiomatisation that help simplifying pro-
gram terms involving tests.

Tests also give rise to the concept of assertions (preconditions) [vW04iSol07]]. The
assertion corresponding to a test ¢ is a command which terminates if the test holds and
aborts if the test does not hold, i.e., asserts = ¢ —¢_L.

4 Abstract atomic steps

This section gives an abstract algebra for the subset of commands that correspond to
atomic steps. This algebra delivers core properties of atomic steps (that do not hold
for commands in general) under only a few assumptions about the form of atomic
steps. Atomic steps are closed under parallel composition but the parallel composi-
tion of atomic steps, a || b, is left uninterpreted. Lifting these properties to the level
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of an abstract algebra results in simpler proofs and allows for their reuse in different
interpretations. Section [5] forms an interpretation of the atomic step algebra that cor-
responds to Aczel’s program and environment steps and defines parallel composition
of atomic steps in detail. Section [7|on the other hand, uses the atomic step algebra to
capture CCS-style as well as CSP-style communication of events, which resides in a
very different domain.

In the same manner that tests form a sub-lattice of commands, the set of atomic
steps, A, forms a sub-lattice of commands which is a Boolean algebra and shares the
lattice meet and join of commands (see Figure [I)). The top of the sub-lattice is the
same as the top of the command lattice (T) but the bottom of the sub-lattice is the new
command ¢, that can be thought of as the non-deterministic choice between all possible
atomic steps. In fact, tests and atomic steps share only one element (T) and hence

aUnil=T. (18)

The term step is used exclusively for an atomic step. Steps are closed under lattice
meet and join as well as parallel composition (but not sequential composition). As for
commands, the meet corresponds to non-deterministic choice, a M b, and can behave as
either a or b. The join of two steps, a LI b, can be thought of as a step that both a and
b agree to do. (In Section |3|this corresponds to the intersection of the sets of primitive
steps a and b can make.)

Because A forms a Boolean algebra, all of the laws of Boolean algebra are available
to manipulate combinations of steps not involving sequential composition. The theorem
prover Isabelle directly supports forming such an interpretation and hence the theory
of Boolean algebra can be re-used for A. This is a significant saving, as the laws of
Boolean algebra do not need to be reproven.

In addition, atomic steps are assumed to have an identity, £, of parallel composition,
giving the following axiom.

all€=a (19)

Prefixing a command ¢ with &, i.e. £, allows the process to wait one step before
behaving as ¢, and £¥ ¢ allows it to wait any number of steps (including 0). The step £
can be interpreted as a placeholder for one step taken by its environment.

Besides laws for reasoning about atomic steps in isolation, one needs laws that allow
reasoning about their interaction with non-atomic commands. A small set of additional
axioms is used as the basis of these laws. The approach taken to handling parallel com-
position is not the usual interleaving of steps, rather each step of one process must
synchronise with a step of the other process. If @ and b cannot synchronise then a || b is
infeasible (T). For steps a and b, and any commands ¢ and d, we assume the following
axioms.

acllbd=1(a|b)(c|d) (20) ac|nil=T (22)
aclUbd=(alUb)(cud) (21 acUnil=T (23)

The interchange axioms (20) and (21)) become refinements from left to right if  and

b are allowed to be arbitrary commands (which corresponds to the weak interchange law

in CKA [HMSW 11])). The abstract algebra does not define the details of parallel com-
position of pairs of steps. (See the relational interpretation of the algebra in Section [3]
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for one example of defining parallel composition of atomic steps.) The command, nil,
that terminates immediately without making any steps whatsoever cannot synchronise
with a process that makes at least one step, i.e. (22) and (23).

The negation operator (!) for atomic steps satisfies the following axioms of a Boolean
algebra. Steps a and !a have no common behaviour and !a has all the step be-
haviours that @ does not have (23).

alla=T (24) alNla=« (25)
Note that negation for tests (—) differs from negation for atomic steps (!) as we have
— T = nil but ! T = «. The inclusion of a negation operator on steps allows one to
define an equivalent of an assertion for steps on the abstract level. For any step a define,

assumea =afl(la) L. (26)

The command assume a behaves as a and terminates, or as ! a and aborts. It represents
an assumption that step a occurs in the sense that any other step allows any behaviour
to occur after that step. It provides the basis for rely conditions because they specify
assumptions about the environment’s behaviour (see Section [6)).

