
An incremental learning method to support the
annotation of workflows with data-to-data

relations

Enrico Daga1, Mathieu d’Aquin1, Aldo Gangemi2,3, and Enrico Motta1

1 Knowledge Media Institute (KMI) - The Open University.
Walton Hall, MK76AA Milton Keynes, United Kingdom

{enrico.daga,mathieu.daquin,enrico.motta}@open.ac.uk
2 National Research Council (CNR), Via Gaifami 18, 95126 Catania, Italy

3 Paris Nord University, Sorbonne Cite CNRS UMR7030, France
aldo.gangemi@cnr.it

Abstract. Workflow formalisations are often focused on the represen-
tation of a process with the primary objective to support execution.
However, there are scenarios where what needs to be represented is the
effect of the process on the data artefacts involved, for example when
reasoning over the corresponding data policies. This can be achieved by
annotating the workflow with the semantic relations that occur between
these data artefacts. However, manually producing such annotations is
difficult and time consuming. In this paper we introduce a method based
on recommendations to support users in this task. Our approach is cen-
tred on an incremental rule association mining technique that allows to
compensate the cold start problem due to the lack of a training set of
annotated workflows. We discuss the implementation of a tool relying
on this approach and how its application on an existing repository of
workflows effectively enable the generation of such annotations.

1 Introduction

Research in workflows has been characterized on a variety of aspects, spanning
from representation and management to preservation, reproducibility, and anal-
ysis of process executions [16, 11, 13, 14, 17]. Recently, a data-centric approach
for the representation of data relying systems has been proposed with the aim
to simulate the impact of process executions on the data involved, particularly
to perform reasoning on the propagation of data policies [6, 4]. This approach
puts the data objects as first class citizens, aiming to represent the possible se-
mantic relations among the data involved. Annotating data intensive workflows
is problematic for various reasons: (a) annotation is time consuming and it is
of primary importance to support the users in such activity, and (b) workflow
descriptions are centred on the processes performed and not on the data, mean-
ing that some form of remodelling of the workflow is required. In this paper we
introduce a method based on recommendations to support users in producing



2 E. Daga, M. d’Aquin, A. Gangemi, E. Motta

data-centric annotations of workflows. Our approach is centred on an incremen-
tal rule association mining technique that allows to compensate the cold start
problem due to the lack of a training set of annotated workflows. We discuss the
implementation of a tool relying on this approach and how its application on an
existing repository of workflows (the ”My experiment”4 repository) effectively
enables the generation of such annotations. In the next Section we introduce the
related work. Section 3 describes the approach and Section 4 how it has been
implemented in a tool that allows to annotate workflows as data-centric descrip-
tions. In Section 5 we present the results of an experiment performed with real
users where we measured how this method impacts the sustainability of the task.
Finally, we discuss some open challenges and derive some conclusions in the final
Section 6.

2 Related Work

In this paper we introduce a novel approach to recommend (semantic, data-
centric) annotations for workflows. Research on process formalization and de-
scription covers a variety of aspects, from the problem of reproducibility to the
ones of validation, preservation, tracing and decay [20, 7, 11, 22, 3]. Several mod-
els have been proposed for describing workflow executions, like the W3C PROV
Model5, the Provenance Model for Workflows (OPMW)6 and more recently the
Publishing Workflow Ontology (PWO)7 introduced in [9]. A recent line of re-
search is focused on understanding the activities behind processes in workflows,
with the primary objective to support preservation and reusability of workflow
components, particularly in the context of scientific workflows [2, 10]. We place
our work in the area of semantic annotation of workflows. Semantic technologies
have been used in the past to analyze the components of workflows, for example
to extract common structural patterns [8]. Recently more attention has been
given to the elicitation of the activity of workflows in a knowledge principled
way, for example searching for common motifs in scientific workflows [10] or la-
belling data artifacts to produce high level execution traces (provenance) [1].
This research highlighted the need for adding semantics to the representation of
workflows and the challenges associated with the problem of producing such an-
notations [1]. Recently a number of repositories of scientific workflows have been
published - Wings8, My experiments9, SHIWA10 are the prominent examples.
We selected the My experiments repository as data source for our study. For this
reason, we will use the terminology of the SCUFL2 model11 when discussing how
our approach deals with the workflow formalization.

