N

N

Semantic Authoring of Ontologies by Exploration and
Elimination of Possible Worlds

Sébastien Ferré

» To cite this version:

Sébastien Ferré. Semantic Authoring of Ontologies by Exploration and Elimination of Possible Worlds.
International Conference on Knowledge Engineering and Knowledge Management (EKAW), Nov 2016,
Bologna, Italy. hal-01405502

HAL Id: hal-01405502
https://inria.hal.science/hal-01405502
Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01405502
https://hal.archives-ouvertes.fr

Semantic Authoring of Ontologies by
Exploration and Elimination of Possible Worlds

Sébastien Ferré*

TRISA, Université de Rennes 1
Campus de Beaulieu, 35042 Rennes, France
Email: ferre@irisa.fr

Abstract. We propose a novel approach to ontology authoring that
is centered on semantics rather than on syntax. Instead of writing ax-
ioms formalizing a domain, the expert is invited to explore the possible
worlds of her ontology, and to eliminate those that do not conform to
her knowledge. Each elimination generates an axiom that is automat-
ically derived from the explored situation. We have implemented the
approach in prototype PEW (Possible World Explorer), and conducted
a user study comparing it to Protégé. The results show that more axioms
are produced with PEW, without making more errors. More importantly,
the produced ontologies are more complete, and hence more deductively
powerful, because more negative constraints are expressed.

1 Introduction

Ontology authoring is generally an essential step in the application of knowledge
engineering, and Semantic Web technologies. Existing methodologies generally
distinguish two phases: (a) conceptualization, and (b) formalization in a formal
language, typically the Web Ontology Language (OWL) [7]. We are here con-
cerned with the formalization phase, which presents a number of difficulties, in
particular for beginners but not only. Some difficulties are related to the manipu-
lation of a formal language. Tools like Protégé [10] have precisely been introduced
to facilitate such manipulation. Other difficulties are related to the discrepancies
that can arise between the original intention of the ontology author, and what
the formal ontology really express [12,3]. For example, “only eats vegetables”
does not imply “eats some vegetables”; or to know that “X is a woman” does
not allow to infer that “X is not a man” unless it has been explicitely stated
that “men and women form disjoint classes”. Indeed, negative constraints, like
class disjointness or inequalities between individuals, are often overlooked be-
cause they seem so obvious. Their omission is difficult to detect because they
do not manifest themselves by erroneous inferences, but by missing inferences.
In a previous paper [6], we have shown errors and important omissions in the
Pizza ontology', albeit it is used as a model and pedagogical support for years.

* This research is supported by ANR project IDFRAud (ANR-14-CE28-0012-02).
! nttp://protege.stanford.edu/ontologies/pizza/pizza.owl

For example, classes Food and Country are not disjoint, and it appears that a
vegetarian pizza can actually contain meat and/or fish as ingredient.

We introduce a new approach to ontology authoring that is centered on se-
mantics rather than on syntax. Rather than seeing an ontology as a set of axioms,
we propose to see an ontology through its set of models, i.e. as the set of inter-
pretations that satisfy the ontology. We informally call those models “possible
worlds”. In the same spirit, rather than seeing ontology authoring as the suc-
cessive addition of axioms, we propose to see it as the successive elimination of
“possible worlds”. Each elimination of a subset of “possible worlds” generates an
axiom so that we still obtain a set of axioms in the end. However, the generated
axioms are only the result of the authoring process, not the means. The main ad-
vantage of this approach is to enable the ontology author to work at the level of
instances — possible worlds — like for ontology population (particular knowledge),
while actually defining the terminological level of the ontology (general knowl-
edge). From a previous paper [6], we reuse possible world exploration, and the
contribution of this paper is to support the creation of an ontology from scratch
rather than the mere completion of an existing ontology. Another contribution
is a user study comparing our prototype PEW to Protégé.

Section 2 presents related work on ontology authoring. Section 3 recalls the
basics of description logics, and Section 4 recalls previous results about possi-
ble world exploration, and prototype PEW. Section 5 presents the extension of
PEW for ontology authoring, and Section 6 sketches an example scenario for the
formalization of hand anatomy. Section 7 details the methodology and results of
our user study. Section 8 concludes with a few perspectives.

2 Related Work

Ontology editors such as Protégé [10] tend to favor the expression of positive
constraints, i.e. axioms supporting the inference of positive facts: e.g., class hier-
archy, domain and range of properties. Their users have a mostly syntactic view
of their ontology, and are hardly exposed to their semantics. By semantics, we
here mean which situations the ontology makes possible or not. Semantic feed-
back can be obtained by calling a reasoner to check the consistency of the on-
tology, or the satisfiability of a class expression. However, those calls are tedious
and left to the users. OntoTrack [9] offers a graphical view of the ontology, and
returns immediate semantic feedback when the ontology is modified. However, it
only covers a fragment of OWL Lite, and the view is limited to class hierarchies.
The use of competency questions has also been proposed [13] to specify what
the ontology is expected to answer, and then to automatically test the ontology
during authoring. To some extent, the exploratory approach of our work enables
to generate and validate at the same time such competency questions through
interaction. Another reasoner-assisted ontology authoring approach [8] adapts
test-driven development from softwares to ontologies by defining for each type
of axiom a test to be run before and after the insertion of each axiom.

