
HAL Id: hal-01889150
https://hal.science/hal-01889150

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Parameter Synthesis
Lacramioara Astefanoaiei, Saddek Bensalem, Marius Bozga, Chih-Hong

Cheng, Harald Ruess

To cite this version:
Lacramioara Astefanoaiei, Saddek Bensalem, Marius Bozga, Chih-Hong Cheng, Harald Ruess. Com-
positional Parameter Synthesis. 21st International Symposium on Formal methods (FM 2016), Nov
2016, Limassol, Cyprus. pp.60-68, �10.1007/978-3-319-48989-6_4�. �hal-01889150�

https://hal.science/hal-01889150
https://hal.archives-ouvertes.fr

Compositional Parameter Synthesis

L. Aştefănoaei1, S. Bensalem2, M. Bozga2, C.-H. Cheng1, and H. Ruess1

1 fortiss - An-Institut Technische Universität München??

2 Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

Abstract. We address the problem of parameter synthesis for parametric
timed systems (PTS). The motivation comes from industrial configuration
problems for production lines. Our method consists in compositionally gener-
ating over-approximations for the individual components of the input systems,
which are translated, together with global properties, to ∃∀SMT problems. Our
translation forms the basis for optimised and robust parameter synthesis for
slightly richer models than PTS.

1 Introduction

Synthesis for parametric timed automata (PTA) has drawn considerable attention [1,
19, 20, 26, 17, 14, 15, 2, 3, 25, 12, 7, 10, 18, 21, 13]. These approaches explore the global
state space of all interacting components. In contrast, our method is compositional,
consequently, in this regard, it scales well to large systems.

Our motivation comes from parameter configuration problems for production lines
such as the ones from the food sector described in [8]. Seeing the constituting machines
as interacting PTAs, configuration problems fit well the class of systems we study.
Concretely, our contribution is to show how, given (1) a parametric timed system S
with unknown parameters p, (2) constraints φp on p, and (3) a safety property φsafe for
S, we automatically generate, in a compositional manner and by means of an ∃∀SMT
solver, valuations for p such that the desired safety property holds. In particular, we
reduce the parameter synthesis problem to solving formulae of the type:

∃p ∈ φp.∀v .
(
ψS(p, v)→ φsafe

)
(1)

where v represents all other variables (clocks, locations) except p and ψS(p, v) is an
over-approximation of the behaviour of S. A PTS is composed of components (PTAs)
interacting by multi-party interactions. Given n components Ci and interactions γ,
‖γCi denotes the corresponding PTS. To compute ψS for S , ‖γCi we adapt and ex-
tend the methodology from [4] to the parametric setup. We first equip each component
Ci with history clocks. Let C h

i be the results. We then compute three types of invari-
ants: (1) interaction invariant from γ; (2) component invariants from the parametric
zones of C h

i ; and (3) relations between history clocks. In [4], history clocks were used
to derive relations between clocks in different components. In the parametric case,
history clocks are used to also derive relations on parameters. This helps synthesise
parameters which, for instance, do not introduce deadlock in the system.

2 Parametric Timed Systems and Properties

A valuation v is a function that assigns a real value v(x) to each variable x . A linear
inequality has the form

∑n
i=1αixi # β with xi being variables, αi ,β ∈ Z, #∈ {<,≤

, =,≥,>}. A convex linear constraint is a finite conjunction of linear inequalities. The
set of convex linear constraints over a set of variables V is denoted by L(V).

?? Work supported by the European projects BEinCPPS, CPSE-labs and OpenMOS.

Definition 1. A component is a PTA (L, l0,X ,P,A,T , tpc) where: l0 is an initial
location; L,X ,P,A,T are finite sets of locations, clock variables, parameters (variables

whose values do not change over time), actions, and transitions. Transitions l
a,g ,µ−−−→ l ′

consist of a source l ∈ L and a target location l ′ ∈ L, an action a ∈ A, a guard condition
g in L(X ∪P), and a jump relation µ ∈ L(X ∪X ′) with X ′ denoting the clocks at l ′.
tpc : L→ L(X ∪ P) assigns convex linear clock constraints to locations.