4.1 Canonical representation of commands

If the primitive commands of our language are tests, atomic steps and L, and all other
commands are built from these primitives using the operators of the language, then
initially, a command may either terminate immediately, abort or perform some atomic
step. That leads to the canonical representation theorem, in which ¢ can terminate if
some test ¢ succeeds, abort if some test ' succeeds, or performs some step a; followed
by some command c;, for some i € I.

Theorem 1 (canonical-representation). Any command c can be expressed in the fol-

lowing form
c=1tM1 LN g aic
where t and ' are tests, and for any i in some (possibly empty) index set I, a; is an
atomic step not equal to T, and c; is a command.

The proof is conducted by structural induction over commands. Note that if ¢ cannot
terminate immediately, ¢ is T. If ¢ cannot abort, ¢’ is T. If ¢ cannot perform any step,
I = {}. A similar theorem can be found in [Pri10] for SKA.

Because £ is the identity of parallel for a single step, £“ acts as the identity of any
sequence of steps and hence £ is the identity of parallel, i.e. skip = £¥.

Lemma 1 (atomic-identity-iteration). &% || ¢ =c¢

The proof makes use of Theorem [I|to express ¢ in canonical form (the proof is included
in the appendix of [HCM™16]).

4.2 Properties of iterations of atomic steps

In addition to defining programming statements such as while loops, iterators are used
to build specifications from atomic steps. For instance commands corresponding to
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Jones’ rely and guarantee concepts are constructed as iterations of relatively straight-
forward commands that make assumptions about the steps of the environment and con-
strain the steps of the program, respectively (see Section [6). Below we provide some
useful properties of iterations of atomic steps.

Because nil performs no steps, if it is run in parallel with a (possibly) finite iteration,
the composition cannot perform any steps but can terminate and hence equals nil. If nil
is run in parallel with an infinite iteration, the combination cannot perform any steps
but cannot terminate, and hence equals the infeasible command T.

Lemma 2 (atomic-iteration-nil).
a* || nil = nil a || nil = nil a® |nil=T

Proof. The properties follow from axiom (22)) using unfolding of the iterations (i.e.
a*=nilMaa*,a” =nil Maa* and a*™ = aa™). O

For the following lemmas, let a and b be atomic steps, and ¢ and d any commands.
Axiom (20) can be extended to iteration i times as given in the following lemma, which
is proven by induction on i.

Lemma 3 (atomic-iteration-power).a'c || b'd = (a | b)'(c || d)

Choosing ¢ and d to both be nil gives the corollary that @' || ' = (a || b)'.

For all further lemmas in this sub-section, we assume that sequential composition is
conjunctive (9) and hence that properties (I0) and (TT) hold. Two useful properties are
the following.

a || b*=(al|b)* (27 a® | b>® =(al b)*> (28)

Property can be proven using the property that non-deterministic choice over an
arbitrary set distributes over parallel. A proof of (28) would follow straightforwardly if
the supremum over an arbitrary set (or even a chain) distributed over parallel, however,
that distribution property does not hold in general. We take property as an axiom
because it does hold in our intended model. Whether this axiom is independent of the
other axioms in our algebra is an open question.

Property holds for atomic steps a and b but is only a refinement from left to
right if a and b are replaced by arbitrary commands. Property can be generalised to
the following lemma where we take into account that the number of iterations of a and
b might be the same, or there are more iterations of a than b (and hence the additional
iterations of a are in parallel with the start of d), or the symmetric case when there are
more occurrences of b than a.

Lemma 4 (atomic-iteration-finite).
a’c|b*d=(a|b)"((cl[d)(c|bb*d)(aa”c | d))

Isabelle/HOL proofs of these lemmas have been completed. They may be also found
in the appendix of [HCM™ 16]. Choosing ¢ and d to both be nil gives as a corollary.

An infinite iteration in parallel with an initial finite iteration matches the finite iter-
ation as well as what follows it.
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Lemma 5 (atomic-iteration-finite-infinite). a* ¢ || b>° = (a || b)* (c || b>)
Lemmal[d] can be extended to initial iterations that are either finite or infinite.