Table 1. Syntax and semantics of some DL class and property constructors, followed
by TBox and ABox axioms. Thereby C,D denote class expressions, R,S property
expressions, a,b individual names, and r a property name.

Name Syntax|Semantics
top T AT
bottom 1 1]
negation -C AT\ c*
conjunction cnb|ctnD?
disjunction cub |ctuD?®
nominal {a} {a®}

exist. restriction|3R.C |[{z € AT | for some y € AT, (z,y) € RT and y € CT}
univ. restriction [VR.C |[{z € AT | for all y € AT, (z,y) € R implies y € CT}

inverse property |r {(y,z) € AT x AT | (z,y) € rT}

subclass cC D|ctc Dt TBox axioms
subproperty RC S|RT Ccs?

instance C(a) |aT eCt ABox axioms
relation R(a,b)|(a®,bT) € RT

same a=b |aT =0bT

different a#b |aT £b7

A number of controlled natural languages, such as CLOnE [1] or Rabbit [5]
have been proposed to produce OWL axioms from sentences in natural language,
and to verbalize OWL ontologies in natural language. They address the issue
about the syntax of formal languages, not the issue about semantic feedback.
Their contribution is therefore orthogonal to ours, and could complement it.

There also exists a number of (semi-)automated techniques to produce OWL
axioms. Some tools detect common errors, and complete ontologies in a system-
atic way [11,3]. However, those approaches are not constructive but corrective.
Moreover, they are often limited to disjointness axioms, the simplest form of
negative constraints. Formal Concept Analysis [1,14] has been used in interac-
tive ontology authoring. Experts are presented with a sequence of statements,
and for each of them, they have to either confirm the statement, or produce a
counter-example. It guarantees complete formalization for some DL fragments
but it is rather expensive in terms of user interaction, and tends to patronize
the expert.

3 Preliminaries

We here recall basic definitions of Description Logics (DL), which are the basis
of OWL ontologies [7]. We briefly recap here the syntax and semantics of the
sublanguage of OWL DL that is necessary for this work. We assume finite and
disjoint sets Nj, N¢, and Ng, respectively called individual names, class names
and property names. Table 1 shows how complex classes, complex properties,
and axioms can be formed from these atomic entities. An ontology O is a set
of axioms, which are often partioned in two subsets: a TBox containing general

axioms about classes and roles, and an ABox containing particular axioms about
individuals. The semantics of description logics is defined via interpretations
T = (A%, 1) composed of a non-empty set AZ called the domain of Z and a
function -7 mapping individuals to elements of AT, classes to subsets of AT
and properties to subsets of AT x AT (i.e., binary relations). This mapping is
extended to complex classes and properties, and finally used to evaluate axioms
(see Semantics in Table 1). We say T satisfies an ontology O (or Z is a model
of O, written: Z = O) if it satisfies all its axioms. We say that an ontology O
entails an axiom a (written O = «) if all models of O are models of «. Finally,
an ontology is consistent if it has a model and a class C' is called satisfiable w.r.t.
an ontology O if there is a model Z of O with CZ # ().

4 Possible World Exploration

We here recall from a previous paper [(] an approach for a safe and complete
exploration of the possible worlds of an OWL DL ontology. No assumption is
made on the ontology. It may contain instances or not. It may be limited to
taxonomies or contain complex DL axioms. The exploration is based on nav-
igation, where navigation places are situations made possible by the ontology
(formally, satisfiable class expressions): e.g., “pizzas without topping” in the
Pizza ontology. Navigation links enable to move from one place to another, i.e.
from one situation to another (formally, transformations of class expressions). A
key aspect is that those navigation links are automatically computed for each
situation so as to never lead users to impossible situations. If we see the models 7
of an ontology O as “possible worlds”, then each navigation place offers a view
on a subset of possible worlds. If a navigation place is a situation described by
the class expression C, then the subset of possible worlds is made of models Z
of the ontology that make the class expression satisfiable (CZ # ()). Therefore,
navigation across situations supports in effect the exploration of possible worlds.

A prototype, PEW (Possible World Explorer), is available as open source?.
It relies on HermiT [15] for all reasoning tasks. For the sake of concision, we here
use the DL notation (see Section 3) for axioms and class expressions. In prac-
tice, PEW gives users the choice between the DL notation and the Manchester
notation. In the following, examples are based on the Pizza ontology.