4 My experiment: http://www.myexperiment.org/.
5 W3C PROV: https://www.w3.org/TR/prov-overview/.
6 OPMW: http://www.opmw.org/.
7 PWO: http://purl.org/spar/pwo.
8 Wings: http://www.wings-workflows.org/.
9 My experiments: http://www.myexperiment.org/.

10 SHIWA: http://www.shiwa-workflow.eu/wiki/-/wiki/Main/SHIWA+Repository
11 SCUFL2: https://taverna.incubator.apache.org/documentation/scufl2/.



An incremental learning method to support the annotation of workflows 3

There are several approaches to recommendation using clustering techniques
(Support Vector Machines (SVM), Latent Semantic Aanalysis (LSA), to name
a few). Formal Concept Analysis (FCA) [21] found a large variety of applica-
tions [19], and the literature reports several approaches to incremental lattice
construction [15], including the Godin [12] algorithm, used in the present work.
FCA found application in knowledge discovery as a valuable approach to asso-
ciation rule mining (ARM) [19]. In the context of FCA, association rules are
generated from closed item sets, where the association rule to be produced re-
lates attributes appearing in the intent of the same concept. A large number of
studies focused on how to reduce the number of item sets to explore in order to
obtain a complete set of minimal rules [19]. In the scenario of the present study,
where the lattice changes incrementally, generating all the possible association
rules would be a waste of resources. The algorithm proposed in the present work
is on demand, as it only extracts the rules that are relevant for the item to anno-
tate. Our algorithm receives as input an item set, and retrieves from the lattice
the association rules associated with a relevance score. In other words, we follow
an approach unusual with respect to the literature, attacking the ARM problem
as an Information Retrieval (IR) one.

The approach presented in this paper uses the Datanode ontology [5], a hier-
archy of possible relations between data objects. The ontology defines a unique
type - Datanode - and 114 relations, starting from a single top property: relat-
edWith, having the class Datanode as rdfs:domain and rdfs:range. Datanode
relations can express meta-level aspects (e.g. describes/describedBy, hasAnno-
tation/isAnnotationOf ), containment (e.g. hasPart/isPartOf, hasSection/isSec-
tionOf ) as well as a properties like derivation (e.g. hasCopy/isCopyOf, processed-
Into/processedFrom), among others. Relations are organised by the means of the
rdfs:subPropertyOf property. For example, processedInto is a subproperty of
hasDerivation, as it is possible to derive a new data object from another also
in other ways, for example generating an unprocessed copy - hasCopy. In the
present work, a datanode is any data object that can be the input or output of
a workflow processor. Instead on characterizing the activities of a workflow (like
in [10]), Datanode can be applied to describe it in terms of relations between the
input and the output of processors12. The resulting network of data objects can
be used to reason upon the propagation of policies, for example in the context
of a Smart City data hub [6, 4].

3 Recommendations for data-centric workflow
annotations

Our approach to the problem is an iterative supervised annotation process sup-
ported by incremental recommendations. Figure 1 provides an overview of the
approach by listing the elements and their dependency, organised in four phases.
Phase 1. The starting point is an encoded artefact representing the workflow
structure and its metadata (like the ones available through My experiments).

12 Datanode: http://purl.org/datanode/ns/.



4 E. Daga, M. d’Aquin, A. Gangemi, E. Motta

The workflow code is first translated into a data centric graph, where nodes are
data objects manipulated by processors and arcs the relations among them. The
result of this transformation is a directed graph with anonymous arcs (named
IO port pairs in the Figure), being these arcs the items to be annotated by the
user.
Phase 2. Each IO port pair is then associated with a set of features automati-
cally extracted from the workflow metadata.
Phase 3. Extracted features constitute the input of the recommendation engine,
designed using the Formal Concept Analysis (FCA) framework. This method is
an incremental association rules mining technique that exploits incoming anno-
tations to incrementally produce better recommendations.
Phase 4. Features of the IO port pair, alongside the workflow documentation
and the recommendations, are the input of the user that is requested to select a
set of annotations from a fixed vocabulary (the Datanode ontology).

In this section we focus on the first three phases of the approach: the work-
flow to data graph transformation (Section 3.1); the features extraction method
(Section 3.2); and the recommendation engine (Section 3.3), leaving the last one
to Section 4.