Lemma 6 (atomic-iteration-either).
a’cl[b¥d=(a|b)” ((c|d)T(c| bb*d)(aa”c| d))

Choosing ¢ and d to both be nil gives the corollary that a* || b¥ = (a || b)¥.

To see the relationship to an interleaving operator, for any step a, define an action
as (a) = &Y a ¥, then properties of (a) can be proven using properties of the abstract
algebra. For example, one can derive the following lemma.

Lemma 7 (atomic-interleaving). (a) || (b) = (a || b) M (a) (b) M (b) {(a)
) (b

If @ and b cannot synchronise (i.e. a || b = T) then (a) || (b) = (a) (b)M(b) {a) which
echoes the following property of an interleaving operator: al||b = ab M ba. Hence
by including an identity, £, for parallel with an atomic step, one can represent inter-
leaving properties in the synchronising algebra albeit in a more complex form. This
approach was used by Milner in Synchronous CCS [Mil83]] to allow the encoding of
the better-known process algebra CCS. Our identity element takes on a similar role,
although we lift it to a command as opposed to a transition event as in Milner’s opera-
tional semantics. The advantage of the synchronising algebra is that one can represent
both synchronising events and interleaving events in the one theory. By using separate
program and environment events, such a theory supports the rely/guarantee approach of
Jones for reasoning about concurrent programs.

5 Relational atomic steps

This section examines an interpretation of the abstract atomic step algebra A in terms
of Aczel’s program and environment state transitionsE] The resulting relational atomic
steps are used to define guarantees and relies in Section [6] This interpretation assumes
that sequential composition is conjunctive (9).

Given a state space X' and a binary relation r € P(X x X'), the command 7 (r)
can take an atomic program step from state o to ¢’ for any pair of states (o, 0’) in r.
Similarly, () is a command that can perform any environment step from state o to o’
whenever (o,0’) € r.

T P(IxY) A e:P(UxY) = A

The commands 7(&) and €(&) are infeasible, i.e., (&) = (&) = T. The images of
7 and € are disjoint except when the relation is empty, i.e. for all r; and ro,

71'(7‘1)|_|6(7'2):T. (29)

Together 7r and € form a sub-lattice of commands with two further sub-lattices: all the
7(r) commands form a sub-lattice and all the ¢(r) commands form a sub-lattice.

5 A semantic model for this interpretation may be found in [CHMTI6).
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The functions 7 and € are injective, i.e. different relations map to different com-
mands, and union of relations maps to a non-deterministic choice between the mappings
of the relations and intersection maps to the supremum in the command ordering.

w(rpUry) =7(r) Nw(re)  (31)
w(riNry) =n(r) Un(re) (32)
If r1 C 1o, then w(ry) M7(re) = w(r1 Ure) = w(re), and therefore 7(ry) = w(ry).
Similar laws hold for € steps.

In this interpretation one can instantiate the test command from Section as 7(p) for
p € P X, which succeeds and terminates immediately if p holds but is T otherwise, e.g.
7(2) = T and 7(X') = nil. As in the refinement calculus, a precondition command {p}

can then be defined as assert 7(p), which equals 7(p) M 7(— p) L, and hence terminates
immediately if p holds but aborts otherwise, e.g. {@} = L and {X'} = nil.

r=ro & w(r1) =7(re) 30)

6 Relies and guarantees

The rely/guarantee approach of Jones [CJO7]] makes use of a rely condition, r, a binary
relation on states that expresses an assumption that every step made by the environment
of the process satisfies r between its before and after states. Complementing that, all
processes in its environment have a guarantee condition, g, a binary relation on states
that expresses that every program step made by the process satisfies g. For each pro-
cess, its guarantee condition must imply the rely conditions of all the processes in its
environment. This section encodes guarantees and relies using the abstract algebra of
atomic steps.

6.1 The guarantee command

For a process to ensure a guarantee g, every atomic program (7r) step made by the
program must satisfy g. A guarantee puts no constraints on the environment of the
process. A guarantee command, guar g, is defined in terms of the iteration of a single
step guarantee, (7-restrict g), defined as follows.

(m-restrictg) = w(g) M E guar g = (m-restrict g)“
A command ¢ with a guarantee of g enforced on every program step could possibly be
expressed as (guar g) U ¢, but that turns out to be too strong a requirement because it
masks any aborting behaviour of ¢ because the guarantee never aborts, (guar g) L L =
(guar g). Instead, the weak conjunction operator is used.

