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Compiègne cedex, France linh.nguyen@hds.utc.fr
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Abstract. This paper studies the problem of learning from instances
characterized by imprecise features or imprecise class labels. Our work is
in the line of active learning, since we consider that the precise value of
some partial data can be queried to reduce the uncertainty in the learning
process. Our work is based on the concept of racing algorithms in which
several models are competing. The idea is to identify the query that will
help the most to quickly decide the winning model in the competition.
After discussing and formalizing the general ideas of our approach, we
study the particular case of binary SVM and give the results of some
preliminary experiments.
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1 Introduction

Although classical learning schemes assume that every instance is fully specified,
there are many cases where such an assumption is unlikely to hold, and where
some features or the label (class) of an instance may be only partially known.
The problem of learning from imprecise data has gained an increasing interest
with applications in different fields such as image or natural language processing
[2, 3, 4]. The imprecision of the data leads to uncertainties in the learning process
and in the decision making.

This work explores an issue related to partially specified data: if we have
the possibility to gain more information on some of the partial instances, which
instance and what feature of this instance should we query? In the case of a
completely missing label (and to a lesser extent of missing features), this problem
is known as active learning and has already been largely treated [6]. However, we
are not aware of such works for partial data. The present proposal is based on the
concept of racing algorithms [5], initially used to select an optimal configuration
of a given lazy learning model, and since then applied to other settings such as
multi-armed bandits. The idea of such racing algorithms is to oppose a (finite) set
of alternatives in a race, and to progressively discard losing ones as the race goes
along. In our case, the set of alternatives will be composed of different possible
models. As the data are partial, the performance of each model is uncertain



(i.e. interval-valued) and several candidate models can be optimal. The race will
consist in iteratively making queries, i.e., in asking to an oracle the precise value
of a partial data. The key question is then to identify those queries that will
help the most to reduce the set of possible winners in the race and to converge
quickly to the optimal model. We illustrate this general approach using binary
SVM classifiers.

The rest of this paper is organized as follows: we present in section 2 the basic
notations used in this paper. Section 3 introduces the general principles of racing
algorithms and formalizes the problem of quantifying the influence of a query
on the race. Section 4 is focused on the particular case of binary SVM. Finally,
some experiments in Section 5 demonstrate the effectiveness of our proposals.

2 Preliminaries

In classical supervised setting, the goal of the learning approach is to find a
model m : X → Y within a set M of models using n input/output samples
(xi, yi) ∈ X × Y, where X and Y are respectively the input and the output
spaces3. The empirical risk R(m) associated to a model m is then evaluated as

R(m) =

n∑
i=1

`(yi,m(xi)) (1)

where ` : Y ×Y → R is the loss function, and `(y,m(x)) is the loss of predicting
m(x) when observing y. The selected model is then the one minimizing (1), that
is

m∗ = arg min
m∈M

R(m). (2)

Another way to see the model selection problem is to assume that a model mj

is said to be better than mk (denoted mj � mk) if

R(mk)−R(mj) > 0, (3)

or in other words if the risk of mj is lower than the risk of mk.
In this work, we are however interested in the case where data are partial,

that is where general samples are of the kind (Xi, Yi) ⊆ X × Y. In such a case,
Equations (1), (2) and (3) are no longer well-defined, and there are different
ways to extend them. Two of the most common ways to extend them is either
to use a minimin (optimistic) or a maximin (pessimistic) approach [7]. That is,
if we extend Equation (1) to a lower bound

R(m) = inf
(xi,yi)∈(Xi,Yi)

n∑
i=1

`(yi,m(xi)) (4)

=

n∑
i=1

inf
(xi,yi)∈(Xi,Yi)

`(yi,m(xi)) :=

n∑
i=1

`(Yi,m(Xi))

3 As X is often multi-dimensional, we will denote its elements and subsets by bold
letters.



and an upper bound

R(m) = sup
(xi,yi)∈(Xi,Yi)

n∑
i=1

`(yi,m(xi)) (5)

=

n∑
i=1

sup
(xi,yi)∈(Xi,Yi)

`(yi,m(xi)) :=

n∑
i=1

`(Yi,m(Xi))

then the optimal minimin m∗mm and maximin m∗Mm models are

m∗mm = arg min
m∈M

R(m) and m∗Mm = arg min
m∈M

R(m).