Fig. 1. Description of the approach and dependencies. Elements of phase 1 are rep-
resented in blue rectangles on top. Phase 2 includes the features generation (the only
stretched exagon). Elements of Phase 3 are depicted as pink ovals with dashed borders
and phase 4 ones as light yellow ovals.

3.1 Workflows as data-centric graphs

Workflows are built on the concept of processor as unit of operation13. A pro-
cessor constitutes of one or more input and output ports, and a specification of
the operation to be performed. Processors are then linked to each other through
a set of data links connecting an output port to the input of another proces-

13 In thi paper we use the terminology of the SCUFL2 specification. However, the basic
structure is a common one. In the W3C PROV-O model this concept maps to the
class Activity, in PWO with Step, and in OPMW to WorkflowExecutionProcess, just
to mention few examples.



An incremental learning method to support the annotation of workflows 5

Fig. 2. A workflow from the My Experiment repository: ”LipidMaps Query”.

sor resulting in a composite tree-like structure. Figure 2 shows an example of a
workflow taken from the ”My Experiment” repository 14.

The objective of our work is to describe what happens inside the processors
by expressing the relation between input and output. For example, the processor
depicted in Figure 3 has two input ports (1 and 2) and one output (3). For this
processor, we generate two links connecting the input data objects to the output
one, through two anonymous arcs: 1 → 3 and 2 → 3. We name these arcs ”IO
port pairs” (input-output port pairs), and these are the items we want to be
annotated. In this example, the IO port pair 1 → 3 could be annotated with the
Datanode relation refactoredInto, while the IO port pair 2 → 3 would not be
annotated as only referring to a configuration parameter of the processor and
not to an actual data input. For the present work we translated 1234 Workflows
from the My Experiments repository, resulting in 30612 IO port pairs (altough
we will use a subset of them in the user evaluation).

3.2 Extracting features from workflow descriptions

As described in the previous Section, the workflow description is translated in
a graph of IO port pairs connected by unlabelled links. In order to characterize
the IO port pair we exploit the metadata associated with the components of the
workflow involved: the input and output port and the processor that includes
them. For each of these elements we extract the related metadata as key/value
pairs, which we use as core features of the IO port pair. Applying this approach
to the My Experiments corpus we obtained 26900 features. Table 1 shows an
example of features extracted for the IO port pairs described in Figure 3.

14 ”LipidMaps Query” workflow from My experiment: http://www.myexperiment.

org/workflows/1052.html.



6 E. Daga, M. d’Aquin, A. Gangemi, E. Motta

Fig. 3. This processor has three ports: two input ports (1 and 2) and one output port
(3). We can translate this model into a graph connecting the data objects of the inputs
to the one of the output.

Table 1. Sample of the features extracted for the IO port pair 1 → 3 in the example
of Figure 3.

Type Value

From/FromPortName string

To/ToPortName split

Activity/ActivityConfField script

Activity/ActivityType http://ns.taverna.org.uk/2010/

activity/beanshell

Activity/ActivityName reformat list

Activity/ConfField/derivedFrom http://ns.taverna.org.uk/2010/

activity/localworker/org.embl.

ebi.escience.scuflworkers.java.

SplitByRegex

Activity/ConfField/script List split = new ArrayList();if
(!string.equals(””)) { String regexString =
”,”; if (regex != void) ...

Processor/ProcessorType Processor

Processor/ProcessorName reformat list

However, the objective of these feature sets is to support the clustering of
the annotated IO port pair through finding similarities with IO port pairs to be
annotated. At this stage of the study we performed a preliminary evaluation of
the distribution of the features extracted. We discovered that very few of them
were shared between a significant number of port pairs (see Figure 4). In order
to increase the number of shared features we generated a set of derived fea-
tures by extracting bags of words from lexical feature values and by performing
Named Entity Recognition on the features that constituted textual annotations
(labels and comments), when present. Moreover, from the extracted entities we
also added the related DBPedia categories and types as additional features. As
example, Table 2 shows a sample of the bag of words and entities extracted from
the features listed in the previous Table 1.

The generation of derived features increased the number of total features
significantly (up to 59217), while making the distribution of features less sparse,
as reported in Figure 5.



An incremental learning method to support the annotation of workflows 7

Table 2. Example of derived features (bag of words and DBPedia entities) generated
for the IO port pair 1→ 3.