4.1 Views over Possible Worlds

At every navigation step, a view over the possible worlds selected by the current
situation is presented to the ontology author. In order to formally define those
views, we first define two sublanguages of class expressions. Simple class expres-
sions serve as elementary situation descriptions, and cognitively intuitive class
expressions combine them to describe complex situations. We called the latter
“cognitively intuitive” because they restrict negation to simple class expres-
sions, which make situations easier to grasp for humans. Indeed, “humans would

2 http://www.irisa.fr/LIS/softwares/pew

http://www.irisa.fr/LIS/softwares/pew

normally have no problems with handling the class of non-smokers or childless
persons, while classes such as non-(persons having a big dog and a small cat)
occur unnatural, contrived and are harder to cognitively deal with”[6].

Definition 1. Given sets No, Ng, N; of class names, property names, and
individual names, the set S of simple class expressions is the set of class expres-
sions of one of the forms (with A € N¢, r € Ngr, a € Ny): A, {a}, Ir. T, Ir.A,
Irfa}, Ir—.T, Ir—.A, Ir~{a}, and their negations A, ~{a}, =3I~ T, etc.

Definition 2. The set CZ of cognitively intuitive class expressions is inductively
defined as follows:
1. every simple class expression is in CZ,
2. for C1,Cy € CZ, C1 1 Co and C1 UCy are in CZ,
3. for any property r and C € CZ, Ir.C' and Ir—.C are in CZL.

The set CZ[X] of pointed CZ class expressions denotes CIZ class expressions
with symbol X occurring exactly once in the place of a subexpression.

The situations that can be described by CZ class expressions involve exist-
ing objects, their identity, their membership to atomic classes, and their inter-
relationships. The syntax and semantics of description logics entail that only
tree-shape relationships can be expressed. Additionally, disjunction enables to
express alternatives for some parts of the situation.

A pointed class expression C(X) € CZ[X] is used to put a focus on a
subexpression of a class expression. It is a class expression with a hole in
place of a subexpression, materialized by the meta-variable X: e.g., C(X) =
PizzaM3ingredient. X represents a pizza with an unspecified ingredient. Given a
class expression D, the expression C(D) denotes the expression C(X) where D
has been substituted for X, filling the hole. For example, given D = Meat Ul Fish,
we have C(D) = Pizza 1N Jingredient.(Meat L Fish).

Definition 3. Given an ontology O, a possible world view C(X)/D is specified
by the combination of a pointed class expression C(X) (the context), and a class
expression D (the focus), such that C'(D) is a satisfiable class in O. The focus is
said necessary if C(—D) is not satisfiable. A view is also composed of instances
and adjuncts, derived from context and focus:

— Inst(C(X)/D)={a € N; | O =C(D)(a)} is the set of instances of C(D);

— Adj(C(X)/D) = {E € S | C(D M E) is satisfiable in O} is the set of pos-
sible adjuncts at focus. A positive simple expression E is called a necessary
adjunct if E € Adj and —E ¢ Adj*.

In a view, the expression C(D) represents the situation, and its decomposi-
tion into context and focus enables the representation of the focus. That focus
is essential for possible world exploration as it enables to look at the different

3 When disjunctions are used, the definitions of satisfiable class and adjuncts are
slighty more complex to ensure that all alternatives remain satisfiable. See [(] for
details.

Possibla World Explorar (PEW) x

File View Help

[Forward| [Refresh| [Home| | Undo]

Satisfiable class expression Possible adjuncts
Possible | 'Necessany - IDemedass} [Adddassl Inﬂdpmpertyl
egetarianPizza N A | crome Sewen [
3 hasingredient . + O Country ~_ 20
D MeatTopping - Country C LN
Create

8 Food

Known instan:
iand MeatTopping —

+
E .
_____ |* 8 PizzaTopping —__
Adclnamedhstam::l Inddanmyrnwslutam:ew 1*
+

SpicyTopping | o0

B — SpicyTepping o0
+ 2 3 hasCountryOfOrigin . T o@

= 3 hasCountryOfOrigin . DomainConcept o0

= 3 hasCountryCfOrigin . Country F o0

3 hasCountryCfOrigin . {America} @ .

= 3 hasCountryCfOrigin . {America} [N]

Fig. 1. Screenshot of PEW: looking at vegetarian pizzas with meat.

objects of the situation. Only situations described by satisfiable classes, aka.
“possible worlds”, are considered. When the expression under focus cannot be
negated in the context, the focus is said necessary. In the Pizza ontology, the
view Pizza M X /3hasIngredient. T has a necessary focus because every pizza has
necessarily an ingredient (O = Pizza T JhasIngredient.T). Therefore, PEW
allows to check any class inclusion C' C D by exploration when C, D € CT.

The instances of a view are the individuals that are a member of the
class C'(D) in all models of the ontology. The adjuncts of a view are the simple
class expressions F that are satisfied by the object at the focus of the situation
in at least one model of the ontology. This is checked by evaluating the satis-
fiability of the situation after inserting F at the focus: C'(D M E). There are
three cases for each positive simple class expression E. If F and —E are possible
adjuncts, we call £ “ambivalent”. If only F is possible, we call it “necessary”.
If only —F is possible, we call it “impossible”. The case where both £ and —F
are not possible adjuncts is excluded because it would imply that C(D) is not
satisfiable.