For a parameter valuation v and a component C , the concrete semantics of C under v,
C (v), is that of a timed automaton. Since this semantics yields an infinite state space,
we work with parametric zone graphs as finite symbolic representations. The symbolic
states in a parametric zone graph are pairs (l , ζ) of a location l and a convex linear
constraint ζ over clocks and parameters which can be represented by convex polyhe-
dra [20]. For C , (L, l0,X ,P,A,T , tpc) the parametric zone graph is computed from
T starting from an initial symbolic state (l0, v0), with v0(x) = 0 for all x ∈ X , and
using the successor operator. For a transition t, the successor operator of (l , ζ) is de-
fined as succ(t, (l , ζ)) , time succ(disc succ(t, (l , ζ))) where disc succ. resp. time succ
are the discrete, resp. the time successor. We recall their definitions from [21]. The
operation time succ for letting time progress within a symbolic state is defined as
time succ((l , ζ)) , (l , ζ↗) where ↗ is the time-elapse operator. The successor with
respect to a transition t ,

(
l , (, g ,µ), l ′

)
is defined as disc succ(t, (l , ζ)) , (l ′, ζ ′)

where v′ ∈ ζ ′ iff ∃v ∈ ζ ∩ tpc(l) ∩ g .(v, v′) ∈ µ ∧ v′ ∈ tpc(l ′).

Given disjoint actions Ai , an interaction is a subset of actions α ⊆
⋃

i Ai con-
taining at most one action per component. Given a set of interactions γ ⊆ 2

⋃
i Ai ,

Act(γ) denotes the actions in γ, that is, Act(γ) ,
⋃

α∈γ α. A PTS ‖γCi is the com-

position of components Ci for the interaction set γ such that Act(γ) ,
⋃

i Ai . For

n components Ci , (Li , l
i
0,Xi ,Pi ,Ai ,Ti , tpci ,Di) with Li ∩ Lj = ∅, Ai ∩ Aj = ∅,

Xi ∩ Xj = ∅, for any i 6= j , the composition ‖γCi with respect to γ is defined by
(L, l̄0,X ,P, γ,Tγ , tpc) where l̄0 is (l10 , ... , ln0), X ,P, L, tpc(̄l) are respectively

⋃
i Xi ,⋃

i Pi , ×iLi ,
⋂

i tpci (li), and Tγ is such that for α , {ai}i∈I , l̄
α,g ,µ−−−→ l̄ ′ where l̄ is

(l1, ... , ln), g ,
⋂

i∈I gi , µ ,
⋂

i∈I µi , and l̄ ′(i) is li if (i 6∈ I) else l ′i for li
ai ,gi ,µi−−−−→ l ′i .

l00, x ≤ 7

l01, x ≤ 10

a
x ≥ q

c0
x := 0

c0 C0

l10, y ≤ 3

l11, y ≤ 3

b, y ≥ r
y := 0

c1
y := 0

c1 C1

Fig. 1. A PTS

Figure 1 illustrates a system of 2 PTAs C0, C1 interacting
on {c0, c1}. Initially, both C0 and C1 execute locally a,
resp. b in either way. This is followed by a synchronisation
on c0 and c1. We note that because y is reset on each
transition, y ≤ x is a global property of the system. We
also note that if q = 7 the system is deadlocked for any
value of r : we have that r ≤ 3 by the invariant of l10, and
because C1 cannot stay in l11 for more than 3 units of time,
it is impossible for the action a to be executed. This is a
simple illustration showing that local parameter bounds
might need to be tightened in the composed system in
order to not introduce deadlocks.

Definition 2 (Parameter Synthesis Problem). Given a system S, parameter
constraints3 φp, and a safety property φsafe , a parameter synthesis problem is to find
an assignment v for P such that v satisfies φp and S(v) satisfies φsafe , S(v) |= φsafe .
A satisfying assignment v is called a solution.

3 Parameter constraints are conjunctions of inequalities on P and R such as q ∈ [0, 6].

3 Compositional Parameter Synthesis

We show how the method from [4] can be adapted to compute ψS in Formula (1).
There are three steps to generate: (1) interaction invariants from γ; (2) component
invariants from components with history clocks; (3) relations on history clocks.

