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An Evolutionary Optimization Approach for
Path Planning of Arrival Aircraft for Optimal
Sequencing
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Abstract. In this paper, we present an evolutionary optimization based
path planning algorithm at Terminal Airspace (TAS) that provides a near
optimal aircraft arrival sequence at Final Approach Fix (FAF). The se-
quence obtained minimizes the inter-arrival time as well as provides con-
flict free path planning to an Air Traffic Controller (ATC). A classic
Genetic Algorithm (GA) based optimization technique with conflict de-
tection and resolution is developed. Conflict between any two aircraft is
detected based on their future arrival time at the waypoint and resolved
by stretching the gap between those two aircraft. The proposed algorithm
is compared with the traditional GA. Results indicate that the proposed
approach obtains a near optimal solution compared to the traditional
GA based algorithm which does not consider TAS constraints.

Keywords: Terminal Airspace; Way-point Manoeuvring; Optimal Path
Planning; Optimal Aircraft Sequence; Conflict Detection and Resolution;

1 Introduction

Terminal Area Airspace (TAS) is the airspace surrounding a controlled aero-
drome where aircraft transition from the descend phase to the approach phase.
TAS is also one of the most resource-constrained elements of an air transporta-
tion network as all air traffic converges in TAS and is sequenced for landing
[1]. Aircraft sequencing in TAS is a highly challenging task due to complex ma-
noeuvering constraints(i.e., restricted speed, altitude and movement). During
the busiest times, operation on this safety critical environment reduces ATC
efficiency especially sequencing and manoeuvering the aircraft and eventually
degrades the efficiency of the system [2]. One study shows that inefficient se-
quencing techniques in the TAS area resulted in, on average, 18 minutes of delay
for 19% of European flights [3].

The increasing demand of air traffic is stressing the capacity of the current
Air Traffic Management System (ATMS). This is likely to cause both safety and
performance degradation in the near future. It is believed that by increasing
the level of automation, the efficiency of the ATMS can be enhanced. This may
assist ATC to handle the increased traffic demand in a more reliable way.



Therefore, increasing the automation of ATM components, an automatic de-
cision support techniques, is imperative to meet future needs and might increase
the overall system performance.

In recent years, many optimization based algorithms and technique were pro-
posed for aircraft sequencing as an automatic decision support tool [4,5]. Most
of the approaches available in the literature have goals that were simplistic to
obtain the best sequence and hence provide high throughput. However, in prac-
tice, obtaining those optimal sequences might be a very challenging task due to
the frequently changing environment, complex network structure and cost con-
sideration (i.e., shifting position, vectoring a long way, holding a long time etc).
A survey of the literature has failed to discover any other works that use a path
planning based approach for solving the aircraft sequencing problem. However,
a path-planning approach may deliver near optimal results while addressing and
dealing with real-world complexities such as limited capacity to shift sequence.
Fig.1 presents the algorithm based optimization sequence that is prevalent in
the literature and the real world scenario that is expected to be achieved.
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Fig.1: (a) Optimal Sequence (traditional optimization technique) (b) Expected
Optimal Sequence

To achieve the expected arrival sequence, ATCs (the Approach controller)
have to juggle the arrivals through the Standard Terminal Arrival Routes (STAR)
along with the desired safe separation. A STAR is a flight route defined and pub-
lished by the Air Navigation Service Provider (ANSP) that usually covers the
phase of a flight that lies between the last point of the route filled in the flight
plan and the first point of the approach to the airport, normally the Initial
Approach Fix (IAF) [6]. Hence, a STAR connects the en route phase with the
approach phase of the flight. Having an optimal sequence and implementing it in
a TAS provides two different outcomes, given the complexity of the environment.



First, increased probability of potential conflict at different waypoint. Second, it
decreases the ATC efficiency. In this paper, we have been motivated to obtain the
expected near optimal sequence at FAF by traversing through waypoint, given all
the TAS constraints (i.e., speed limit, altitude limit and separation etc). We de-
velop an evolutionary optimization based path planning algorithm that provides
an optimal aircraft sequence at the FAF. Our algorithm also predicts potential
conflict at future waypoints and uses a path stretch technique to resolve the con-
flict. We call this algorithm Terminal-Airspace Traversing Algorithm (TATA).
This algorithm finds the near optimal path for each aircraft, resolves potential
conflict and maintains safe separation. The proposed algorithm also provides a
detailed manoeuvring guidance to the ATC.

