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Abstract. Machine-learning techniques are widely used in security-
related applications, like spam and malware detection. However, in such
settings, they have been shown to be vulnerable to adversarial attacks,
including the deliberate manipulation of data at test time to evade
detection. In this work, we focus on the vulnerability of linear classi-
fiers to evasion attacks. This can be considered a relevant problem, as
linear classifiers have been increasingly used in embedded systems and
mobile devices for their low processing time and memory requirements.
We exploit recent findings in robust optimization to investigate the link
between regularization and security of linear classifiers, depending on
the type of attack. We also analyze the relationship between the sparsity
of feature weights, which is desirable for reducing processing cost, and
the security of linear classifiers. We further propose a novel octagonal
regularizer that allows us to achieve a proper trade-off between them.
Finally, we empirically show how this regularizer can improve classifier
security and sparsity in real-world application examples including spam
and malware detection.

1 Introduction

Machine-learning techniques are becoming an essential tool in several appli-
cation fields such as marketing, economy and medicine. They are increasingly
being used also in security-related applications, like spam and malware detection,
despite their vulnerability to adversarial attacks, i.e., the deliberate manipula-
tion of training or test data, to subvert their operation; e.g., spam emails can be
manipulated (at test time) to evade a trained anti-spam classifier [1–12].

In this work, we focus on the security of linear classifiers. These classifiers
are particularly suited to mobile and embedded systems, as the latter usually
demand for strict constraints on storage, processing time and power consump-
tion. Nonetheless, linear classifiers are also a preferred choice as they provide
easier-to-interpret decisions (with respect to nonlinear classification methods).
For instance, the widely-used SpamAssassin anti-spam filter exploits a linear
classifier [5,7]1. Work in the adversarial machine learning literature has already
1 See also http://spamassassin.apache.org.
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investigated the security of linear classifiers to evasion attacks [4,7], suggest-
ing the use of more evenly-distributed feature weights as a mean to improve
their security. Such a solution is however based on heuristic criteria, and a clear
understanding of the conditions under which it can be effective, or even opti-
mal, is still lacking. Moreover, in mobile and embedded systems, sparse weights
are more desirable than evenly-distributed ones, in terms of processing time,
memory requirements, and interpretability of decisions.

In this work, we shed some light on the security of linear classifiers, leveraging
recent findings from [13–15] that highlight the relationship between classifier reg-
ularization and robust optimization problems in which the input data is poten-
tially corrupted by noise (see Sect. 2). This is particularly relevant in adversarial
settings as the aforementioned ones, since evasion attacks can be essentially con-
sidered a form of noise affecting the non-manipulated, initial data (e.g., malicious
code before obfuscation). Connecting the work in [13–15] to adversarial machine
learning aims to help understanding what the optimal regularizer is against dif-
ferent kinds of adversarial noise (attacks). We analyze the relationship between
the sparsity of the weights of a linear classifier and its security in Sect. 3, where
we also propose an octagonal-norm regularizer to better tune the trade-off aris-
ing between sparsity and security. In Sect. 4, we empirically evaluate our results
on a handwritten digit recognition task, and on real-world application examples
including spam filtering and detection of malicious software (malware) in PDF
files. We conclude by discussing the main contributions and findings of our work
in Sect. 5, while also sketching some promising research directions.

2 Background

In this section, we summarize the attacker model previously proposed in [8–11],
and the link between regularization and robustness discussed in [13–15].

2.1 Attacker’s Model

To rigorously analyze possible attacks against machine learning and devise
principled countermeasures, a formal model of the attacker has been proposed
in [6,8–11], based on the definition of her goal (e.g., evading detection at test
time), knowledge of the classifier, and capability of manipulating the input data.

Attacker’s Goal. Among the possible goals, here we focus on evasion attacks,
where the goal is to modify a single malicious sample (e.g., a spam email) to have
it misclassified as legitimate (with the largest confidence) by the classifier [8].

Attacker’s Knowledge. The attacker can have different levels of knowledge
of the targeted classifier; she may have limited or perfect knowledge about the
training data, the feature set, and the classification algorithm [8,9]. In this work,
we focus on perfect-knowledge (worst-case) attacks.