The minimin approach usually assumes that data are distributed according to the
model, and tries to find the best data replacement (or disambiguation) combined
with the best possible model. Conversely, the maximin approach assumes that
data are distributed in the worst possible way, and select the model performing
the best in the worst situation, thus guaranteeing a minimal performance of the
model. However, such an approach, due to its conservative nature, may lead to
sub-optimal model.

In this paper, we are interested into another kind of approach, where we do
not search for a unique optimal model but rather consider sets of potentially
optimal models. In this case, we can say that a model mj is better than mk (still
denoted mj � mk) if

R(mk−j) = inf
(xi,yi)∈(Xi,Yi)

R(mk)−R(mj) > 0, (6)

which is a direct extension of Equation (3). That is, mj � mk if and only if it is
better under every possible precise instances (xi, yi) consistent with the partial
instances (Xi, Yi). We can then denote by

M∗ = {m ∈M :6 ∃m′ ∈M s.t.m′ � m} (7)

the set of undominated models within M, that is the set of models that are
maximal with respect to the partial order �.

Example 1. Figure 1 illustrates a situation where Y consists of two different
classes (gray and white), and X of two dimensions. Only imprecise data are
numbered. Squares are assumed to have precise features. Stripped squares have
unknown labels. Assuming that M = {m1,m2} (the models could be decision
stumps, or one-level decision trees), we would have that m2 = m∗Mm is the
maximin model and m1 = m∗mm the minimin one. The two models would however
be incomparable according to (6), hence M∗ =M in this case.

3 Partial data querying: a racing approach

Both the minimin and maximin approaches have the same goal: obtaining a
unique model from partially specified data. The idea we consider in this paper
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Fig. 1. Illustration of partial data and competing models

is different. We want to identify and query those data that will help the most to
reduce the set M∗. Whether an information is useful for the race is formalized
in what follows. Let us assume that X = X 1× . . .×XP is a Cartesian product of
P spaces, and that a partial data (Xi, Yi) can be expressed as (×P

j=1X
j
i , Yi), and

furthermore that if X j ⊆ R is a subset of the real line, then Xj
i is an interval.

A query on a partial data (×P
j=1X

j
i , Yi) consists in transforming one of its

dimension Xj
i or Yi into the true precise value xj

i or yi, provided by an ora-

cle. More precisely, Qj
i denotes the query made on Xj

i or Yi, with j = p + 1

for Yi. Given a model mk and a data (×P
j=1X

j
i , Yi), the result of a query can

have an effect on the interval [R(mk), R(mk)], depending on whether it changes
the interval [`(Yi,mk(Xi)), `(Yi,mk(Xi))]. Similarly, when assessing whether the
model mk is preferred to m`, the query can have an influence on the value
R(m`−k) or not. This can be formalized by two functions, EQj

i
: M → {0, 1}

and JQj
i

:M×M→ {0, 1} such that:

EQj
i
(mk) =

{
1 if ∃xi

j ∈ Xj
i that reduces [R(mk), R(mk)]

0 else
(8)

and

JQj
i
(mk,m`) =

{
1 if ∃xi

j ∈ Xj
i that increases R(m`−k)

0 else.
(9)

Of course, when j = p + 1, Xj
i is to be replaced by Yi. EQj

i
simply tells us

whether or not the query can affect our evaluation of mk performances, while
JQj

i
(mk,m`) informs us whether the query can help to differentiate mk and m`.

Example 2. In figure 1, questions related to partial classes (points 4 and 5) and
to partial features (points 1, 2 and 3) have respectively the same potential effect,
so we can restrict our attention to Q3

4 (the class of point 3) and to Q1
1 (the first

feature of point 3). For these two questions, we have

- EQ3
4
(m1) = EQ3

4
(m2) = 1 and JQ3

4
(m1,m2) = JQ3

4
(m1,m2) = 0.



- EQ1
1
(m1) = 1, EQ1

1
(m2) = 0 and JQ1

1
(m1,m2) = JQ1

1
(m2,m1) = 1.

This example shows that while some questions may reduce our uncertainty about
many model risks (Q3

4 reduce risk intervals for both models), they may be less
useful than other questions to tell two models apart (Q1

1 can actually lead to
declare m2 better than m1).

The effect of a query being now formalized, we can propose a method inspired by
racing algorithms to select the best query. An initial set of models can be created
by sampling several times a precise data set (xi, yi) ∈ (Xi, Yi) and then learning
several optimal models according to this selection. Algorithm 1 summarises the
general procedure applied to find the best query and to update the race. This
algorithm simply searches the query that will have the biggest impact on the
minimin model and its competitors, adopting the optimistic attitude of racing
algorithms. Once a query has been made, the data set as well as the set of
competitors are updated, so that only potentially optimal models remain. In
the next sections, we illustrate our proposed setting with the popular SVM
algorithm.