Weak conjunction on commands, M, behaves like L unless one of its operands aborts
in which case we have ¢ M L = _L. The operator is associative, commutative and idem-
potent, and satisfies ¢ @ ([ | D) = ([ |,c,, ¢ M d) for any non-empty set of commands D.
For any commands ¢ and d, steps a and b, and tests ¢ and ¢ weak conjunction satisfies
the following axioms. (Note the similarities between and (21)), and and
and (28).)
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cml=1 (33) (ac) A (bd) = (@@ b) (cmd) (36)
amb=alUb 34 (ac)mmil =T 37
tmt =tUt (35) a® mb> = (amb)> (38)

HenceaMoa = alla = a, i.e. a is the atomic step identity of weak conjunction. More
generally, chaos = a* is the identity of weak conjunction for any sequence of atomic
steps. The following lemma (and its proof) is similar to the corollary of Lemma [6]

Lemma 8 (atomic-iteration-conjunction). a* M »* = (a M b)*

A command ¢ with a guarantee g is represented by (guar g) Mc. In the theory of Jones, a
guarantee on a process may be strengthened. That is reflected by the fact thatif g; C go,
then m(g2) C m(g1) and hence (w-restrictgo) C (7-restrict g). A process that must

satisfy both guarantee g; and guarantee go, must satisfy g; N g2 because

(m-restrict g ) @ (m-restrict g)

= (r(g) &) M (m(g1) ME)

= (m(g1) Mm(g2)) M (m(g1) ME) M (EMm(g2)) M (EME)
=m(g1Ng)NE

= (m-restrict(g; N g2))

The weak conjunction of a possibly infinite iteration of atomic steps distributes over
the sequential composition of commands ¢ and d.

Lemma 9 (atomic-infinite-distribution). a* m (cd) = (a* Mc¢) (a¥ M d)

The proof uses the canonical representation of a command (Theorem|I]) and can be
found in the appendix of [HCM™16]. As a consequence guarantees distribute over a
sequence of commands.

(guarg) M (cd) = ((guarg) Mc) ((guarg) Md)

6.2 The rely command

A rely condition r represents an assumption about environment steps. If any environ-
ment step does not satisfy r, i.e. a step that refines ¢(7), the process may do anything,
which can be represented by it aborting. Any other step is allowed. The rely command
is defined in terms of a single step assumption, itself defined in terms of the abstract
command assume (26)) as follows.

(e-assmr) = assume(! (7)) =le(F) Me(F) L
rely r = (e-assmr)”
An environment assumption is placed on a command ¢ by placing the assumption on

every step of ¢, i.e. (rely r) M ¢. A command ¢ with rely r and guarantee g is expressed
as (rely r) M (guar g) M ¢, for which every program step is required to satisfy g unless an
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environment step does not satisfy r, in which case it aborts. Here using weak conjunc-
tion (/M) rather than the lattice join (LI) is essential to prevent the guarantee masking the
possible aborting behaviour of the rely. Because assume aMassume b = assume(allb),
combining environment assumptions gives

(e-assmrp) M (e-assmry) = assume(! e(77) U ! e(72)) = assume(!e(r; Nra))
= (e-assm(ry Nra)) .

From Lemma 9] and Theorem I} a rely can be distributed over a sequential compo-
sition (the proof is included in the appendix of [HCM™16])).

(relyr) m (cd) = (rely r m c) (rely r m d)

6.3 Rely/Guarantee Logic

Rely/guarantee reasoning is traditionally formulated in terms of a quintuple
{p,r}c{g, q}, which extends Hoare logic with the rely r and guarantee g to handle con-
currency. The quintuple states that every step of ¢ satifies g and that it terminates and
establishes the postcondition g, provided it is executed from an initial state satisfying p
and interference from the environment is bounded by r. This quintuple is interpreted in
our logic as the following reﬁnementﬂ

{r} ((rely r) @ (guarg) A [¢]) C ¢

This demonstrates the application of the algebra to reasoning about shared data. As well
as being able to express any law presented in terms of quintuples, we are able to reason
about the component commands separately, e.g., strengthening a guarantee g does not
involve p, r and q.