We compare and analyse our approach (i.e., TATA VS traditional GA) on
several random arrival sequences in terms of the inter-arrival time of the se-
quences. The remainder of the paper is organized as follows: Section 2 explains
the problem formulation. Section 3 outlines a methodology and proposed al-
gorithm. Section 4 presents the experimental design. Results and analysis are
discussed in section 5. In Section 6, we present our conclusions and future work.

2 Problem Formulation

We subdivide the problem formulation into two stages:

e The optimization model for arrival sequencing using traditional GA
e The optimization model for arrival sequence using path planning (TATA)

2.1 Optimization model for arrival sequencing using traditional GA

The aircraft-sequencing problem is to minimize the inter-arrival time between
two consecutive arrivals and hence the total inter-arrival time. The optimization
model for the arrival sequence is formulated as follows:
A: set of all aircraft in a sequence
S;j: minimum safe separation between two aircraft ¢ and j
L: length of the final approach path
O;: runway occupancy time of aircraft i
V;: approach speed of aircraft 4
V;: approach speed of aircraft j
T;;: inter-arrival time between aircraft 4, j
The inter-arrival time between aircraft ¢ and j can be determined by Eq.(1)
and Eq.(2) [7]. The runway occupancy time of the aircraft are presented in table
1(b).
T;j = Max[LS” — £, O;] when V; >V; (1)
Vj Vi
T = Maac[vj7 O;] when V; <V (2)



Objective Function: The objective is to minimize the inter-arrival time of
each sequence. The objective function and the corresponding fitness function of
the traditional GA based optimization problem is as follows:

k k
v=3 > P;Ty 3)
i,j=114,j=1

Min zn: v (4)

Fitness = Max(1/¥) (5)

Where k is the number of aircraft classes (i.e.,3 for Heavy, Medium and Light
classification), P;; is the probability of the arrival of aircraft i followed by j and
n is the total aircraft in the sequence. Eq.(6, 4 and 5) determines the optimal
sequence based on traditional GA.

Random Aircraft Arrival

Optimal Sequence

Fig. 2: Conceptual diagram of the methodology

2.2 Optimization model for arrival sequencing using path planning
(TATA)

Aircraft are sequenced by traversing through the terminal airspace and the final
sequence is obtained at the FAF. Let the arrival time of aircraft ¢ and j at
waypoint p be ,t; and ,t; respectively. Each aircraft needs to maintain a safe
separation at each waypoint.



Objective function: The objective function of the optimization problem is as
follows:

k k
v=>Y" > P;Ty (6)

i,j=11,j=1
Min zn: v (7)
i=1
Fitness = Max(1/¥) (8)
Subject to the constraints that,
lpti —p £l = Sij 9)

TATA achieve the near optimal sequence through Eq.(6,7,8 and 9).

3 Methodology

The proposed methodology consists of two major phases. Fig.2 shows the con-
ceptual diagram of the methodology.

e A method for generating the optimal arrival sequence using GA
e TATA for optimal arrival sequence

3.1 A method for generating the optimal arrival sequence using GA

Fig.3 shows the flowchart of the traditional genetic algorithm implementation for
optimal sequence derivation. The initial aircraft arrival sequence is generated us-
ing a mixed distribution of the aircraft as presented table.1(a). This distribution
represents the aircraft mix for a typical spoke airport (in a Hub-Spoke network)
[8]. The random arrival sequence is modelled as a chromosome where each gene of
the chromosome represents the aircraft wake category (heavy, medium or light).

Heavy (H)[Medium (M)[Light (L)  Heavy (H)[Medium (M)[Light (L)
20% | 40% [ 40% 60 [ 55 ] 50
(a) (b)

Table 1: (a) Aircraft Mix Distribution (%) (b) Runway Occupancy Time (Sec)

GA based optimization considers inter-arrival time as the sole optimization
criteria without involving the manoeuvring complexity of TAS. The evolutionary
process attempts to maximize the fitness function through genetic operations.
In this implementation, according to the problem characteristics and the chro-
mosome size the initial population size is considered 50 [9].
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Fig. 3: Flowchart of the genetic algorithm implementation.