Algorithm 1: One iteration of the racing algorithm to query data.

Input: data (Xi, Yi), set {m1, . . . ,mR} of models
Output: updated data and set of models

1 k∗ = arg mink∈{1,...,R}R(mi);

2 foreach query Qj
i do

3 V alue(Qj
i ) = E

Q
j
i
(mk∗) +

∑
k 6=k∗ JQ

j
i
(mk∗ ,mk);

4 Qj∗

i∗ = arg max
Q

j
i
V alue(Qj

i );

5 Get value xj∗

i∗ of Xj∗

i∗ ;
6 foreach k, ` ∈ {1, . . . , R} × {1, . . . , R}, k 6= ` do
7 Compute R(m`−k) ;
8 if R(m`−k) > 0 then remove m` from {m1, . . . ,mR} ;

4 Application to binary SVM

In the binary SVM setting [1], the input space X = Rp is the real space and the
binary output space is Y = {−1, 1}, where −1, 1 encode the two possible classes.
The model mk = (wk, ck) corresponds to the “maximum-margin” hyperplane
wkx + ck with wk ∈ Rp and ck ∈ R. For convenience sake, we will use (wk, ck)
and mk interchangeably from now on. We will also focus on the case of imprecise
features but precise labels, and will denote yi the label of training instances for
short, instead of Yi. We will also focus on the classical 0−1 loss function defined
as follows for an instance (xi, yi):

`(yi,mk(xi)) =

{
0 if yi ·mk(xi) ≥ 0

1 if yi ·mk(xi) < 0,
(10)



where mk(xi) = wkxi + ck.

4.1 Instances inducing imprecision in empirical risk

Before entering into the details of how risk bounds (4)-(6) and query effects (8)-
(9) can be estimated in practice, we will first investigate under which conditions
an instance (Xi, yi) induces imprecision in the empirical risk. Such instances
are the only ones of interest here, since if `(yi,mk(Xi)) = `(yi,mk(Xi)) =
`(yi,mk(Xi)), then EQj

i
(mk) = JQj

i
(mk,ml) = 0 for all j = 1, . . . , P

Definition 1. Given a SVM model mk, an instance (Xi, yi) is called an impre-
cise instance w.r.t mk (or shortly, imprecise instance when mk is fixed) if and
only if

∃x
′

i,x
′′

i ∈ Xi s.t mk(x
′

i) ≥ 0 and mk(x
′′

i ) < 0. (11)

Instances that do not satisfy Definition 1 will be called precise instances (w.r.t
mk). Being precise means that the sign of mk(xi) is the same for all xi ∈ Xi,
which implies that the loss `(yi,mk(Xi)) = `(yi,mk(Xi)) is precisely known.
The next example illustrates the notion of (im)precise instances.

Example 3. Figure 2 illustrates a situation with two models and where the two
different classes are represented by grey (y = +1) and white (y = −1) colours.
From the figure, we can say that (X1, y1) is precise w.r.t both m1 and m2,
(X2, y2) is precise w.r.t m1 and imprecise w.r.t m2, (X3, y3) is imprecise w.r.t
both m1 and m2 and (X4, y4) is imprecise w.r.t m1 and precise w.r.t m2.

X 2

X 1

1

4

2 3

m1

m2

Fig. 2. Illustration of interval-valued instances

Determining whether an instance is imprecise w.r.t. mk is actually very easy in
practice. Let us denote by

mk(Xi) := inf
xi∈Xi

mk(xi) and mk(Xi) := sup
xi∈Xi

mk(xi) (12)

the lower and upper bounds reached by model mk over the space Xi. The follow-
ing result characterizing imprecise instances, as well as a hyperplane mk(xi) = 0
intersects with a region Xi, follows from the fact that the image of a compact
and connected set by a continuous function is also compact and connected.



Proposition 1. Given mk(xi) = wkxi + ck and the set Xi, then (Xi, yi) is
imprecise w.r.t. mk if and only if

mk(Xi) < 0 and mk(Xi) ≥ 0. (13)

Furthermore, we have that the hyperplane mk(xi) = 0 intersects with the region
Xi if and only if (13) holds. In other words, ∃xi ∈ Xi s.t. mk(xi) = 0.