Attacker’s Capability. In evasion attacks, the attacker is only able to mod-
ify malicious instances. Modifying an instance usually has some cost. Moreover,
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arbitrary modifications to evade the classifier may be ineffective, if the resulting
instance loses its malicious nature (e.g., excessive obfuscation of a spam email
could make it unreadable for humans). This can be formalized by an application-
dependent constraint. As discussed in [16], two kinds of constraints have been
mostly used when modeling real-world adversarial settings, leading one to define
sparse (�1) and dense (�2) attacks. The �1-norm yields typically a sparse attack,
as it represents the case when the cost depends on the number of modified fea-
tures. For instance, when instances correspond to text (e.g., the email’s body)
and each feature represents the occurrences of a given term in the text, the
attacker usually aims to change as few words as possible. The �2-norm yields
a dense attack, as it represents the case when the cost of modifying features is
proportional to the distance between the original and modified sample in Euclid-
ean space. For example, if instances are images, the attacker may prefer making
small changes to many or even all pixels, rather than significantly modifying only
few of them. This amounts to (slightly) blurring the image, instead of obtaining
a salt-and-pepper noise effect (as the one produced by sparse attacks) [16].

Attack Strategy. It consists of the procedure for modifying samples, according
to the attacker’s goal, knowledge and capability, formalized as an optimization
problem. Let us denote the legitimate and malicious class labels respectively
with −1 and +1, and assume that the classifier’s decision function is f(x) =
sign (g(x)), where g(x) = w�x + b ∈ R is a linear discriminant function with
feature weights w ∈ R

d and bias b ∈ R, and x is the representation of an
instance in a d-dimensional feature space. Given a malicious sample x0, the goal
is to find the sample x∗ that minimizes the classifier’s discriminant function g(·)
(i.e., that is classified as legitimate with the highest possible confidence) subject
to the constraint that x∗ lies within a distance dmax from x0:

x∗ = arg min
x

g(x) (1)

s.t. d(x,x0) ≤ dmax , (2)

where the distance measure d(·, ·) is defined in terms of the cost of data manipu-
lation (e.g., the number of modified words in each spam) [1,2,8,9,12]. For sparse
and dense attacks, d(·, ·) corresponds respectively to the �1 and �2 distance.

2.2 Robustness and Regularization

The goal of this section is to clarify the connection between regularization and
input data uncertainty, leveraging on the recent findings in [13–15]. In particular,
Xu et al. [13] have considered the following robust optimization problem:

min
w,b

max
u1,...,um∈U

m∑

i=1

(
1 − yi(w�(xi − ui) + b)

)
+

, (3)

where (z)+ is equal to z ∈ R if z > 0 and 0 otherwise, u1, ...,um ∈ U define a set
of bounded perturbations of the training data {xi, yi}mi=1 ∈ R

m ×{−1,+1}m, and
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the so-called uncertainty set U is defined as U Δ=
{
(u1, . . . ,um)|∑m

i=1 ‖ui‖∗ ≤ c
}
,

being ‖ · ‖∗ the dual norm of ‖ · ‖. Typical examples of uncertainty sets according
to the above definition include �1 and �2 balls [13,14].

Problem (3) basically corresponds to minimizing the hinge loss for a two-class
classification problem under worst-case, bounded perturbations of the training
samples xi, i.e., a typical setting in robust optimization [13–15]. Under some
mild assumptions easily verified in practice (including non-separability of the
training data), the authors have shown that the above problem is equivalent
to the following non-robust, regularized optimization problem (cf. Theorem 3
in [13]):

min
w,b

c‖w‖ +
m∑

i=1

(
1 − yi(w�xi + b)

)
+

. (4)

This means that, if the �2 norm is chosen as the dual norm characterizing the
uncertainty set U , then w is regularized with the �2 norm, and the above problem
is equivalent to a standard Support Vector Machine (SVM) [17]. If input data
uncertainty is modeled with the �1 norm, instead, the optimal regularizer would
be the �∞ regularizer, and vice-versa.2 This notion is clarified in Fig. 1, where
we consider different norms to model input data uncertainty against the corre-
sponding SVMs; i.e., the standard SVM [17], the Infinity-norm SVM [18] and the
1-norm SVM [19] against �2, �1 and �∞-norm uncertainty models, respectively.