Two parent chromosomes (out of a population of K parent chromosomes)
are selected (using tournament selection) to undergo a genetic operation (i.e.,
crossover and mutation). The elitism algorithm is used to determine the survival
of parent and offspring in the new generation [10]. The fitness of the offspring
is evaluated using a fitness function. The fitness generation curve shows in Fig.
8(a) that the fitness value does not further improve after 200 generation. This is
because, after 200 generations the produced sequence’s total inter-arrival time
remained unchanged. However, we continued our evolution up to 400 generations
as an evidence of convergence of the solution.

e Selection
Two individuals are chosen from the population using a selection operator.
The preference is given to fitter individuals, allowing them to pass on their
genes to the next generation. Fitness is determined by Eq.(5). The lower the
inter-arrival time of a particular sequence the higher the fitness value.

e Crossover
Fig.4 shows the crossover procedure. In this crossover method a subset of
the gene is selected from the first parent and then that subset is added to
the offspring. The missing genes are then added to the offspring from the
second parent by ensuring that the total number and types of genes (i.e.,
aircraft) remain equivalent to the parents’. To make this explanation a little



clearer, consider the example in Fig.4. Note here that a subset of the genes
(i.e., M, L, H) of the offspring is taken from the parent 1 chromosome. Next,
the remaining genes are taken from parent 2 sequentially.

Parent-1 Parent-2

| |
(HLlv|L ML [H\HL M| [HMH]L[LM[M[LIH|L]
| [

\HM[H|L \M[L|H|L|M][L]

| Offspring-1 |

Fig.4: Crossover procedure of GA based optimization

e Mutation
Mutation is used to maintain genetic diversity from one generation of the
population to the next generation. In this implementation, swap mutation
is used. With swap mutation two gene’s positions in the chromosome are se-
lected in a random fashion. Swap mutation is only swapping of pre-existing
genes, it never creates a new gene. Eventually, once the population is not
producing offspring that are noticeably different from the previous genera-
tion, it is assumed that the population converges to a set of solutions to the
problem.
Determining the population size and mutation rate for GA is problem spe-
cific [11]. Too high a mutation rate increases the probability of searching
more areas in the search space, however, it prevents the population from
converging to an optimum solution. On the other hand, too small a muta-
tion rate may results in premature convergence. To prevent both premature
convergence and local optima, a small mutation rate of 0.015 is used [12].

3.2 TATA for optimal arrival sequence

The flowchart of the TATA approach is shown in Fig.5. The proposed method
utilizes the evolutionary algorithm technique to obtain the near optimal sequence
that ensures a conflict free path at TAS.

A. Initial Aircraft Sequence and Activation Time

The population of possible solution sequences are generated randomly accord-
ing to a poisson arrival rate . Aircraft arrival events occur at IAF continuously
and independently of one another. Each flight is activated at IAF by following a
poisson arrival process. The initial aircraft sequence is randomly generated by a
mix of three classes of aircraft (Heavy, Medium, and Light) using the distribution
as shown in table 1(a). The probability distribution of the number of homoge-
neous poisson arrival events in a fixed interval gives the cumulative function of
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Fig. 5: Flowchart of the TATA approach.

an exponential distribution as,

l1—e M t>0
Ft) = {o, t<0 (10)

Given the inverse of the exponential equation iy = 1 — e~

next arrival time ¢ in terms of y € (0, 1),

, we can write for the

t=F ) = —in(1 —y) (11)

Eq.(11) gives the continuous activation time at IAF of each random aircraft
expressed in terms of the arrival rate.

B. TATA based Path Planning Algorithm

The TAS is considered as a network of waypoints. We assume that all the
waypoints are static and that the distance between all waypoint pairs is known.
Equations of motion are used for calculating the position of the aircraft at any
time t. After activating at the IAF, each flight finds the next possible waypoint
towards the destination (FAF). The next waypoint is selected randomly from the
next available connected waypoint. At each waypoint the traversing aircraft cal-
culates the distance and the arrival time between the current and next waypoint.
The path distance and the arrival time are estimated as follows,

a = sin*(Ap/2) + cospicospasin®(Ap/2) (12)
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Fig. 6: Swap mutation operator

c = 2.atan2(v/a, /(1 — a)) (13)

d, = R.c (14)
d

where Ap and A¢ are the difference between latitude and longitude of two
waypoints respectively. a is the chord length, C is the great circle distance, d,
is the distance up to waypoint p and R is the earth’s radius. From Eq.(15), we
can estimate the future arrival time (,t;) of aircraft ¢ at waypoint p while V; is
the approach speed. This procedure is repeated until the aircraft arrives at the
goal waypoint. Each aircraft of the population obtains a traversal path with an
approach speed at a different waypoint.