Type Value

From/FromPortName-word string

To/ToPortName-word split

From/FromLinkedPortDescription-word single

From/FromLinkedPortDescription-word possibilities

From/FromLinkedPortDescription-word orb

From/FromLinkedPortDescription-word mass

FromToPorts/DbPediaType wgs84:SpatialThing

FromToPorts/DbPediaType resource:Text file

FromToPorts/DbPediaType resource:Mass

FromToPorts/DbPediaType Category:State functions

FromToPorts/DbPediaType Category:Physical quantities

FromToPorts/DbPediaType Category:Mathematical notation

80%

18%

2%

< 10

10 ∼ 100

> 100

Fig. 4. Distribution of features ex-
tracted from the workflow descriptions.

68%

28%

4%

< 10

10 ∼ 100

> 100

Fig. 5. Distribution of features (includ-
ing derived features).

3.3 Retrieval of association rules and generation of
recommendations

Generating recommendations usually requires an annotated corpus to be avaial-
able as training set. While repositories of workflows (especially scientific work-
flows) exist, they are not annotated with data-to-data relations. In order to
overcome this problem we opted for an incremental approach, where the recom-
mendations are produced according to the available annotated items on demand.
The rules needed are of the following form:

(f1, f2, ..., fn) → (a1, a2, ..., an)

where f1, .., fn are the features of the IO port pairs and a1, .., an are the data-
to-data relations used to annotate them. Our approach relies on extracting as-
sociation rules from a concept lattice built through FCA incrementally. Such
a lattice is built on a formal context of items and attributes. In FCA terms,
the items are the IO port pairs and the attributes their features as well as the
chosen annotations. Each node of the FCA lattice is a closed concept, mapping
a set of items all having a given set of attributes. A FCA concept would then
be a collection of IO port pairs all having a given set of features and/or annota-
tions. In a FCA lattice, concepts are ordered from the top concept (supremum),
including all items and (usually) no shared features, to the bottom concept (in-
fimum), including all the available features and a (possibly) empty set of items.
The lattice is built incrementally using the Godin algorithm [12]. The algorithm



8 E. Daga, M. d’Aquin, A. Gangemi, E. Motta

(re)constructs the lattice integrating at each iteration a new item - the IO port
pair, with its set of attributes (the features and annotations altogether). As-
sociation rules are extracted from the FCA lattice, where the key point is the
co-occurrence of features f and annotations a in the various FCA concepts.

The following Listing 1.1 gives a sample of an association rule we want to
mine from the lattice:

Listing 1.1. Example of association rule mined from the FCA lattice.
(ProcessorName−word: base,
FromPortName: base64,
ActivityName−word: decode,
ActivityType: http://ns.taverna.org.uk/2010/activity/beanshell,
ProcessorName−word: array,
FromPortName−word: base64,
ToPortName: bytes,
ActivityName−word: 64,
ActivityConfField: mavenDependency,
ActivityName−word: array,
ActivityConfField: derivedFrom,
ProcessorName−word: decode,
ActivityName−word: byte)
→ (dn:hasDerivation, dn:refactoredInto)

Several approaches have been studied to generate and rank association rules
from a FCA lattice. A common problem in this scenario is the number of rules
that can be extracted, and how to reduce them effectively [18]. Indeed, the
number of rules can increase significantly with the number of concepts of the
FCA lattice. Generating all of them is time consuming as the lattice becomes
larger. Precomputing the rules is not a valid solution, as the lattice will change
for any new item inserted. In this scenario, we are forced to compute the rules
live for each new item to be annotated.

The above considerations motivate a set of new requirements for implement-
ing a rule mining algorithm that is effective in this scenario:

1. generate only rules that have annotations in the body
2. generate only rules that are applicable to the candidate item to be annotated
3. only use one rule for each recommendation (head of the rule), to avoid re-

dundancies
4. rank the rules to show the most relevant first

In order to satisfy the requirements above we propose an algorithm to mine
association rules on-demand, by considering two sets of attributes as constraints
for the head and body of the rules.