Fig. 1. Discriminant function g(x) for SVM, Infinity-norm SVM, and 1-norm SVM (in
colors). The decision boundary (g(x) = 0) and margins (g(x) = ±1) are respectively
shown with black solid and dashed lines. Uncertainty sets are drawn over the support
vectors to show how they determine the orientation of the decision boundary. (Color
figure online)

2 Note that the �1 norm is the dual norm of the �∞ norm, and vice-versa, while the
�2 norm is the dual norm of itself.



326 A. Demontis et al.

3 Security and Sparsity

We discuss here the main contributions of this work. The result discussed in
the previous section, similar to that reported independently in [15], helps under-
standing the security properties of linear classifiers in adversarial settings, in
terms of the relationship between security and sparsity. In fact, what discussed
in the previous section does not only confirm the intuition in [4,7], i.e., that more
uniform feature weighting schemes should improve classifier security by enforcing
the attacker to manipulate more feature values to evade detection. The result
in [13–15] also clarifies the meaning of uniformity of the feature weights w. If
one considers an �1 (sparse) attacker, facing a higher cost when modifying more
features, it turns out that the optimal regularizer is given by the �∞ norm of w,
which tends to yield more uniform weights. In particular, the solution provided
by �∞ regularization (in the presence of a strongly-regularized classifier) tends to
yield weights which, in absolute value, are all equal to a (small) maximum value.
This also implies that �∞ regularization does not provide a sparse solution.

For this reason we propose a novel octagonal (8gon) regularizer,3 given as a
linear (convex) combination of �1 and �∞ regularization:

‖w‖8gon = (1 − ρ)‖w‖1 + ρ‖w‖∞ (5)

where ρ ∈ (0, 1) can be increased to trade sparsity for security.
Our work does not only aim to clarify the relationships among regularization,

sparsity, and adversarial noise. We also aim to quantitatively assess the afore-
mentioned trade-off on real-world application examples, to evaluate whether and
to what the extent the choice of a proper regularizer may have a significant
impact in practice. Thus, besides proposing a new regularizer and shedding light
on uniform feature weighting and classifier security, the other main contribution
of the present work is the experimental analysis reported in the next section, in
which we consider both dense (�2) and sparse (�1) attacks, and evaluate their
impact on SVMs using different regularizers. We further analyze the weight dis-
tribution of each classifier to provide a better understanding on how sparsity is
related to classifier security under the considered evasion attacks.

4 Experimental Analysis

We first consider dense and sparse attacks in the context of handwritten digit
recognition, to visually demonstrate their blurring and salt-and-pepper effect on
images. We then consider two real-world application examples including spam
and PDF malware detection, investigating the behavior of different regulariza-
tion terms against (sparse) evasion attacks.

3 Note that octagonal regularization has been previously proposed also in [20]. How-
ever, differently from our work, the authors have used a pairwise version of the
infinity norm, for the purpose of selecting (correlated) groups of features.
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Handwritten Digit Classification. To visually show how evasion attacks
work, we perform sparse and dense attacks on the MNIST digit data [21]. Each
image is represented by a vector of 784 features, corresponding to its gray-level
pixel values. As in [8], we simulate an adversarial classification problem where
the digits 8 and 9 correspond to the legitimate and malicious class, respectively.

Spam Filtering. This is a well-known application subject to adversarial attacks.
Most spam filters include an automatic text classifier that analyzes the email’s
body text. In the simplest case Boolean features are used, each representing the
presence or absence of a given term. For our experiments we use the TREC
2007 spam track data, consisting of about 25000 legitimate and 50000 spam
emails [22]. We extract a dictionary of terms (features) from the first 5000 emails
(in chronological order) using the same parsing mechanism of SpamAssassin, and
then select the 200 most discriminant features according to the information gain
criterion [23]. We simulate a well-known (sparse) evasion attack in which the
attacker aims to modify only few terms. Adding or removing a term amounts to
switching the value of the corresponding Boolean feature [3,4,8,9,12].