Figure 1 shows a screenshot of PEW. The user interface reflects the def-
inition of views with the class expression at the top left (A), the instances
at the bottom left (B), and the possible adjuncts at the right (C). The focus
subexpression is highlighted by a background color (D) that is normally yel-

low, and becomes green when the focus is necessary. The described situation
is here a “vegetarian pizza that has meat as an ingredient”, with focus on the
“meat”. In the example, there are no known instance of the situation. The pos-
sible adjuncts are organized in a tree to reflect the class hierarchy, the property
hierarchy, and the membership of individuals to classes. For example, we see
that PizzaTopping is a subclass of Food (E), and that America is a member of
Country (F). Necessary adjuncts are shown in a larger font (G), and impossible
adjuncts are not displayed to avoid cluttering the interface. Ambivalent adjuncts
appear as pairs F, -E, e.g. Country, —Country (H). The unexpected facts that
the screenshot tells us about the possible worlds of the Pizza ontology are that:
(1) a vegetarian pizza can have meat as ingredient (A, D), and (2) a meat top-
ping can be a country or not (H). Fact (1) is possible because vegetarian pizzas
are defined to exclude meat as topping, but not as ingredient. Fact (2) is pos-
sible because a disjointness axiom between Food and Country is missing. The
screenshot also shows reasonable facts: a meat topping can be spicy (I), and can
have a country of origin, for example America (F).

4.2 Moving in the Space of Possible Worlds

The principle of possible world exploration is to move from situation to situation,
in order to look at different corners of the space of possible worlds. Moving to
another situation is done by applying transformations to the class expression
(context and focus) that represents the current situation.

Definition 4. Let V = C(X)/D be a view. The available transformations are:

Inserting an adjunct. Choosing a possible adjunct E € Adj(V'), set context
as C(DNX), and set focus as E.

Inserting a disjunction. Set context as C(D U X), and set focus as T.

Deleting focus subexpression. Keep context as C(X), and set focus as T.

Moving the focus. Considering the class expression C(D), and choosing a
subexpression D', set focus as D', and set context C'(X) as the class ex-
pression C(D) where D’ has been replaced by X .

The most important transformations are “inserting an adjunct” to extend the
situation description, and “moving the focus” to choose where to extend that
description. An important result is the safeness and completeness of possible
world exploration, i.e. all and only possible and cognitively intuitive situation
can be reached through navigation (see proofs in [6]).

Theorem 1. Starting from the initial view X/T defined by context C(X) = X,
and focus D = T (C(D) = T), every reachable view has a satisfiable class
expression (safeness), and every view defined by a satisfiable class expression
in CZT is reachable in a finite number of navigation steps (completeness).

For example, the situation of Figure 1 is reached by the successive insertion of
two possible adjuncts: VegetarianPizza, hasIngredient. MeatTopping. In PEW,
inserting an adjunct is done by double-clicking it, and moving the focus is done
by clicking on the desired subexpression. Inserting a disjunction or deleting the
focus are done through the contextual menu.

5 Possible World Elimination for Ontology Authoring

Compared to our previous work, PEW now offers a wide range of commands
to update an ontology. Previously, the only command was to make the current
situation impossible, generating the axiom C(D) C L. Although many axioms
can be rewritten in that form, there were important limitations. First, the signa-
ture was fixed, limiting its application to the completion of existing ontologies,
and forbidding the creation of new ontologies. Second, the restriction to atomic
negations limited the expressivity of positive constraints such as class inclu-
sion C C D. Indeed, the latter axiom is equivalent to CM—D C 1, and therefore
the right class expression D was limited to simple class expressions. Third, a
number of simple axioms, while expressible, required a contrived formulation,
and many navigation steps. For example, to state that class A is a subclass of B,
it was necessary to select adjunct A, then select adjunct =B, and finally declare
the resulting situation impossible. The following update commands are designed
to minimize the use of explicit negation from the user point of view.

Update commands. Let C(X)/D be a possible world view. The current version
of PEW supports the following commands to update the ontology.

New class. Extending the ontology signature with a new class name A.

New property. Extending the ontology signature with a new property name 7.

Add instance. Extending the ontology signature with a new individual a, and
making it an instance of the class expression with axiom (C(D))(a).

Add subclass of class adjunct B. Creating a new class name A, and making
it a subclass of B with axiom A C B.

Add subproperty from relational adjunct Js.T. Creating a new prop-
erty r, and making it a subproperty of s with property axiom r C s.

Add inverse property from relation adjunct 3s.T. Creating a new prop-
erty r, and making it the inverse of s with axiom r = s~.