Interaction Invariants. Interaction invariants are over-approximations of global
locations. As their computation depends only on γ, it does not change in the para-
metric setup. Consequently, we omit its definition (to be found in [22, 5]) and instead
illustrate it by means of our running example. We recall that γ ,

{
a, b, {c0, c1}

}
. If a

happens from l00 and l10, C0 reaches l01 while C1 remains in l10. If {c0, c1} happens from
l01 and l11, l00 and l10 are reached. Continuing this reasoning for all combinations, we
obtain as interaction invariant I(γ) the formula (l00∧l10)∨(l00∧l11)∨(l01∧l10)∨(l01∧l11).

Component Invariants. Component invariants characterise the reachable states of
components when considered alone. Given a component C with locations L, we assume
that the symbolic states resulting from the computation of its parametric zone graph
are {si}I with si being (lj , ζj). We consider the following formula:

I(C) ,
∧
i∈I

(
si → (lj ∧ ζj)

)
∧
∧
l∈L

(
l →

∨
l∈s

s
)
. (2)

By abuse of notation, lj is used to denote the predicate that holds whenever C is at
location lj and l ∈ s holds if s = (l , ζ).

l00, x ≤ 7
s0

l01, q ≤ x ≤ 10 ∧ q ≤ 7
s1

l00, x ≤ 7 ∧ q ≤ 7
s2

a

c0a

Fig. 2.

The parametric zone graph of C0 for our running ex-
ample (Figure 1), as computed with Imitator [2], is in
Figure 2. By Equation (2), I(C0) is as follows:

I(C0) =s0 → (l00 ∧ x ≤ 7) ∧
s1 → (l01 ∧ q ≤ x ≤ 10 ∧ q ≤ 7) ∧
s2 → (l00 ∧ x ≤ 7 ∧ q ≤ 7) ∧
l00 → (s0 ∨ s2) ∧ l01 → s1

The formula in Equation (2) is more precise than the one in [4]. There, the choice
was to take the disjunction of lj ∧ ζj as an invariant. In a parametric setup, such an
encoding is not enough: since s0 ∨ s2 reduces to l00 ∧ x ≤ 7, the relation q ≥ 7 is lost.

More importantly, the formula in Equation (2) is not necessarily an invariant. For
instance, for the valuation v , {q = 8}, CI(C0)(v) reduces to false. I(C) is an invariant
only under the parameter valuations which satisfy the parameter constraints in it. Let
us denote by Kp(C) the parameter constraints in Equation (2). Kp(C) is obtained from
I(C) by a similar approach as in [2], that is, by seeing clocks as existential variables
and doing quantifier elimination. For instance, Kp(C0) is q ≤ 7.

Proposition 1 For a component C with parameter constraints Kp, I(C)(v) is an
invariant of C (v) for any v such that v |= Kp.

History Clocks & Auxiliary Constraints In general, component and the inter-
action invariants are not enough to prove global properties, especially when such
properties involve relations between clocks in different components. In the case of
∃∀ solving, a weak invariant leads to no solution: there is not enough information to
synthesise parameters such that the global property holds. For instance, in our toy
example, we cannot find parameters such that y ≤ x holds by only having at hand
the invariants for components and interactions: there are no relations relating both

x and y . By means of history clocks we are able to derive new global constraints
from the simultaneity of interactions and the synchrony of time progress. These new
constraints make it possible to successfully find parameter valuations such that global
properties hold.

l00, x ≤ 7

l01, x ≤ 10

a
x ≥ q
ha := 0

c0
x := 0
hc0 := 0

c0 C h
0

l10, y ≤ 3

l11, y ≤ 3

b, y ≥ r
y := 0
hb := 0

c1
y := 0
hc1 := 0

c1 C h
1

hc0c1 := 0

Fig. 3.

Adding History Clocks. History clocks are associated with ac-
tions and interactions. For a component C we use C h to denote
its extension with history clocks. The extension of the system is
obtained from the extensions of the components alone together
with the history clocks for interactions. As an illustration, Fig-
ure 3 shows the extension of the system in Figure 1.

The intuition behind history clocks is as follows. When inter-
action α takes place, the history clocks hα and ha associated to
α and to any action a ∈ α are reset. Thus they measure the time
passed from the last occurrence of α, respectively of a. Since there
is no timing constraint involving history clocks, the behaviour of
the components is not changed by the addition of history clocks.

l0, x ≤ 5 l1, x ≤ 3
a, y ≥ r

x := 0

x := 0
c

Fig. 4.