PDF Malware Detection. Another application that is often targeted by
attackers is the detection of malware in PDF files. A PDF file can host differ-
ent kinds of contents, like Flash and JavaScript. Such third-party applications
can be exploited by attacker to execute arbitrary operations. We use a data set
made up of about 5500 legitimate and 6000 malicious PDF files. We represent
every file using the 114 features that are described in [24]. They consist of the
number of occurrences of a predefined set of keywords, where every keyword
represents an action performed by one of the objects that are contained into
the PDF file (e.g., opening another document that is stored inside the file). An
attacker cannot trivially remove keywords from a PDF file without corrupting
its functionality. Conversely, she can easily add new keywords by inserting new
object’s operations. For this reason, we simulate this attack by only considering
feature increments (decrementing a feature value is not allowed). Accordingly,
the most convenient strategy to mislead a malware detector (classifier) is thus
to insert as many occurrences of a given keyword as possible, which is a sparse
attack.4

We consider different versions of the SVM classifier obtained by combining
the hinge loss with the different regularizers shown in Fig. 2.

2-Norm SVM (SVM). This is the standard SVM learning algorithm [17]. It
finds w and b by solving the following quadratic programming problem:

min
w,b

1
2
‖w‖2

2 + C

m∑

i=1

(1 − yig(xi))+ , (6)

where g(x) = w�x + b denotes the SVM’s linear discriminant function. Note
that �2 regularization does not induce sparsity on w.
4 Despite no upper bound on the number of injected keywords may be set, we set the

maximum value for each keyword to the corresponding one observed during training.



328 A. Demontis et al.

(a) �2 (b) �∞ (c) �1 (d) elastic net (e) octagonal

Fig. 2. Unit balls for different norms.

Infinity-Norm SVM (∞-norm). In this case, the �∞ regularizer bounds the
weights’ maximum absolute value as ‖w‖∞ = maxj=1,...,d |wj | [20]:

min
w,b

‖w‖∞ + C

m∑

i=1

(1 − yig(xi))+ . (7)

As the standard SVM, this classifier is not sparse; however, the above learning
problem can be solved using a simple linear programming approach.

1-Norm SVM (1-norm). Its learning algorithm is defined as [19]:

min
w,b

‖w‖1 + C

m∑

i=1

(1 − yig(xi))+ . (8)

The �1 regularizer induces sparsity, while retaining convexity and linearity.

Elastic-net SVM (el-net). We use here the elastic-net regularizer [25], com-
bined with the hinge loss to obtain an SVM formulation with tunable sparsity:

min
w,b

(1 − λ)‖w‖1 +
λ

2
‖w‖2

2 + C
m∑

i=1

(1 − yig(xi))+ . (9)

The level of sparsity can be tuned through the trade-off parameter λ ∈ (0, 1).

Octagonal-Norm SVM (8gon). This novel SVM is based on our octagonal-
norm regularizer, combined with the hinge loss:

min
w,b

(1 − ρ)‖w‖1 + ρ‖w‖∞ + C
m∑

i=1

(1 − yig(xi))+ . (10)

The above optimization problem is linear, and can be solved using state-of-
the-art solvers. The sparsity of w can be increased by decreasing the trade-off
parameter ρ ∈ (0, 1), at the expense of classifier security.

Sparsity and Security Measures. We evaluate the degree of sparsity S of a
given linear classifier as the fraction of its weights that are equal to zero:

S =
1
d
|{wj |wj = 0, j = 1, . . . , d}| , (11)

being | · | the cardinality of the set of null weights.
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To evaluate security of linear classifiers, we define a measure E of weight
evenness, similarly to [4,7], based on the ratio of the �1 and �∞ norm:

E =
‖w‖1

d‖w‖∞
, (12)

where dividing by the number of features d ensures that E ∈ [
1
d , 1

]
, with higher

values denoting more evenly-distributed feature weights. In particular, if only a
weight is not zero, then E = 1

d ; conversely, when all weights are equal to the
maximum (in absolute value), E = 1.