However, there may be conflict at each waypoint with another aircraft. To
resolve the potential conflict at the waypoint, a conflict detection and resolution
technique is explained in subsection C and D. Two genetic operators are used in
an evolutionary process: selection and mutation.

e Selection
The popular tournament selection mechanism is used due to its efficiency and
simple implementation. In tournament selection, 5 individuals are selected
randomly from the population [13]. The individual with the highest fitness
wins and is included as one of the next generation’s population. This is
repeated. Tournament selection also gives a chance for all individuals to be
selected and thus it preserves diversity.

e Mutation
To maintain the genetic diversity from one generation of a population to
another generation swap mutation is used as described above for traditional
GA. However, the swapping content and strategy is different. The swap
scheme selects one gene within a chromosome at random and then selects a
waypoint from the traversed path of that gene (aircraft) randomly as well. If
there is another available path instead of the selected waypoint, swap these
contents. An example of the swap mutation procedure is shown in Fig.6.
Note here that from the parent chromosome, a gene is chosen randomly as
indicated by the dotted lines. The selected gene (i.e.,aircraft) has four way-
points in its chosen path (2 — 5 — 7 — 9). The selected random waypoint



is 5 which has two available next waypoints i.e., 7 and 8 as indicated in the
dotted box. After swapping the waypoints, an offspring is produced. Note
that the offspring’s gene sequence has also changed as an outcome of the
swap.

C. Conflict Detection Technique

In this paper, a prediction based conflict detection model is introduced. Con-
flict is a situation where two aircraft come closer than a certain prescribed dis-
tance to one another. The safety distance is determined by means of a minimum
allowed horizontal separation and a minimum vertical separation. In this model,
we consider the horizontal separation as conflict detection metrics and the po-
tential conflicts are predicted at different waypoint based on an aircraft’s future
arrival time.

We assume that each aircraft follows its flight plan moving along the straight
line joining successive waypoints px_1 and pg with the prescribed speed V;. The
nominal arrival time t; of an aircraft i at waypoint k is

pr—1 — il
Vi

where ||pp—1 — pk|| is the distance between two waypoint. A potential conflict
between aircraft ¢ and j at waypoint k is predicted if,

leti =k t;| <9 (17)

. (16)

where ;t; is the arrival time of aircraft j and ¢ is the minimum separation.

D. Conflict Resolution

A path stretching technique is used to resolve the potential conflict. The
objective of path stretching is to maintain a smooth motion along the trajec-
tories. Two approaches are used. i.e., speeding the aircraft that will arrive first
or slowing the aircraft that will arrive second. Suppose the arrival time of two
conflicting aircraft at waypoint py is ;¢, and ;¢ respectively. The resolution
advisories(i.e., required adjustment of speed) is estimated by following equation.

dt = |ty —; ty| (18)
At = 6, — dt (19)
d.:
Vexp = m (20)
Av = |veap —ap Vi (21)
o apvz' — Al}, lf itk Zj tk
ap¥i = {ap'Ui + A’U, if ;g < tr <22)

Here, dt is time gap, At is the required time adjustment, J; is the minimum
separation. Expected speed vegp can be estimated by Eq.(20) where d; is the
distance between aircraft ¢ and next connecting waypoint. Therefore, we can
estimate the required approach speed by Eq.(22) where Aw is the required speed
adjustment.



4 Experimental Design

The optimization model is evaluated through simulation. The performance of
the model is evaluated using a mixture of arrivals by taking into consideration
that all the ATC separation rules are satisfied. Table 2 shows the summary of the
experimental parameters used. The simulation is conducted 30 times to observe
closeness of the obtained sequence with traditional GA.
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Fig. 7: 3D traversed network

148.2

Parameter |Values
Mutation rate | 0.015
Chromosome Size| 20
Population Size 50
Tournament Size 5
Generation 400
No. of Simulation| 30

Table 2: Experimental Set-up

Table 3(a) shows the pair-wise ATC separations from arrival to arrival in sec-
onds. In practice arrival separation is measured as nautical miles (NM) and
departure separation is measured in seconds. In this implementation, we convert
the separation distance into time (seconds) for simplicity of computation. Table
3(b) presents the probability matrix of two consecutive aircraft based on their

wake-type.