The algorithm we propose has three inputs: (1) a FCA Lattice; (2) the set of
attributes of the item for which we need recommendations (the set of attributes
that needs to be in the body of the rules); and (3) the set of attributes we want
to be part of the recommendations (the set of attributes that can be in the
rule head). Listing 1.2 illustrates the algorithm for extracting rules on-demand.
Input is a lattice L, a set of attributes as possible recommendations (target rule
head: H) and a set of attributes for which we need recommendations (target
rule body: B). The algorithm assumes the two sets to be disjoint. The algorithm
traverses the lattice starting from the bottom, adding the infimum to a FIFO



An incremental learning method to support the annotation of workflows 9

queue - lines 3-5. For each concept in the queue, first assess whether its attributes
contains items from both the target head and body. If it doesn’t, the concept
(and related paths in the lattice) can be skipped - lines 7-11. Otherwise, the
parent concepts are added to the queue, and the concept considered to rule
extraction - line 13. The non empty intersections of attributes with the target
head and body form a candidate rule b → h.

Listing 1.2. Algorithm to mine association rules from a lattice on demand :

1 // L: the lattice; H: attributes in the rule head; B: attributes in the rule body
2 mineRules(L,H,B):
3 C ← [] // an empty FIFO list of concepts
4 R ← [] // an empty set of Rules (indexed by their head).
5 add(inf(L), C) // add the infimum of L to C
6 while !empty(C):
7 c ← first(C) // remove one concept from the top of the queue
8 h=retain(attributes(c),H) // attributes in c in the head of rule
9 if empty(h): continue // move to another concept

10 b ← retain(attributes(c),B) // attributes in c allowed in the body of the rule
11 if empty(b): continue // move to another concept
12 // Add the concept parents to the queue.
13 addAll(parents(L,c),C)
14 // Examine b→ h measures (s: support, k: confidence, r: relevance)
15 // support (s): items satisfying the rule divided by all items
16 s ← count(objects(c)) / count(objects(supremum(L)))
17 if s = 0: continue // A supremum rule includes this one
18 // confidence (k): support divided by the items only satisfying b
19 I ← [] // items only satisfying the body
20 for p in parents(c):
21 if (attributes(p) ∩ h) = ∅:
22 if attributes(p) = b: add(objects(p), I)
23 end
24 end
25 if count(I) = 0: k ← 1
26 else:
27 k ← count(objects(c)) / count(I)
28 end
29 // relevance (r): intersection of B with b, divided by B
30 r ← count(B ∩ b) / count(B)
31 // check this rule is the best so far with this head
32 if hasRuleWithHead(R,h):
33 rule ← getRuleWithHead(R,h)
34 if relevance(rule) > r: continue
35 if relevance(rule) = r:
36 if confidence(rule) > k: continue
37 if confidence(rule) = k:
38 if support(rule) >= s: continue
39 end
40 end
41 end
42 rule ← (h,b,s,k,r) // the new rule, or the best so far for head
43 add(rule, R)
44 end
45 return R

The association rule derived is scored by support (s), confidence (k) and
a third measure inspired from information retrieval and called relevance (r) -
lines 15-30. The definitions of these measures, considering a rule b → h, is as
follows:

– Support s (b → h): the ratio of items satisfying b ∪ h to all the items in the
lattice - line 16;



10 E. Daga, M. d’Aquin, A. Gangemi, E. Motta

– Confidence k (b → h): the ratio of items satisfying b∪h to the items satisfying
b - lines 19-28;

– Relevance r (b → h): the degree of overlap between the body of the rule b
and the set of features of the candidate item B. It is calculated as the size
of the body divided by the size of the intersection between the body of the
rule and the features of the candidate item - line 30.

Only the rule with best score for a given head is kept in the list of rules - lines 31-
43. Our ranking algorithm will privilege relevance over confidence and support,
in order to boost the rules (recommendations) that are more likely to be relevant
for the candidate item.

Since this is an iterative process, at the very beginning there will be no rec-
ommendation. New annotations will feed the reference corpus (the FCA lattice)
and the system will start to generate association rules. Our hypothesis is that
the quality of the rules and therefore their usefulness in supporting annotations,
increase with the size of the annotated items (this will be part of the evaluation
in Section 5).