This proposition means that to determine whether an instance (Xi, yi) is im-
precise, we only need to compute values mk(Xi) and mk(Xi), which can be
easily done using Proposition 2. Note that, due to a lack of space, the proofs of
proposition are omitted in this conference version.

Proposition 2. Given (Xi, yi) with Xj
i =

[
aji , b

j
i

]
and SVM model (wk, ck), we

have

mk(Xi) =
∑
wj

k≥0

wj
kb

j
i +

∑
wj

k<0

wj
ka

j
i + ck

mk(Xi) =
∑
wj

k≥0

wj
ka

j
i +

∑
wj

k<0

wj
kb

j
i + ck.

Again, it should be noted that only imprecise instances are of interest here, as
only those can result in an increase of the lower empirical risk bounds. We will
therefore focus on those in the next sections.

4.2 Empirical risk bounds and single effect

We are now going to investigate the practical computation of R(mk), R(mk)
for k = 1, . . . ,M , as well as the value EQj

i
(mk) of a query on a model mk.

Equations (4) (resp. (5)) implies that the computation of R(mk) (resp. R(mk))
can be done by computing `(yi,mk(xi)) (resp. `(yi,mk(xi))) for i = 1, . . . , n
and then by summing the obtained values, therefore we can focus on computing
`(yi,mk(xi) and `(yi,mk(xi) for a single instance. Similarly, EQj

i
(mk) = 1 only

when the interval [`(yi,mk(xi), `(yi,mk(xi)] can be modified by querying Xj
i ,

therefore we can also focus on a single instance to evaluate it. When Xi is
imprecise w.r.t. mk, we have `(yi,mk(Xi)) = 0 and `(yi,mk(Xi)) = 1. Let us
now consider the problem of computing, for a query Qj

i , the effect EQj
i
(mk) it

can have on the empirical risk bounds. In the case of 0-1 loss, the only case where
EQj

i
(mk) = 1 is the one where [`(yi,mk(xi)), `(yi,mk(xi))] goes from [0, 1] before

the query to a precise value after it, or in other words if there is xj
i ∈ Xj

i such

that X
′

i = ×j′ 6=jX
j
′

i ×{x
j
i} is precise w.r.t. mk. According to Proposition 1, this

means that either mk(X
′

i) should become positive, or mk(X
′

i) should become

negative after query Qj
i . This is formalised in the next proposition.



Proposition 3. Given (Xi, yi) with Xj
i =

[
aji , b

j
i

]
and model mk(xi) s.t. Xi is

imprecise, then EQj
i
(m) = 1 if and only if one of the following conditions holds

mk(Xi) ≥ −|wj
k|(b

j
i − aji ) (14)

or

mk(Xi) < |wj
k|(b

j
i − aji ). (15)

R(mk), R(mk), needed in the line 1 of Algorithm 1 to identify the most
promising model k∗, are computed easily using the values of `(yi,mk(Xi)) =
0 and `(yi,mk(Xi)) = 1, while Equations (14)-(15) provide us easy ways to
estimate the values of EQj

i
(mk∗), needed in line 3 of Algorithm 1.

4.3 Pairwise risk bounds and effect

Let us now focus on how to compute, for a pair of models mk and ml, whether a
query Qj

i will have an effect on the value R(mk−l). For this, we will have to com-
pute R(mk−l), which is a necessary step to estimate the indicator JQj

i
(ml,mk)

of a possible effect of Qj
i . To do that, note that R(mk−l) can be rewritten as

R(mk−l) = inf
xi∈Xi,i=1,...,n

(R(mk)−R(ml)) =

n∑
i=1

`k−l(xi, yi) (16)

with

`k−l(yi,Xi) = inf
xi∈Xi

(
`(yi,mk(xi))− `(yi,ml(xi)

)
, (17)

meaning that computing R(mk−l) can be done by summing up `k−l(yi,Xi) over

all Xi, similarly to R(mk) and R(mk). Also, JQj
i
(ml,mk) = 1 if and only if Qj

i

can increase R(mk−l). We can therefore focus on the computation of `k−l(yi,Xi)
and its possible changes. First note that if Xi is precise w.r.t. both mk and ml,
then `(yi,mk(Xi))− `(yi,ml(Xi) is a well-defined value, as each loss is precise,
and in this case JQj

i
(ml,mk) = 0. Therefore, the only cases of interest are those

where Xi is imprecise w.r.t. to at least one model. We will first treat the case
where it is imprecise for only one, and then will proceed to the more complex
case where it is imprecise w.r.t. both. Note that imprecision with respect to each
model can be easily established using Proposition 1.