For timed automata, the zone graph is finite, con-
sequently so is the computation of I(C) and I(C h)
as in Equation (2). This is no longer the case in the
parametric setup. For instance, the parametric zone
graph of the component C in Figure 4 has two sym-
bolic states l0 ∧ x ≤ 5 and l1 ∧ x ≤ 3 ∧ r ≤ 5 while
the one of C h contains infinitely many symbolic states
such as l1 ∧ x ≤ 3 ∧ r ≤ 5 ∧ y = hc ≥ ha ∧ y + 3k ≥ ha for k ∈ N. We note that,
though one could find particular solutions depending on the systems in cause, since
the reachability problem is undecidable for parametric timed automata [1], one cannot
hope for general solutions.

Generating Interaction Equalities from History Clocks. The basic underlying
observation is that a history clock ha for an action a from a last executed interaction
α is necessarily less than any hβ with β another interaction containing a. This is
because the clocks of the actions in α are the last ones being reset. Consequently,
given a common action a of α0,α2, ... ,αp, ha is the minimum of hαi , ha , min

0≤i≤p
hαi .

The invariant for a given interaction set γ is denoted as ε(γ) and defined as follows:

ε(γ) ,
∧

a∈Act(γ)

ha = min
α∈γ,a∈α

hα.

For our running example, ε({c0, c1}) is simply hc0 = hc1 .

Generating Inequalities from Conflicting Interactions. Without conflicts, that
is, when interactions do not share any action, ε(γ) is quite tight in the sense that it
is essentially a conjunction of equalities. However, ε(γ) is weaker in the presence of
conflicts because any action in conflict can be used in different interactions. The dis-
junctions (implicit in the definition of min) in ε(γ) reflect precisely this uncertainty.
History clocks on interactions are introduced to capture the time lapses between con-
flicting interactions. The basic information exploited in [4] is that when two conflicting
interactions compete for the same action a, no matter which one is first, the other one
must wait until the component which owns a is again able to execute a. This has been
referred to as a “separation constraint” for conflicting interactions and was defined

as the following invariant:

σ(γ) ,
∧

a∈Act(γ)

∧
α 6=β∈γ
a∈α∩β

|hα − hβ | ≥ ka

where |x | denotes the absolute value of x and ka represents the minimum elapsed
time between two consecutive executions of a. In the case of timed automata, the
computation of such minimum elapses follows the classical [11] which consists in
finding a shortest path in a weighted graph built from the zone graph associated to a
timed automaton. The extension to PTAs follows the same construction.

l0 l1 l2
a

x := 0

x = p, a

x := 0

a
x := 0

Fig. 5. An observer for computing ka

A more practical solution is to construct an
observer. To compute the delay between two
consecutive executions of a in C , we can check
if C‖aOa |= ψa

obs is not true, where Oa is the
automaton in Figure 5 and ψa

obs is �¬l2.
In our running example, there are no conflicting interactions. If there were another

component with action c2 interacting with C0 by means of interaction {c0, c2} then
{c0, c2} is in conflict with {c0, c1}. The separation between them is given by the time
elapse between two consecutive c0 which in this particular case is simply q.

The formulae computed throughout this section are invariants. Together, they
form the over-approximation ψS in the ∃∀ Formula from (1).

Proposition 2 Given S , ‖γCi , let Kp(Ci) be the parameter constraints for Ci and
let ψS denote the formula

∧
i I(C h

i)∧I(γ)∧ε(γ)∧σ(γ) after the elimination of history
clocks. We have that for any v such that v |= ∧iKp(Ci), ψS(v) is an invariant of S.

Finding Satisfying Instances for ∃∀ Formulae. We recall that we reduce our
synthesis problem to solving the ∃∀ formulae in (1). For illustration, we show how the
formula looks like for our running example. We have the following formulae:

I(C h
0) =s0 → (l00 ∧ x ≤ 7 ∧ x = ha = hc0) ∧

s1 → (l01 ∧ q + ha ≤ x ≤ min(10, ha + 7) ∧ x = hc0) ∧
s2 → (l00 ∧ x ≤ 7 ∧ q + ha − 10 ≤ x ≤ min(7, ha) ∧ x = hc0) ∧
l00 → (s0 ∨ s2) ∧ l01 → s1