4 Implementation of the approach

The approach described in the Section 3 has been implemented in the Dinowolf
(Datanode in workflows) tool15 based on the SCUFL2 worfklow specification16

and the taxonomy of data-to-data relations represented by the Datanode on-
tology. While Dinowolf has been implemented leveraging the Apache Taverna17

library, it can work with any input following the SCUFL2 specification. When
a workflow is loaded, the system performs a preliminary operation to extract
the IO port pairs and to precompute the related set of features following the
methods described in Sections 3.1 and 3.2. In order to expand the feature set
with derived features - bag of words and entities from DBPedia - the system
relies on Apache Lucene18 for sentence tokenization (considering english stop-
words), DBPedia Spotlight19 for named entity recognition, and the DBPedia20

SPARQL endpoint for feature expansion with categories and entity types. The
tool includes three views: 1) a Workflows view, listing the workflows to be anno-
tated; 2) a Workflow details view, including basic information and a link to the
external documentation at My Experiments; and a 3) Annotation view, focused
on providing details of the features of the IO port pair to annotate. The task
presented to the users is the following:

1. Choose an item from the list of available workflows;

15 Dinowolf: http://github.com/enridaga/dinowolf.
16 SCUFL2 Specification: https://taverna.incubator.apache.org/documentation/

scufl2/.
17 Apache Taverna: https://taverna.incubator.apache.org/.
18 Apache Lucene: https://lucene.apache.org/core/
19 DBPedia Spotlight: http://spotlight.dbpedia.org/.
20 DBPedia: http://dbpedia.org/.



An incremental learning method to support the annotation of workflows 11

2. Select an IO port pair to access the Annotation view;
3. The annotation view shows the features associated with the selected IO

port pair alongside a list of data node relationships exploiting a set of rules
extracted from the FCA lattice as recommendations, and the full Datanode
hierarchy as last option;

4. The user can select one or more relations by picking from the recommended
ones or by exploring the full hierarchy. Recommended relations, ranked fol-
lowing the approach described in Section 3.3, are offered with the possibility
to expand the related branch and select one of the possible subrelations as
well;

5. Alternatively, the user can skip the item, if the IO port pair does not include
two data objects (it is the case of a configuration parameter set as input for
the processor);

6. Finally, the user can postpone the task if she feels unsure about what to
choose and wants first explore other IO port pairs of the same workflow;

7. The user iteratively annotate all the port pairs of a workflow. At each iter-
ation, the system makes use of the previous annotations to recommend the
possible relations for the next selected IO port pair.

This system has been used to perform the user based experiments that constitute
the source of our evaluation.

5 Experimental evaluation

Our main hypothesis is that the approach presented can boost the task of an-
notating workflows as data-to-data annotated graphs. In particular, we want to
demonstrate that the quality of the recommendations improves while the anno-
tated cases grow in number. In order to evaluate our approach we performed a
user based evaluation. We loaded twenty workflows from ”My Experiments”21

in Dinowolf and asked six users to annotate the resulting 260 IO port pairs.
The users, all members of the research team of the authors, have skills that we
consider similar to the ones of a data manager, for example in the context of a
large data processing infrastructure like the one of [4]. In this experiment, users
were asked to annotate each one of the IO port pairs with a semantic relation
from a fixed vocabulary (the Datanode ontology), by exploiting the workflow
documentation, the associated feature set and the recommendations provided.
The workflows were selected randomly and were the same for all the participants,
who were requested also (a) to follow the exact order proposed by the tool, (b)
to complete all portpairs of a workflow before moving to the next; (c) to only
perform an action when confident of the decision, otherwise to postpone the
choice (using the ”Later” action); (d) to select the most specific relation avail-
able - for example, to privilege processedInto over hasDerivation, when possible.
Each user worked on an independent instance of the tool (and hence lattice) and
performed the annotations without interacting with other participants. During
the experiment the system monitored a set of measures:

21 My Experiments: http://www.myexperiments.org.



12 E. Daga, M. d’Aquin, A. Gangemi, E. Motta

– the time required to annotate an IO port pair;
– how many annotations were selected from recommendations;
– the average rank of the recommendations selected, calculated as a percentage

of the overall size of the recommendation list; and
– the average of the relevance score of the recommendations selected.