Add property constraint from relational adjunct 3s.T. Constrain prop-
erty s to be any of functional, inverse functional, reflexive, irreflexive, sym-
metric, asymmetric, and/or transitive.

Impossible situation. Add axiom C(D) C L.

Necessary focus. Add axiom C(—=D) C L. It has no effect if the focus is
already necessary.

Impossible adjunct E. Add axiom C(D M E) C L. This is equivalent to first
inserting adjunct E at focus, and then triggering command “Impossible sit-
uation”. It is forbidden on necessary adjuncts.

Necessary adjunct E. Add axiom C(D M —E) C L. This is equivalent to
first inserting adjunct E at focus, moving focus on F, and then triggering
command “Necessary situation”. It is useless on necessary adjuncts.

Disjoint adjuncts Ei,...E,. Add axiom E; N E; C L for each pair {E;, E;}.

n(n—1) «
2

This command is equivalent to impossible situation” commands.

The main controls that trigger update commands are visible in Figure 1.
Above the class expression (A), there are buttons to make the current situation

Table 2. Translation of main DL axioms into PEW views and commands. Axioms are
restricted to cognitively intuitive class expressions (C, D € CI).

DL axiom PEW view |PEW update command
TBox C C D|(CNX)/D|necessary focus

RCS|X/T add subproperty R from relation adjunct 35.T
ABoz C(a) |X/C add instance a

r(a,b) | X/{a} necessary adjunct 3r.{b}

a=b |X/{a} necessary adjunct {b}

a#b |X/{a} impossible adjunct {b}

“impossible” or to make the current focus “necessary”. Button “possible” has
the effect to declare new classes, properties and individuals that may have been
inserted directly in the class expression through the entry field in (D). Button
“define class” allows to declare a new class name A, and to make it equivalent
to the class expression (A = C(D)). Above the instances (B), the first button
allows to “add an instance to the class expression”. The second button does the
same with an anonymous individual. Above the tree of adjuncts (C), the two
buttons allow to extend the signatures with “new classes and properties”. Each
positive adjunct has a blue cross on its left to “add subclasses” (when the adjunct
is a class name), and “add subproperties” (when the adjunct is an existential
restriction). Each possible adjunct has on its right a green dot to make it “a
necessary adjunct”, and a red dot to make it “an impossible adjunct”. Other
commands are available through the contextual menu of the tree of adjuncts. A
general principle of the user interface is to provide as much immediate feedback
as possible. For instance, when the focus is made necessary, its color switches
from yellow to green; when an ambivalent adjunct is made necessary, the negative
adjunct disappears, and the positive adjunct switches to a larger font.

To assess the expressivity of PEW, Table 2 explains for each kind of axiom
how to express it by specifying which view to reach by navigation, and which
update command to trigger. Note that both TBox and ABox axioms are covered.
The only restriction is that built class expressions must be cognitively intuitive,
i.e. must have only negation on simple class expressions. Note that, compared
to the previous version, command “necessary focus” enables class inclusions
with complex class expressions on both sides. PEW is therefore complete w.r.t.
the chosen sublanguage of OWL. The features of OWL2 that are not covered
are literals and related features, cardinality restrictions, local reflexivity (self),
property chains, and keys.

Similarly to possible adjuncts that are computed so as to avoid the con-
struction of unsatisfiable class expressions, update commands are designed to
avoid the production of inconsistencies in the ontology. If a command would
produce an inconsistency, it is blocked and an error message is shown to the
user. Commands “impossible adjunct” and “necessary adjunct” are only avail-
able on ambivalent adjuncts because they are either useless or inconsistent on
necessary and impossible adjuncts.

6 Example Scenario: Ontology of Hand Anatomy

We here sketch a possible strategy to formalize the basics of the anatomy of a
normal hand. (We strongly recommend the reader to watch the 8min screencast
at https://youtu.be/udX0hqg6et0Q.) First, new classes are created for the dif-
ferent types of elements of the hand: Hand, Palm, Finger, Phalanz, and Nail.
Those 5 classes are made disjoint. Then, 5 subclasses are added to Finger for
each finger (thumb, index, middle, ring, and little), and 3 subclasses to Phalanz
for each phalanx (proximal, middle, and distal). Those two sets of subclasses
are also made disjoint. The next step is to create property hasDirectPart, and
its inverse isDirectPartOf. From there, the ontology signature is complete, and
completing the ontology is a matter of exploring the possible worlds, and trig-
gering “impossible” and “necessary” commands. For example, looking at hands
with view X/Hand, the possible adjuncts show that at this stage a hand can con-
tain any element, and be part of any element. Here, most possible adjuncts are
either made necessary (e.g., IHasDirectPart.IndexFinger) or impossible (e.g.,
JisDirectPartOf .Hand). Some possible adjuncts may remain ambivalent, e.g.
JisDirectPartOf. T, to let open the possibility to make hands part of larger el-
ements (e.g., arms). The following steps are to visit in turn each element type,
similarly to hands, to apply the relevant constraints: e.g., distal phalanges have
nails, proximal phalanges have no nail, thumbs have no middle phalanx. The do-
main of property r can be constrained by reaching view X/3r.T, and its range
by reaching view (3r.X)/T, which is only one focus move from the former view.