Imprecision with respect to one model Let us consider the case where Xi

is imprecise w.r.t. either mk or ml. In each of these two cases, the loss induced by
(Xi, yi) on the model for which it is precise is fixed. Hence, to estimate the lower
loss `k−l(yi,Xi), as well as the effect of a possible query Qj

i , we only have to look
at the model for which (Xi, yi) is imprecise. The next proposition establishes the
lower bound `k−l(yi,Xi), necessary to compute R(mk−l).



Proposition 4. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk(Xi) and

ml(Xi) s.t (Xi, yi) is imprecise w.r.t. one and only one model, then we have

`k−l(Xi) = `(yi,mk(Xi))− 1 if Xiis imprecise w.r.t. ml (18)

`k−l(Xi) = −`(yi,ml(Xi)) if Xiis imprecise w.r.t. mk. (19)

Let us now study under which conditions a query Qj
i can increase `k−l(Xi), hence

under which conditions JQj
i
(ml,mk) = 1. The two next propositions respectively

address the case of imprecision w.r.t. ml and mk. Given a possible query Qj
i on

Xi, the only possible way to increase `k−l(Xi) is for the updated X
′

i to become
precise w.r.t. to the model for which Xi was imprecise, and moreover to be so
that `(yi,ml(X

′

i)) = 0 (`(yi,mk(X
′

i)) = 1) if Xi is imprecise w.r.t. ml (mk).

Proposition 5. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk(xi) and

ml(xi) s.t. (Xi, yi) is imprecise w.r.t. ml, the question Qj
i is such that JQj

i
(ml,mk) =

1 if and only if one of the two following condition holds

yi = 1 and ml(Xi) ≥ −|wj
l |(b

j
i − aji ) (20)

or

yi = −1 and ml(Xi) < |wj
k|(b

j
i − aji ). (21)

Proposition 6. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk(xi) and

ml(xi) s.t. (Xi, yi) is imprecise w.r.t. mk, the question Qj
i is such that JQj

i
(ml,mk) =

1 if and only if one of the two following condition holds

yi = 1 and mk(Xi) < |wj
l |(b

j
i − aji ) (22)

or

yi = −1 and mk(Xi) ≥ −|wj
k|(b

j
i − aji ). (23)

In summary, if Xi is imprecise w.r.t. only one model, estimating JQj
i
(ml,mk)

comes down to identify whether the Xi can become precise with respect to such
a model, in such a way that the lower bound is possibly increased. Propositions 5
and 6 show that this can be done easily using our previous results of Section 4.1
concerning the empirical risk.

Imprecision with respect to both models Given Xi and two models mk,ml,
we will adopt the following notations:

mk−l(Xi) > 0 if mk(xi)−ml(xi) > 0 ∀xi ∈ Xi (24)

mk−l(Xi) < 0 if mk(xi)−ml(xi) < 0 ∀xi ∈ Xi. (25)

In the other cases, this means that there are x
′

i, x
′′

i ∈ Xi for which the model
difference have different signs. The reason for introducing such differences is
that, if mk−l(Xi) > 0 or mk−l(Xi) < 0, then not all combinations in {0, 1}2 are



possible for the pair (`(yi,mk(xi), `(yi,ml(xi)), while they are in the other case.
These various situations are depicted in Figure 3, where the white class is again
the negative one (yi = −1).

X2

X1

Xi

m1

m2

(a) m1−2(Xi) > 0

X2

X1

Xi

m1

m2

(b) m1−2(Xi) < 0

X2

X1

Xi

m1
m2

(c) Non-constant sign

Fig. 3. Illustrations for the different possible cases corresponding to the difference
m1(x)−m2(x)

Since mk(xi)−ml(xi) is also of linear form (with weights wj
k − wj

l ), we can
easily determine whether the sign of mk−l(Xi) is constant: it is sufficient to
compute the interval[

inf
xi∈Xi

(mk(xi)−ml(xi)), sup
xi∈Xi

(mk(xi)−ml(xi))

]
that can be computed similarly to [mk(Xi),mk(Xi)] in Section 4.1. If zero is not
within this interval, then mk−l(Xi) > 0 if the lower bound is positive, otherwise
mk−l(Xi) < 0 if the upper bound is negative. The next proposition indicates how
to easily compute the lower bound `k−l(Xi) for the different possible situations.