Figures 6-9 illustrate the results of our experiments with respect of the above
measures. In all diagrams, the horizontal axis represents the actions performed
in chronological order, placing on the left the initial phase of the experiment go-
ing towards the right until all 260 IO port pairs were annotated. The diagrams
ignore the actions marked as ”Later”, resulting on few jumps in users’ lines,
as we represented in order all actions including at least one annotation from
at least a single user. Figure 6 shows the evolution of the time spent by each
user on a given annotation page of the tool before a decision was made. The
diagram represents the time (vertical axis) in logarithmic scale, showing how, as
more annotations are made and therefore more recommendations are generated,
the effort (time) required to perform a decision is reduced. Figure 7 illustrates
the progress of the ratio of annotations selected from recommendations. This
includes cases where a subrelation of a recommended relation has been selected
by the user. While it shows how recommendations have an impact from the very
beginning of the activity, it confirms our hypothesis that the cold-start problem
is tackled through our incremental approach. Figure 8 depicts the average rank
of selected recommendations. The vertical axis represents the score placing at
the top the first position. This confirms our hypothesis that the quality of recom-
mendations increases, stabilizing within the upper region after a critical mass of
annotated items is produced, reflecting the same behavior observed in Figure 7.
Finally, we illustrate in Figure 9 how the average relevance score of picked rec-
ommendations changes in time. The relevance score, computed as the portion of
features matching a given recommendation that overlaps with the features of the
item to be annotated, increases partly because the rules become more abstract
(contain less features), partly reflecting the behavior of the ranking algorithm
and matching the result of Figure 8.

20 40 60 80 100 120 140 160 180 200 220 240 260

5s

20s

1m

5m
10m

Fig. 6. Evolution of the time spent by each user on a given annotation page of the tool
before a decision was made.



An incremental learning method to support the annotation of workflows 13

20 40 60 80 100 120 140 160 180 200 220 240 260
0.0
0.2

0.5
0.7

1.0

Fig. 7. Progress of the ratio of annotations selected from recommendations.

20 40 60 80 100 120 140 160 180 200 220 240 260

0.0
0.2

0.5
0.7

1.0

Fig. 8. Average rank of selected recommendations. The vertical axis represents the
score placing at the top the first position.

6 Conclusions

In this article we proposed a novel approach to support the semantic annota-
tion of workflows with data centric relations. We showed through applying this
approach on a set of workflows from the My Experiments repository that it
can effectively reduce the effort required to achieve this task for data managers
and workflow publishers. We plan to integrate the presented approach with the
methodology described in [4] in order to support Data Hub managers in the anno-
tation of the data manipulation processes required to compute the propagation of
policies associated with the data involved. We have enough confidence to believe
that the characteristics of scientific workflows as data intensive workflows [16]
are equivalent, because they can be reduced to data centric representations, as
demonstrated in Section 3.1.

The quality and consistency of the resulting annotations are not the subject
of the present study, and we did not discussed the interpretation of the Datan-
ode relations with the participants of our experiment. For this reason each user
operated on a separate instance of the tool, to reduce the possibility that incon-
sistent usage of relations would negatively impact the quality of the association
rules generated. However, we received feedback that encourages to better doc-
ument the Datanode ontology, for example providing cases of the possible uses
and misuses of each relation.

In this work we only focused on the relations between input and output
within workflow processors. It is possible to extend this approach to also cover
relations between data items with other directions (input to input, output to
input, etc...).



14 E. Daga, M. d’Aquin, A. Gangemi, E. Motta

20 40 60 80 100 120 140 160 180 200 220 240 260
0.0
0.2

0.5
0.7

1.0

Fig. 9. Progress of the average relevance score of picked recommendations.

The FCA component of the Dinowolf Tool is based on an incremental lattice
construction algorithm. We plan to integrate a lattice update algorithm in order
to support modifications to the annotations.

However, the incremental learning of association rules approach presented in
this paper is independent from both the features of the item to annotate and the
nature of the annotations. This opens the hypothesis that it could be effectively
reused in other scenarios.

References

1. Alper, P., Belhajjame, K., Goble, C.A., Karagoz, P.: Labelflow: Exploiting workflow
provenance to surface scientific data provenance. In: International Provenance and
Annotation Workshop. pp. 84–96. Springer (2014)

2. Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Bech-
hofer, S., Garc a Cuesta, E., Soiland-Reyes, S., Verdes-Montenegro, L., et al.:
Workflow-centric research objects: First class citizens in scholarly discourse. In:
Proceedings of Workshop on the Semantic Publishing,(SePublica 2012) 9 th Ex-
tended Semantic Web Conference Hersonissos, Crete, Greece, May 28, 2012 (2012)

3. Belhajjame, K., Zhao, J., Garijo, D., Garrido, A., Soiland-Reyes, S., Alper, P.,
Corcho, O.: A workflow prov-corpus based on taverna and wings. In: Proceedings
of the Joint EDBT/ICDT 2013 Workshops. pp. 331–332. ACM (2013)