7 User Study: Comparison with Protégé

We conducted a user study to compare PEW and Protégé in the task of designing
an ontology from scratch. The ontology to be designed is the same as in the
previous section, on hand anatomy. The advantages of this topic are that the
related knowledge is well known to everybody, and that it is rich with many
positive and negative constraints.

7.1 Methodology

The subjects of the user study are 30 postgraduate students in bioinformatics
(Master of Bio-Informatics and Genomics at Université Rennes 1). Before the
user study, subjects had been exposed to a short course on Semantic Web tech-
nologies (RDF, RDFS, OWL); but they had been exposed neither to Protégé nor
to PEW. The user study was organized as a practical about OWL ontologies for
the Semantic Web course. Students were simply told that their work would be
used for a research experiment. Subjects were cast in two groups, one working
with PEW, and the other one working with Protégé. Like in all practicals, stu-
dents worked either alone or in a pair. In the following, we refer to the singleton
or pair of students working together as a team. In total, 9 teams worked with
PEW, and 8 teams worked with Protégé.

https://youtu.be/u4X0hq6et0Q

The user study lasted about 2h, starting with 20min of presentation and
tutorial about the system of the group, ending with 10min to fill a SUS ques-
tionnaire [2], and having a maximum of 1h30min to design the requested ontology
on hand anatomy. A document was distributed to each team with instructions,
requirements, and a row of questions to guide the design of the ontology in a pro-
gressive and modular way. At the end of the sessions, we collected the OWL file
of each team, and the anonymous SUS questionnaire filled by each student. The
distributed document, the collected data, and analysis spreadsheets are available
at http://www.irisa.fr/LIS/ferre/pub/ekaw2016.zip.

7.2 Results

Quantity and correction. For each team, we counted the produced OWL
declarations and axioms, and among them the number of erroneous axioms. We
did not count uninformative or imprecise axioms as errors, only axioms that are
inconsistent with the anatomy of a normal hand. The table below reports for
each system the minimum, average, and maximum value of those measures across
teams. It also reports the resulting precision of produced axioms: the individual
precision is the average of precisions team-wise, while the collective precision is
computed on the collection of all axioms produced with a system. The result
is that more axioms were produced with PEW: 74% increase on average, and
nearly three-fold at maximum. The next paragraph shows that the increase is
mostly due to one kind of axioms. Despite that increase, we do not observe more
errors produced with PEW. This entails a higher precision for PEW, with a
significant difference for collective precision. The fact that collective precision
is higher than individual precision for PEW, and the inverse for Protégé says
that the PEW teams that produced the more axioms made less errors than the
average, and that, on the contrary, the Protégé teams that produced the more
axioms made more errors.

system |nb. declarations/axioms|nb. errors|individual precision|collective precision
Protégé 43 (68) 88 0(5) 17 | 7% (93%) 100% 92%
PEW 58 (118) 241 0 (4) 18 | 69% (95%) 100% 97%

Axiom types. We analyzed the type of produced axioms, and counted for
each team the number of axioms of each type. In addition to declarations and
property axioms (e.g., inverse property), we distinguish between positive axioms
in the form C C D, and negative axioms in the form C' C =D or equivalently
C N D LC L. Then, we consider all combinations between atomic classes (A, B)
and simple qualified existential restrictions (3r.A, 3r.B), except combinations
with two restrictions because they are rare and mostly errors. We decomposed
the produced axioms to make them fit the previous types, when possible. For
example, axiom A = B splits into A C B and B C A; and an axiom declaring A
as the domain of R translates to 3R. T C A. For cardinality restrictions produced
with Protégé, we counted minimum cardinality as an existential restriction, and
maximum cardinality as a negated existential restriction. Figure 2 compares the
average number of axioms produced by teams for each system, and for each type

http://www.irisa.fr/LIS/ferre/pub/ekaw2016.zip

other axioms ™

A L — IR, B | —

AC D p—

SRAC B BB

ACIRD I—— i
AC D p—

property axioms |y
declarations | e

0 10 20 30 40 50 60

Fig. 2. Comparison of the average number of declarations and axioms per type.

Table 3. Sample of constraints (12 positive, 8 negative) that must be satisfied by a
normal hand. They are organized in 5 types of DL axioms.