I(C h
1) =s ′0 → (l10 ∧ y ≤ 3 ∧ y = hb = hc1) ∧

s ′1 → (l11 ∧ r + y ≤ hc1 ≤ y + 3 ∧ y = hb) ∧
s ′2 → (l10 ∧ y ≤ 3 ∧ y ≤ hb ≤ y + 3 ∧ y = hc1) ∧
l10 → (s ′0 ∨ s ′2) ∧ l11 → s ′1

By inspecting I(C h
0) and I(C h

1), we can derive that Kp(C h
0) is q ≤ 7 and that Kp(C h

1)
is r ≤ 3. Assuming φsafe is y ≤ x , the ∃∀ Formula (1) is:

∃q, r .q ≤ 7 ∧ r ≤ 3.∀l ∈ L, s ∈ S , x , y .I(γ) ∧ qe
(
I(C h

0) ∧ I(C h
1) ∧ hc0 = hc1

)
→ y ≤ x

where L denotes {l00, l01, l10, l11}, S denotes {s0, s1, s2, s ′0, s ′1, s ′2}, and qe denotes the
result of eliminating the history clocks. Since both x = hc0 and y ≤ hc1 are invariants,
together with hc0 = hc1 , it can be derived that y ≤ x . Consequently, for any r ≤ 3
and q ≤ 7, the system satisfies y ≤ x .

We also note that for an interaction property expressing that a happens before
b to hold, q must be smaller or equal than 3, though the upper bound in the local
constraint is 7. This is because s1 must be reached while still at s ′0 where y = hc1 ≤ 3.
Since q ≤ x and x = hc0 we have that q ≤ 3 by using hc0 = hc1 . This shows that

history clocks forbid parameter valuations which satisfy local parameter constraints
but which could introduce deadlocks in the system.

When the ∃∀SMT solver returns unsat, there are two interpretations: (1) either
φsafe does not hold or (2) ψS is too coarse. To check (1), one might apply the method
from [4] and feed ψS ∧ φsafe to an SMT solver. If the result is unsat, then φsafe is
not a property of the system. For instance, if for our running example we take x < y
as φsafe , the ∃∀SMT solver returns unsat for Formula (1). Since ψS ∧ x < y returns
unsat as well, we know that x < y is not valid.

We conclude the section by stating the correctness of our approach which follows
from the fact that ψS(v) is an over-approximation (Proposition 2).

Proposition 3 Given S , ‖γCi let Kp(Ci) denote the parameter constraints for Ci .
If v is such that it satisfies Formula (1) together with

∧
iKp(Ci) then v is a solution

to the parameter synthesis problem, i.e., v ∈ φp and S(v) |= φsafe .

4 Experiments and Extensions

We have implemented a prototype4 to experiment with our approach. The prototype
takes as input components as PTAs in Imitator [2], a file describing the interactions,
the constraints over parameters and a safety property. It uses EFSMT [9] and Z3 [23] to
return either unsat or a parameter assignment under which the safety property holds.
We have also connected our prototype with the one in [4] such that, in case the result
is unsat, we check if the global property given as input is not actually false. With
respect to performance, our prototype returns an answer within a second for variations
on toy benchmarks such as the train gate controller or the temperature controller with
as many as 16 trains, respectively rods. As final notes, we make two observations: (1)
our experiments with invariants without history clocks show that these invariants are
clearly weaker in the sense that the solver does not find any parameter valuations;
(2) on the negative side, even for minimal models of production lines with filling and
packaging machines, the computation of the set of reachable states does not terminate.

Due to our encoding of the parameter synthesis problem as ∃∀SMT formulae, we can
readily solve the following extensions of parameter synthesis for PTS.

Beyond PTA. Using the expressiveness of decidable ∃∀-constraints, one can encode
guards such as t1 + 3 t4 ≥ 10 and also non-linear arithmetic constraints, as obtained
from some richer classes of hybrid automata.

Quantitative Synthesis. Our method does not generate optimised paramater val-
ues, since this would require an additional quantifier alternation [9]. However, EFSMT

can be modified for optimisation by using a MaxSMT solver (e.g. νZ [6]) instead of
an SMT solver for formulae of existential polarity (the so-called E-solver).