4. Daga, E., d’Aquin, M., Adamou, A., Motta, E.: Addressing exploitability of Smart
City data. In: Smart Cities Conference (ISC2), 2016 IEEE Second International.
IEEE (2016)

5. Daga, E., d’Aquin, M., Gangemi, A., Motta, E.: Describing semantic web ap-
plications through relations between data nodes. Tech. Rep. kmi-14-05, Knowl-
edge Media Institute, The Open University, Walton Hall, Milton Keynes (2014),
http://kmi.open.ac.uk/publications/techreport/kmi-14-05

6. Daga, E., d’Aquin, M., Gangemi, A., Motta, E.: Propagation of policies in rich data
flows. In: Proceedings of the 8th International Conference on Knowledge Capture.
pp. 5:1–5:8. K-CAP 2015, ACM, New York, NY, USA (2015), http://doi.acm.
org/10.1145/2815833.2815839

7. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.:
Semantically-aided business process modeling. In: International Semantic Web
Conference. pp. 114–129. Springer (2009)

8. Ferreira, D.R., Alves, S., Thom, L.H.: Ontology-based discovery of workflow activ-
ity patterns. In: International Conference on Business Process Management. pp.
314–325. Springer (2011)



An incremental learning method to support the annotation of workflows 15

9. Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: A pattern-based ontology for
describing publishing workflows. In: Proceedings of the 5th International Con-
ference on Ontology and Semantic Web Patterns - Volume 1302. pp. 2–13.
WOP’14, CEUR-WS.org, Aachen, Germany, Germany (2014), http://dl.acm.

org/citation.cfm?id=2878937.2878939

10. Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., Goble, C.: Common
motifs in scientific workflows: An empirical analysis. Future Generation Computer
Systems 36, 338–351 (2014)

11. Garijo, D., Gil, Y.: A new approach for publishing workflows: Abstractions, stan-
dards, and linked data. In: Proceedings of the 6th Workshop on Workflows in
Support of Large-scale Science. pp. 47–56. WORKS ’11, ACM, New York, NY,
USA (2011), http://doi.acm.org/10.1145/2110497.2110504

12. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on galois (concept) lattices. Computational intelligence 11(2), 246–267
(1995)

13. Gómez-Pérez, J.M., Corcho, O.: Problem-solving methods for understanding pro-
cess executions. Computing in Science & Engineering 10(3), 47–52 (2008)

14. Hettne, K., Soiland-Reyes, S., Klyne, G., Belhajjame, K., Gamble, M., Bechhofer,
S., Roos, M., Corcho, O.: Workflow forever: Semantic web semantic models and
tools for preserving and digitally publishing computational experiments. In: Pro-
ceedings of the 4th International Workshop on Semantic Web Applications and
Tools for the Life Sciences. pp. 36–37. SWAT4LS ’11, ACM, New York, NY, USA
(2012), http://doi.acm.org/10.1145/2166896.2166909

15. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence
14(2-3), 189–216 (2002)

16. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific
workflow management. Journal of Grid Computing 13(4), 457–493 (2015)

17. Palma, R., Corcho, O., Hotubowicz, P., Pérez, S., Page, K., Mazurek, C.: Digi-
tal libraries for the preservation of research methods and associated artifacts. In:
Proceedings of the 1st International Workshop on Digital Preservation of Research
Methods and Artefacts. pp. 8–15. DPRMA ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2499583.2499589

18. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal concept analysis in knowl-
edge discovery: a survey. In: International Conference on Conceptual Structures.
pp. 139–153. Springer (2010)

19. Poelmans, J., Kuznetsov, S.O., Ignatov, D.I., Dedene, G.: Formal concept analysis
in knowledge processing: A survey on models and techniques. Expert systems with
applications 40(16), 6601–6623 (2013)

20. Weber, I., Hoffmann, J., Mendling, J.: Semantic business process validation. In:
Proceedings of the 3rd International Workshop on Semantic Business Process Man-
agement (SBPM08), CEUR-WS Proceedings. vol. 472 (2008)

21. Wille, R.: Formal concept analysis as mathematical theory of concepts and concept
hierarchies. In: Formal Concept Analysis, pp. 1–33. Springer (2005)

22. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The taverna workflow
suite: designing and executing workflows of web services on the desktop, web or in
the cloud. Nucleic acids research p. gkt328 (2013)