[id [DL axiom [informal description]
ACB subclass relationship

P1 |IndexFinger C Finger every index finger is a finger

P2 |ProximalPhalanz C Phalanx every proximal phalanx is a phalanx
AC3JR.B relation existence

P3 |Hand C JhasPart.IndexFinger every hand has an index finger

P4 |IndexFinger C FisPartOf.Hand every index finger is part of a hand

P5 |Finger C JhasPart. ProximalPhalanz every finger has a proximal phalanx

P6 |IndexFinger C JhasPart. MiddlePhalanz |every index finger has a middle phalanx
P7 |ProximalPhalanz E JisPartOf.Finger every proximal phalanx is part of a finger

P8 |DistalPhalanz © JhasPart. Nail every distal phalanx has a nail

P9 |Nail C 3isPartOf.DistalPhalanz every nail is part of a distal phalanx
JR.AC B qualified property domain/range

P10|3hasPart. Palm T Hand only hands have a palm as a direct part

P11|3isPartOf.Finger T Phalanx only phalanges are parts of fingers

P12|3hasPart.Nail C DistalPhalanz only distal phalanges have a nail
AC-B class disjointness

N1 [Hand C = Finger no hand is a finger

N2 | Thumb E —IndexFinger no thumb is an index finger

N3 |ProximalPhalanz © —DistalPhalanz no proximal phalanx is a distal phalanx
ALC —-3R.B relation non-existence

N4 |Hand C —3hasPart. Hand no hand is made of a hand

N5 |Hand C —3¢sPartOf.Finger no hand is part of a finger

N6 | Thumb E —3hasPart. Middle Phalanx no thumb has a middle phalanx
N7 |ProximalPhalanz © —3isPartOf.Phalanz |no proximal phalanx is part of a phalanx
N8 |ProximalPhalanz & —~JhasPart. Nail no proximal phalanx has a nail

of axiom. The striking one difference is about complex negative axioms in the
form A C —3R.B, which were produced 3.5 times more often with PEW. A typ-
ical example is Thumb C —3hasPart. MiddlePhalanz stating that the thumb has
no middle phalanx. An interesting example of complex axiom that was produced
with PEW is Jorientation™ .JisPartOf Jorientation { RIGHT} T {RIGHT},
stating that every part of a right element is a right element.

Recall estimate. Another question we wanted to answer is about the com-
pleteness of the produced ontologies. Indeed, producing more axioms does not
imply a more complete formalization of the domain. Intuitively, measuring com-

100%

80%

60% W Protégé
209 uPEW

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10P11P12 N1 N2 N3 N4 N5 N6 N7 N8

X

Fig. 3. Comparison of recall on 20 constraints: 12 pos. (P1-P12), 8 neg. (N1-N8).

pleteness amounts to counting the proportion of constraints that are entailed
by the ontology. To make it practical, we have listed 20 constraints represented
as DL axioms (see Table 3), and evaluated the recall of each ontology O over
them as an estimate for completeness, i.e. counting axioms « s.t. O = a. We
have chosen the 20 constraints to cover all above types of positive and negative
axioms, and to have a representative coverage of the basics of hand anatomy
(types of hand elements, and part-of relationships between elements). The ta-
ble below gives the minimum, average, and maximal values of recall for both
systems, and for three sets of constraints: all of them, only positive ones, only
negative ones. Globally, ontologies produced with PEW were more than twice
as complete on average, and even 75% complete in the best case. In fact, the
least complete PEW ontology is still more complete than the average Protégé
ontology. That difference is even stronger for negative constraints, and remains
to a lesser degree for positive constraints. For negative constraints, PEW aver-
age recall reaches 80%, 5 times higher than Protégé average recall (16%). On
negative constraints, the least complete PEW ontology (50%) is still neatly more
complete than the most complete Protégé ontology (38%).

system | all constraints |pos. constraints| neg. constraints
Protégé| 0% (24%) 45% | 0% (29%) 50% | 0% (16%) 38%
PEW [35% (56%) 75%(17% (41%) 58%|50% (80%) 100%

Figure 3 compares the average recall for each constraint. All negative con-
straints have a recall above 63% with PEW, and below 43% with Protégé.

SUS questionnaire. The subjective perception of students about the sys-
tems was collected through the classic SUS questionnaire [2]. We got 13 answers
for each system. The results show only small differences between the two sys-
tems. The score for PEW is 52 on average, ranging from 25 to 85, and is slightly
better for Protégé, 58 on average, ranging from 18 to 80. Students tend to find
PEW more complicated (“I think that I would need the support of a technical person
to be able to use this system” 3.8 vs 3.1) but with less inconsistencies (“I thought
there was too much inconsistency in this system” 2.2 vs 2.5) than Protégé, although
the differences are small. Looking at extreme votes (1 and 5 on a 1-5 scale), it
appears that PEW triggers more contrasted opinions with some students finding
it easy to use, and others finding it very complicated. An interesting comment

by a PEW user says that the difficulty was about the syntax of class expressions
(in Manchester syntax), rather than about the tool itself.

7.3 Interpretation and Discussion

PEW is more productive. We think that this is because in Protégé, there is
a high step between the axioms that are easy to express in the interface, such
as class hierarchy, class disjointness, domains and ranges, and other axioms that
require to actually write class expressions. In PEW, there is also a step between
simple class expressions that are readily available as possible adjuncts, and more
complex class expressions that require several navigation steps. However, simple
class expressions offer more expressivity than the easy axioms of Protégé, and
navigating to complex class expressions is arguably simpler than writing them.