7 Abstract communication in process algebras

In the process algebra domain, processes communicate via a set of synchronisation
events, in contrast to processes in a shared memory concurrency model which interleave
operations on state. We may build a core process algebra from the basic operators, with
the addition of a set of atomic program steps 7(a) that model a process engaging in the
corresponding abstract event a € Event, where Event includes at least the silent event ¢.
The basic properties of this language are those of the underlying algebra but we do not
assume conjunctivity of sequential composition (9 in order to be consistent with CCS.
Similarly to notation introduced in Section |4.2| we define

(ay = E¥m(a)E” (39)

This models process engaging in event a (note that we drop the ‘7’ tag from the {(a) no-
tation) preceded and succeeded by steps of the environment, similar to asynchronising

® We use the syntax of Morgan’s specification command [¢] [Mor88|] whose definition is omitted
for space reasons. It represents any sequence of atomic steps that establishes g between its
initial and final states. See [CHM16] for details.
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in Synchronous CCS [Mil83] (discussed in [Mil89]]). This is the building block of event
based languages: we interpret both prefixing in CCS (a.p) and CSP (a — p) as ({a) p).
We extend the core algebra to give two types of abstract interprocess communication:
CCS-style binary synchronisation (achieved by restricting the program) and CSP-style
multi-way synchronisation (achieved in-part by restricting the environment).

7.1 Communication in CCS

The main point of difference with the rely-guarantee algebra is that program steps rep-
resenting events can combine into a single program step (communication). Interactions
with £ remain the same as in the abstract algebra. In CCS each non-silent event a has
a complementary event @. A program step 7(«a) and its corresponding complementary
program step 7(@) may synchronise to become a silent step, 7(a) || 7(a) = = (¢), and
hence using an instantiation of Lemma[7]

(@ | @ = ()M {a) @ n(a)(a) . (40)

As such, events may synchronise or interleave. In CCS the restriction operator p\A,
where A is a set of Events, may be employed to exclude the final two interleaving
options and hence force processes to synchronise and generate a silent step. It may
be defined straightforwardly using join (L) to forbid events in A, where we use the
abbreviation m(A) = [, 7(a) and note that ! 7(A) = 7(A) N E.

P\AZ pL(1m(A))* (41)
Hence, by (40) and @), ((a) || (@))\{a,a} = ().

7.2 Communication in CSP

To achieve CSP-style multi-way communication, a process p prevents its environment
from communicating via an event in p’s alphabet until p is ready. We introduce a step
€(a), where £ C €(a) for all a € Event. Its interactions through the parallel operator are
defined (in a different way to CCS) below; all other combinations of atomic steps result
inT.

m(a) | 7(a) = m(a) fora#.  w(a)|ela) = n(a)  ea) | e(a) = €(a)

Fundamental to CSP is the notion of a process’s alphabet, the set of events via which
it may communicate and in particular upon which the environment may not indepen-
dently synchronise. Here we explicitly associate an alphabet A C Event with process p
by the syntax A:p, defined by,

Aip =pU (le(A))” (42)

where analogously to program steps we define €(A) = [],., €(a). Note the similarity
to CCS’s restriction operator @ but here it is the environment that is restricted, rather
than the program.

In an early formulation by Hoare [Hoa85]] every process p implicitly has an alpha-
bet A associated with it (A is sometimes syntactically deduced from p). In formulations
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such as Roscoe’s [Ros98] the alphabets are not associated with processes but are instead

made explicit on the parallel operator. We may define alphabetised parallel straightfor-

wardly as p1 || p2 = (A:p1) || (A:p2). Each side of the parallel composition prevents
A

the other from taking a unilateral program step on events in A by restricting its envi-
ronment. Some of the basic communication properties from CSP follow from the above
definitions and the atomic algebra, for instance, recalling that CSP’s prefixing operator
a—p={a)p,foranya € A, (a—>p1L|a—>p2) =a— (p1 L|p2).

The hiding operator of CSP, p/,, affects program steps, renaming events in A to
silent events. Hiding distributes over sequential and choice (but not parallel); its rela-
m(¢) if b is of the form 7(a) and a € A

tionship with atomic steps is b/4 = { b otherwise

7.3 Communication in SCCS

Synchronous CCS (SCCS) [Mil83iMil89] is a process algebra designed to be as min-
imal as possible in terms of operators. It includes event prefix, disjunction (nondeter-
ministic choice), composition (corresponding to our parallel), and restriction similar to
that of CCS (@I)). SCCS events may be structured from a finite set of “particles”, form-
ing a commutative group (Event, 1, x, ~1). Every event is the product of particles: for
instance, the step @ is an event (a* x b% x ¢V x ...). The silent (or waiting) event 1 is
event identity, and fulfils a similar role to that of £ in our algebra. The complement of
event a is simply a~! and hence the product of an event and its complement, a' x a~!,
naturally equals 1.