Proposition 7. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk, ml s.t.

(Xi, yi) is imprecise w.r.t. both the given models, then the minimal difference
value is

`k−l(Xi) =


min(0,−yi) if mk−l(Xi) > 0

min(0, yi) if mk−l(Xi) < 0

−1 else

(26)

The next question is to know under which conditions a query Qj
i can increase

`k−l(Xi) (or equivalently R(mk−l)), or in other words to determine pair (i, j)
s.t JQj

i
(ml,mk) = 1. Proposition 7 tells us that `k−l(Xi) can be either 0 or

−1 if mk−l(Xi) > 0 or mk−l(Xi) > 0, and is always −1 if mk−l(Xi) can take
both signs. The next proposition establishes conditions under which `k−l(Xi)
can increase.

Proposition 8. Given (Xi, yi) with Xj
i = [aji , b

j
i ] and two models mk(xi) and

ml(xi) s.t (Xi, yi) is imprecise w.r.t both of the given models, then JQj
i
(ml,mk) =

1 if the following conditions hold



if `k−l(Xi) = −1 and yi = 1:

mk(Xi) < |wj
l |(b

j
i − aji ) or ml(Xi) ≥ −|wj

l |(b
j
i − aji ) (27)

if `k−l(Xi) = −1 and yi = −1:

mk(Xi) ≥ −|wj
k|(b

j
i − aji ) or ml(Xi) < |wj

l |(b
j
i − aji ). (28)

if `k−l(Xi) = 0 and mk−l(Xi) < 0:

mk(Xi) < |wj
l |(b

j
i − aji ) and ml(Xi) ≥ −|wj

l |(b
j
i − aji ) (29)

if `k−l(Xi) = 0 and mk−l(Xi) > 0:

mk(Xi) ≥ −|wj
k|(b

j
i − aji ) and ml(Xi) < |wj

l |(b
j
i − aji ). (30)

For instance, in Figure 3.(a) and 3.(b), JQ1
i
(m1,m2) = 0 for both cases, while

JQ2
i
(m1,m2) = 0 for 3.(a) and JQ2

i
(m1,m2) = 1 for 3.(a)

5 Experiments

To demonstrate the usefullness of our approach, we run experiments on a “con-
taminated” version of a standard benchmark data set, namely Parkinson (195
instances, 22 features, binary labels) which contains precise features and labels.
10% of data have been used for training and 90% for testing, since querying
partial data is most useful when only few data are available. For each feature
xj
i in the training set, a biased coin is flipped in order to decide whether or not

this example will be contaminated; the probability of contamination is p = 0.4.
In case xj

i is contaminated, a width qji will be generated from a uniform distri-

bution. Then the generated interval valued data is Xj
i = [xj

i + qji (Dj − xj
i ), x

j
i +

qji (D
j−xj

i )] where Dj = mini(x
j
i ) and D

j
= maxi(x

j
i ). To evaluate the efficiency

of our proposal, we query interval data using three approaches : our racing algo-
rithm, a random querying strategy (each time, interval examples will be chosen
randomly) and the most partial querying strategy (each time, examples with
the largest imprecision will be queried). Firstly, we randomly generate 100 com-
pletions of interval-valued data. From each completion, one linear SVM model
is trained and the set of such SVM models is considered as the initial set of
undominated models. To limit the computational cost, at each iteration of the
racing algorithm, we choose to perform 2 queries (batch query) instead of only
one. After each batch, we discard the dominated models and determine the best
potential model. In case of multiple minimal risk models, the one with minimum
value of Rm will be chosen as the best potential model. The accuracy of the best
potential model is computed on the test set. The learning process is repeated 10
times and the average size of the sets of models and the average accuracy of the
best potential model are given in Figure 4(a) and Figure4(b), respectively. The
experimental results show that, using our approach, the size of the undominated
set can be quickly reduced and that the accuracy of the best potential model
converges very fast to the one obtained when knowing all precise data, while the
reduction of the size of the set and the convergence of the accuracy is slower and
less stable for other querying strategies.
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Fig. 4. Results of the experiments

6 Conclusion

This paper has explored an issue related to partially specified data: what is the
best information to query so that an optimal model can be quickly determined.
We have proposed to use a racing algorithms approach in which several models
are competing and some of them are discarded as long as new precise information
become available. These general concepts have been illustrated in the case of
binary SVM and the first experiments have shown the interest of the method.
Future works will focus on the case of interval-valued features and set-valued
labels.
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