PEW achieves a better precision. Errors in OWL axioms often come
from cognitively unintuitive constructors, in particular universal restriction
and general negation. For example, a Protégé team produced axiom Hand C
VhasPart. RingFinger, using V instead of 3. The restriction in PEW to cogni-
tively intuitive class expressions implies that users are only asked to evaluate
factual (i.e., existential and positive) situations as impossible or necessary.

PEW achieves a better recall, especially when there are many neg-
ative constraints. PEW presents a symmetry between positive and negative
constraints because they are produced in the same way, just using command
“necessary” for the former, and “impossible” for the later. On the contrary,
Protégé has a strong bias towards positive constraints, apart from class disjoint-
ness. However, negative constraints are essential to the deductive potential of
expressive ontologies.

PEW usability is encouraging. PEW is a prototype that is much less
mature than Protégé but it got a SUS score not far behind Protégé. Its bad
reception by a few proves that the design of the user interface must be improved.
The good reception by a few others shows that there is ample room for such
improvement. The main issue is the readability of class expressions. Another
issue is the fact that commands in contextual menus (e.g., inverse property) are
often overlooked compared to commands as buttons.

8 Conclusion

We have presented a semantic approach to ontology authoring based on pos-
sible world exploration and elimination. It has been implemented as prototype
PEW, and a user study has demonstrated promising results in terms of quan-
tity, precision, and recall of the produced axioms, and in terms of usability. The
most notable result is the increase in recall, from 24% with Protégé to 56%
with PEW, where 100% would mean a complete OWL formalization of the do-
main knowledge for the selected OWL fragment. Future work will investigate
long-run guidance for the systematic exploration of possible worlds in order to

further improve recall; and the verbalization in natural language of class expres-
sions to improve the readability of explored situations so as to further improve
precision. We also plan to re-implement PEW as a Protégé plugin in order to
combine their strengths, and favor its adoption.

Acknowledgement. We wish to thank Olivier Dameron for his precious support in
the user study, as well as the students of master BIG for their kind participation.

References

1.

10.

11.

12.

13.

14.

15.

Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic
knowledge bases using formal concept analysis. In: Int. Joint Conf. Artificial Intel-
ligence. pp. 230-235 (2007)

Brooke, J.: SUS: A quick and dirty usability scale. In: Jordan, P., Thomas, B.,
Weerdmeester, B., McClelland, A. (eds.) Usability evaluation in industry, pp. 189—
194. London: Taylor and Francis (1996)

Corman, J.: Explorer les théorémes d’une TBox. In: Journées francophones
d’Ingénierie des Connaissances (2013)

Davis, B., Igbal, A.A., Funk, A., Tablan, V., Bontcheva, K., Cunningham, H.,
Handschuh, S.: Roundtrip ontology authoring. In: International Semantic Web
Conference. pp. 50-65. Springer (2008)

Denaux, R., Dimitrova, V., Cohn, A.G., Dolbear, C., Hart, G.: Rabbit to OWL:
ontology authoring with a CNL-based tool. In: Int. Work. Controlled Natural Lan-
guage. pp. 246-264. Springer (2009)

Ferré, S., Rudolph, S.: Advocatus diaboli - exploratory enrichment of ontologies
with negative constraints. In: ten Teije et al., A. (ed.) Int. Conf. Knowledge Engi-
neering and Knowledge Management. pp. 42-56. LNAI 7603, Springer (2012)
Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

Keet, C., Lawrynowicz, A.: Test-driven development of ontologies. In: et al., H.S.
(ed.) Extended Semantic Web Conf. (ESWC). LNCS 9678, Springer (2016)
Liebig, T., Noppens, O.: OntoTrack: A semantic approach for ontology authoring.
Web Semantics 3(2), 116-131 (2005)

Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., Musen, M.: Creating
semantic web contents with Protege-2000. Intelligent Systems, IEEE 16(2), 60-71
2001

%oved)a—Villalén, M., Suérez-Figueroa, M., Gémez-Pérez, A.: Validating ontologies
with OOPS! In: Knowledge Engineering and Knowledge Management (EKAW),
pp. 267-281. Springer (2012)

Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. In: Engineering Knowledge in the Age of the
Semantic Web, pp. 63-81. Springer (2004)

Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., Van Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: European Semantic Web Con-
ference. pp. 752-767. Springer (2014)

Rudolph, S.: Acquiring generalized domain-range restrictions. In: Int. Conf. Formal
Concept Analysis. pp. 32-45. LNCS 4933, Springer (2008)

Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient OWL reasoner. In:
OWLED. vol. 432 (2008)

	Semantic Authoring of Ontologies by Exploration and Elimination of Possible Worlds