The key aspect of SCCS is its simple definition of parallel composition in terms of
product: for atomic steps a and b, a || b = a x b. An event process (a) is defined as
1¥ a1, which has the effect of asynchronising the event, preserving Lemma[7] Milner
shows that CCS can be encoded in SCCS through the addition of asynchronising ac-
tions defined through the operational semantics; in an algebraic setting the 1s are made
explicit in the processes. Note that in this model there is no distinction between silent
steps and environment steps: in SCCS both are 1, whereas in CCS the former is 7(¢).

8 Related Work

Our Concurrent Refinement Algebra (CRA) (Section compares to Concurrent Kleene
Algebra (CKA) [HMSW11] in that both extend a sequential algebra to allow for rea-
soning about parallel composition. Synchronous Kleene Algebra (SKA) [Pri10] is also
based on Kleene Algebra but, unlike CKA, it adds tests and a synchronous parallel oper-
ator based on that of Milner’s SCCS [Mil83]]. Both CKA and SKA are based on Kleene
algebra and hence only support finite iteration and partial correctness. In comparison,
our CRA supports general fixed points and hence recursion and both finite and infinite
iteration. The richer structure of DRA contains a sub-lattice of commands below chaos
(see Fig.[I) that includes assertions (and hence preconditions in the relational interpre-
tation) and assumptions (and hence rely commands), and allows the weak conjunction
operator, M, to be distinguished from strong conjunction, LI. All these constructs are
needed to faithfully represent rely/guarantee theory.
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CKA is also applied to rely/guarantee rules [HMSW 11]] but they define a Jones-style
5-tuple (as in Section[6.3)) in terms of two separate refinement conditions, whereas in our
approach the existing (single) refinement relation can be used directly. In Jones’ theory,
a guarantee has to be satisfied only from initial states satisfying the precondition of the
program, and further, if its rely condition is broken by the environment, the program
can abort. However, in the CKA framework, the guarantee has to always be maintained
by the program, irrespective of what the initial state is and how the environment is
behaving; that over restricts the set of possible implementations. Our theory faithfully
reflects Jones’ approach.

Our algebra of atomic steps makes use of a synchronous parallel operator similar to
that in SCCS [Mil89] and in SKA [Pri10] but it differs in two ways:

— instead of atomic actions being separate from commands (as in SCCS and SKA),
they are treated as a sub-algebra within CRA and

— while both SCCS and SKA explicitly define composition of atomic steps (their x
operator), our parallel operator is used directly on atomic steps (because they are
commands) and its definition is left open.

9 Conclusion

This paper presents an abstract algebra of atomic steps for concurrent programs. It is
a Boolean algebra that is embedded as a sub-lattice into our Concurrent Refinement
Algebra in a similar way as tests are embedded in Kleene algebras. As for tests, a
range of useful laws can be derived for atomic steps within this abstract algebra (e.g.,
on iteration and distributivity), despite the fact that the interpretation of the parallel
composition of two atomic steps is left open.

This construction simplifies many essential laws and their proofs, as most support-
ing lemmas almost come for free on this abstract level. Accordingly, the mechanisation
of the theory within the theorem prover Isabelle is lean and achieved a high degree of
automation. As the Concurrent Refinement Algebra was conceived to support reasoning
with relies and guarantees this simplification is of particular benefit in our laws for rely
and guarantee commands.

A further gain of the generic shape of the abstract algebra lies in its potential for
reuse. We have demonstrated this by instantiating our abstract algebra with two quite
different styles of communication, a synchronous model (as in SKA [Pri10] and SCCS)
versus an interleaving model (as in CCS and CSP). For both styles the abstract algebra
of atomic steps proves to be suitable.