Trail
H M L

Trail
H(0.2) M(0.4) L(0.4)

H 90 120 120
M|60 60 60
L |60 60 60

Lead

0.04 0.08 0.08
0.08 0.16 0.16
0.08 0.16 0.16

(a) Separation

robability

Table 3: (a) Arrival-Arrival (sec) (b) Probability (P;;)



TAF Seq|GA Seq|FAF Seq|IAF time|FAF time| Optimal Path
6.83 23.03 3—26—>7—9
5.35 2366 0 —>4—7—9
7.15 3069 [0 —-5—8—=9
14.56 3289 |3—6—8—9
9.61 3492 |1 -4—-8—9
5.26 377 |[1-5—-8—9
17.28 4004 1 =-6—=-7—=9
17.64 4121 |3 —-6—-7—9
24.16 4247 0 —+4—+8—=9
10.31 4282 |2—-6—+8—=9
15.74 4365 |2 —>6—-8—9
20.52 44.09 |3—-5—-8—9
19.89 4517 |2—-5—>8—9
15.62 4812 |1 -4 —-8—9
25.14 4871 |3 —=-5—-T7—9
26.62 50.16 |0 -5 —=8—9
28.44 51.2 1-5—-8—=9
31.65 51656 |2—+5—-8—=9
26.4 53.07 3—=6—>7—9
28.92 54.64 |2 —+5—-8—=9

= e il o Il = Bl el s i ol -l il o
el el el ol ol ol ol il o il s Rl o
CEZoCr SR 2 E R DR EE 2 o

Table 4: Near optimal path and obtained sequence at FAF

5 Result Analysis and Discussion

In this section, we present an illustration of the TATA model and a demonstra-
tion of the aircraft simulation. Fig. 8 (a) presents the convergence curve of the
optimization problem. The visualisation shows that the fittest individual had
not improved further after 200 generations.

The simulation result presented in this section is the optimal sequence of
GA based optimization and path planning based optimal sequence of the TATA
algorithm. An optimal solution of TATA and GA based arrival sequence is shown
in table 4. Notice that the arrival sequence of the GA and arrival sequence of
the path planning algorithm (TATA) are very close. The TATA algorithm also
provides the estimated arrival time at FAF. Separation is maintained between
all aircraft at all waypoints at all times. A significant contribution of the TATA
algorithm is to provide detailed guidance to the ATC i.e., the path planning,
maximization of runway capacity and the estimated arrival time at FAF as
shown in table 4.

To observe the mutual closeness of the GA based optimal sequence and the
TATA sequence, the simulation is conducted 30 times. The average inter-arrival
time is shown in Fig.8(b). Note that the path planning based optimal sequence
took slightly greater time, however it is only 0.51%. Finally, we analyze the
time-space diagram of the GA based optimal sequence and the TATA based
optimal sequence. Fig. 9 shows the comparison of the obtained optimal sequence
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Fig.9: Time-space diagram of GA optimal sequence VS TATA near optimal
sequence

from the traditional GA approach and the TATA based approach. Note here, an
interesting result for the best possible sequences in both the cases is that similar
wake category aircraft are positioned side by side to reduce the inter-arrival time.
A 3D trajectory network is depicted based on the traversed path of the TATA
based optimal sequence as presented in Fig.7.

6 Conclusion

In this paper, we addressed one of the common challenges faced by ATC in TAS.
How to plan the arrival path of aircraft in transition airspace such that they are



conflict free and their inter-arrival time is minimized. State-of-the-art methods
provide the optimal sequence which minimizes the inter-arrival time given an
arrival sequence of aircraft, with population based search methods being highly
effective. We proposed a GA based path planning technique which can not only
achieve an optimal sequence but also address conflict between arriving aircraft
and resolve them. The proposed algorithm fills an important gap in advising
ATC on arrival aircraft path planing and sequencing to achieve a conflict free
optimal sequence which reduces the inter-arrival time which in turn increases
the runway capacity. However, this approach comes at the cost of some airborne
delay which stems from aircraft speed manoeuvres for conflict resolution.
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