Robustness Synthesis. The imprecision of systems may be modelled by means of
universally quantified, bounded variables. For example, one may model the impre-
cision for a guard t1 > 2 by t1 > 2 + δ, for δ ∈ [−0.05, 0.05] by simply adding
∀δ ∈ [−0.05, 0.05] in the ∃∀SMT formula.

Interaction Properties in LTL. Interaction properties such as “eventually inter-
action a will happen before b”, can effectively be transformed into safety properties
based on the encodings of a corresponding Büchi automata along the lines proposed
for bounded synthesis [16] or for bounded model checking [24].

4 The source code and examples can be found at github.com/astefano/efsmt coverts.

Acknowlegdement. We warmly thank Étienne André for suggesting us the con-
struction of the observer to compute the separations in Section 3.

References

1. R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In ACM,
pages 592–601, 1993.

2. É. André. IMITATOR II: A tool for solving the good parameters problem in timed
automata. In INFINITY, 2010.

3. É. André and R. Soulat. Synthesis of timing parameters satisfying safety properties. In
Reachability Problems, 2011.

4. L. Aştefănoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Compositional
invariant generation for timed systems. In TACAS, 2014.

5. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification for
component-based systems and application. In ATVA, 2008.

6. N. Bjørner, A. Phan, and L. Fleckenstein. νz - an optimizing SMT solver. In TACAS,
LNCS, pages 194–199. Springer, 2015.

7. R. Bruttomesso, A. Carioni, S. Ghilardi, and S. Ranise. Automated analysis of para-
metric timing-based mutual exclusion algorithms. In NFM, 2012.

8. C. Cheng, T. Guelfirat, C. Messinger, J. O. Schmitt, M. Schnelte, and P. Weber. Se-
mantic degrees for Industrie 4.0. CoRR, abs/1505.05625, 2015.

9. C. Cheng, N. Shankar, H. Ruess, and S. Bensalem. EFSMT: A logical framework for
cyber-physical systems. CoRR, abs/1306.3456, 2013.

10. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Parameter synthesis with IC3. In
FMCAD, pages 165–168. IEEE, 2013.

11. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-
time systems. Formal Methods in System Design, 1992.

12. W. Damm, C. Ihlemann, and V. Sofronie-Stokkermans. Ptime parametric verification
of safety properties for reasonable linear hybrid automata. Mathematics in Computer
Science, 5(4), 2011.

13. T. Dang, T. Dreossi, and C. Piazza. Parameter synthesis through temporal logic speci-
fications. In FM, LNCS, pages 213–230. Springer, 2015.

14. A. Donzé. Breach, A toolbox for verification and parameter synthesis of hybrid systems.
In CAV, 2010.

15. J. Faber, C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. Automatic verification
of parametric specifications with complex topologies. In IFM, 2010.

16. B. Finkbeiner and S. Schewe. Bounded synthesis. STTT, 15(5-6):519–539, 2013.

17. G. Frehse, S. K. Jha, and B. H. Krogh. A counterexample-guided approach to parameter
synthesis for linear hybrid automata. In HSCC, LNCS, pages 187–200. Springer, 2008.

18. L. Fribourg and U. Kühne. Parametric verification and test coverage for hybrid automata
using the inverse method. Int. J. Found. Comput. Sci., 24, 2013.

19. T. A. Henzinger and H. Wong-Toi. Using HyTech to synthesize control parameters for
a steam boiler. In FMIA, 1995.

20. T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear parametric model
checking of timed automata. J. Log. Algebr. Program., 52-53, 2002.

21. A. Jovanovic, D. Lime, and O. H. Roux. Integer parameter synthesis for timed automata.
In TACAS, 2013.

22. A. Legay, S. Bensalem, B. Boyer, and M. Bozga. Incremental generation of linear in-
variants for component-based systems. In ACSD, 2013.

23. L. Moura and N. Bjørner. Efficient e-matching for smt solvers. In Proceedings of CADE,
2007.

24. L. Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model checking
over infinite domains. In CADE, LNCS, pages 438–455. Springer, 2002.

25. V. Sofronie-Stokkermans. Hierarchical reasoning for the verification of parametric sys-
tems. In IJCAR, 2010.

26. F. Wang. Symbolic parametric safety analysis of linear hybrid systems with bdd-like
data-structures. In CAV, LNCS, pages 295–307. Springer, 2004.