The concept of sub-algebras in our Concurrent Refinement Algebra is also applica-
ble to assertions and assumptions. Assertions form a Boolean algebra with nil as top
element and L as bottom element whereas step assumptions form a Boolean algebra
with top element o and bottom « L. Both inherit the laws on Boolean algebras sim-
ilarly to tests and atomic steps. Future work will investigate these structures and will
extend our theories accordingly.

The relationship between CCS and CSP has been explored in several papers
[Bro83lvG97] including augmenting the operational rules of CSP so that the failures-
divergences model (FDR) is respected in CCS [HH10]. Future work is to apply a more
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algebraic approach to the relationships between well known process algebras (espe-

cially ACP [BK&4]).

Acknowledgements. This work has benefited from input from Cliff Jones and Kim

Solin.
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10 Proofs for inspection

For all lemmas we assume a and b to be atomic steps and ¢ and d arbitrary commands.
Furthermore, all lemmas except Lemmas [T]and [0] assume that the sequential operator
is conjunctive (9) as this property is used within the proofs.

Lemma [4] (atomic-iteration-finite)

atc|brd=(a|b) ((c|d)r(c|bb*d)N(aa”c || d))
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Proof. The proof relies on 1; ie., a* = |_|l.eN a'. The notation Hi;éN ¢;j stands for
the choice of ¢; ; over all natural numbers i and j, such that i < j.

a*c| b*d
= Mew@ ) | (ewb d) = Miewjen(@’c || 5 d)
= Mien(@ e || 6/ d) N[5Eu(@ e | B0~ d) N L@ a e || b d)
= Mien(a | ) (¢ || d) NTTeou(@ 1 6 (c || B ) N[ 2ou(a || bY (@ e || d)
= (@ b)* (c || d) " (Mienla 1| 0)) Men(e || *d)
N (Mien(a 1Y) TZR (@ ¢ || )
= (@] b)* ((c | )M (e | T2y b ) N (TiZna e || d)

= (all[b)*((cd)T(c[[bb*d) N (aa*c | d))

Lemma [5 (atomic-iteration-finite-infinite)

are|[b> = (a | b) (el b>)

Proof. Note that, by unfolding law , b> = b'b> for any i € N. The proof uses also
Lemma[3
a*c || b = (Mewa'c) || %
= [Tien(d@ ¢ || 5%)
=[liewla'c || '6%)
=[Tien(@ [ B)' (c [ 6%)
= (allb)*(c|b>)

Lemma [6] (atomic-iteration-either)
a“c|[bvd=(a|b)”((c][d)n(c|bb*d)M(aa”c || d))
Proof. Note that, by and (), ¥ = a* Ma™ and a*c = a*°, and by (13), aa* ¢ N

a® = aa” c. The proof uses also (12), and Lemmas[d]and[5] and (28), i.c. a> || b> =
(all b)>.



An algebra of synchronous atomic steps 19

a’c || b¥d
=(a*MNa*)c| (B*Ndb>®)d
= (a*c || b*d) M (a*c | b>) N (a> || b*d) N (a* || 5>)
=(al b ((clld)M(c| bbrd)(aa*c | d))r

(@[l b)*(c [ b>) M (a || b)* (@™ |[d) M (a || b)>
= (al[ D) ((c[[d)T1((c|[bb*d) M (c| b>))M

((aa*c [ d)T1(a> |[d))) M (a || b)>
=(alb)y((clld
= (al by ((clld
= (a [ b)* ((c ] d)

M(e | (bbrdnb=))m((aa*cNa>) || )M (a] b)>
N(c||bb*d)M(aa*c| d)N(al b)>®
Nc|bb?d)N(aa¥c| d))

)
)

Lemma [1] (atomic-identity-iteration) £ || ¢ =c

Proof. Theorem states that ¢ can be represented as ¢ ¢ L [ ],.; a; ¢;. The proof is
via structural induction and hence we assume £“ || ¢; = ¢;, forall i € I.

Ee=& (end L[ |aic)

iel
=& I nnE | HnE [ aa)
iel
= tI‘It’LFIl_l(Ew || CliC,')
iel
=t/ L[ (€% | aic)
iel
= IHI/J_ﬂl_lai(gw H C,‘)
iel
=tmd LN |_| a;c; by inductive hypothesis
icl

=C

Note that E¥ || t = ¢ (¥ || nil) = fnil = rand £ || ¥ L =7 (¥ || L) = ¢ L because
EY|LCE|| L=_Landhence&¥ || L= L.

O
Lemma 7] (atomic-interleaving)

(@) || (b) = (a | b)M(a)(b) N (b)(a)
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Proof. The proof uses Lemmas|[6|and[[]and £« £~ = £¥.

(a) || (b)

= (E9a &%) | (¥ bEW)

= (E9(a% || bEY)M (E¥ (al¥ || EE“HE)) M (E2 (EE% aE” | bEW))
=(E¥(allb)eX)M(Ea(E” | EXbEX)) M (EXD(ECal” || E))

= (E%(a || b)E¥) M (E¥ aE b EX) M (E¥ b E¥a E¥)

= (a || &) 11 {a) (b) N (D) (a)

Lemma [9] (atomic-infinite-distribution)

a’m(cd) = (@ mc)(a* md)

Proof. Using Theoremwe may assume ¢ = t11¢ L[], b; ¢;. The proof follows by
induction on command c, i.e. assume the lemma holds for c;.
a® m(cd)
=a*m (N LN[ g bici)d)
=a*m(tdNt LN[ g bicid)
=(amtd)N(a* @t L)1 (a* W[ |, bicid)
=t(a*md) Nt LN (a” W[, bicid)
=t(@* md)nt L(a*md) N[, (amb;)(a” M c;d)
(et L) (@ md) N[ g, (amb;) (a® M¢;) (@ Md)
tnd L) (a¥ md) N[ e, (aa” Mb;c;) (a M d)
(e L[ g, (@ Mbici)) (@ md)
((@me)n(ame L)N(a® @[ g bici)) (@ md)
= (am (¢ L[, bici)) (@ md)
=(a¥Mmc)(a* md)
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Lemma 10. For any testt, a* Mt =t
Proof.

a” mt
= (nil Maa”) M ¢
= (nil @ #) M (aa® M 1)

=tMNt(aa” Mnil) = M7 = ¢

Lemma 11. Foranytestt, a* mtLl =tl
Proof.

a* mel
= (nil Maa”) MmrL
= (nilm¢L) N (aa” mzl)
=tmilm L)Nt(aa* ML) = LMl = ¢l

Lemma 12 (rely-distribution).
(relyr) m (cd) = ((relyr) mc) ((relyr) md)

Proof. We base the proof on the more general concept of assumptions. Using the defi-
nition of environment assumptions, (e-assm r) = assume(! €(7)) = ! e¢(7) M e(7) L and
relies, rely r = (e-assm r)*, we can deduce

Ja e rely r = (assumea)” = a*“ Ma*” la L

Furthermore, using Theoremwe may assume ¢ = ¢ ¢ LM[ g, bici.

(assume a)® M (cd)

=(a’Na*lal)m(cd)

=a’milMN'al)m(cd)

= assume x = nil M !a.l and the canonical form of ¢
a“xm(¢en1d L[ g, bici)d

= distribute M over M and left-distributivity of sequential

axmtd M a’xme' L 1 ([N, axMb;cid)
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= by unfolding of a using @)
ta“xmd) ML M (|_|i61’ (aa¥x M x) M b; ¢;d) ‘

(aa®x M x) M b; ¢;d)
= by definition of x
(amb;)(a“xmcid) M (Yamb;)(L M c;d)
= Dby induction assumption: a*x @ ¢;d = (a“x M ¢;)(a“x M d)
(amb)(a“xm¢;)(a’xmd) M (lamb;)L
= with and L left annihilator
(amb;)(a“xme¢;)(@xmd) N (lal mbic;)(a®xmd)
= with
(aa®x M bic;)(a“xmd) M ((Yal Mnil) @ bic;)(a¥x M d)
= with (3)
((aa®x @ bic;) M (YaL Nnil) @ bic;))(a*“x M d)
= distribute M over M, with definition of x and (E[)
(a“x M bic;)(a“x M d)

= t(a“xMd) N ¢ L(@xfd) N (M| (@xn bic)(@xnd))

= distribute of sequential over Il
(e LN (a*x W[ \,g, bici))(a®x M d)
= by Lemmas[T0]and[TT]
((@xme)MN(a*xme L) N (a“xm ]
= with Theorem[T]

(@“xmc)(a“xmd)

bici))(a“xmd)

i€l
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