Experimental Setup. We randomly select 500 legitimate and 500 malicious
samples from each dataset, and equally subdivide them to create a training and
a test set. We optimize the regularization parameter C of each SVM (along with
λ and ρ for the Elastic-net and Octagonal SVMs, respectively) through 5-fold
cross-validation, maximizing the following objective on the training data:

AUC + αE + βS (13)

where AUC is the area under the ROC curve, and α and β are parameters defin-
ing the trade-off between security and sparsity. We set α = β = 0.1 for the
PDF and digit data, and α = 0.2 and β = 0.1 for the spam data, to promote
more secure solutions in the latter case. These parameters allow us to accept
a marginal decrease in classifier security only if it corresponds to much sparser
feature weights. After classifier training, we perform evasion attacks on all mali-
cious test samples, and evaluate the corresponding performance as a function of
the number of features modified by the attacker. We repeat this procedure five
times, and report the average results on the original and modified test data.

Experimental Results. We consider first PDF malware and spam detection. In
these applications, as mentioned before, only sparse evasion attacks make sense,
as the attacker aims to minimize the number of modified features. In Fig. 3,
we report the AUC at 10% false positive rate for the considered classifiers,
against an increasing number of words/keywords changed by the attacker. This
experiment shows that the most secure classifier under sparse evasion attacks is
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Fig. 3. Classifier performance under attack for PDF malware and spam data, measured
in terms of AUC10% against an increasing number dmax of modified features. For each
classifier, we also report (S, E) percentage values (Eqs. 11–12) in the legend.
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the Infinity-norm SVM, since its performance degrades more gracefully under
attack. This is an expected result, given that, in this case, infinity-norm regu-
larization corresponds to the dual norm of the attacker’s cost/distance function.
Notably, the Octagonal SVM yields reasonable security levels while achieving
much sparser solutions, as expected (cf. the sparsity values S in the legend of
Fig. 3). This experiment really clarifies how much the choice of a proper regu-
larizer can be crucial in real-world adversarial applications.

By looking at the values reported in Fig. 3, it may seem that the security
measure E does not properly characterize classifier security under attack; e.g.,
note how Octagonal SVM exhibits lower values of E despite being more secure
than SVM on the PDF data. The underlying reason is that the attack imple-
mented on the PDF data only considers feature increments, while E generically
considers any kind of manipulation. Accordingly, one should define alternative
security measures depending on specific kinds of data manipulation. However,
the security measure E allows us to properly tune the trade-off between security
and sparsity also in this case and, thus, this issue may be considered negligible.

Finally, to visually demonstrate the effect of sparse and dense evasion attacks,
we report some results on the MNIST handwritten digits. In Fig. 4, we show
the “9” digit image modified by the attacker to have it misclassified by the
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Fig. 4. Initial digit “9” (first row) and its versions modified to be misclassified as “8”
(second and third row). Each column corresponds to a different classifier (from left to
right in the second and third row): SVM, Infinity-norm SVM, 1-norm SVM, Elastic-net
SVM, Octagonal SVM. Second row : sparse attacks (�1), with dmax = 2000. Third row :
dense attacks (�2), with dmax = 250. Values of g(x) < 0 denote a successful classifier
evasion (i.e., more vulnerable classifiers).
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classifier as an “8”. These modified digits are obtained by solving Problems (1)–
(2) through a simple projected gradient-descent algorithm, as in [8]5. Note how
dense attacks only produce a slightly-blurred effect on the image, while sparse
attacks create more evident visual artifacts. By comparing the values of g(x)
reported in Fig. 4, one may also note that this simple example confirms again
that Infinity-norm and Octagonal SVM are more secure against sparse attacks,
while SVM and Elastic-net SVM are more secure against dense attacks.

5 Conclusions and Future Work

In this work we have shed light on the theoretical and practical implications of
sparsity and security in linear classifiers. We have shown on real-world adver-
sarial applications that the choice of a proper regularizer is crucial. In fact, in
the presence of sparse attacks, Infinity-norm SVMs can drastically outperform
the security of standard SVMs. We believe that this is an important result,
as (standard) SVMs are widely used in security tasks without taking the risk
of adversarial attacks too much into consideration. Moreover, we propose a new
octagonal regularizer that enables trading sparsity for a marginal loss of security
under sparse evasion attacks. This is extremely useful in applications where spar-
sity and computational efficiency at test time are crucial. When dense attacks
are instead deemed more likely, the standard SVM may be retained a good
compromise. In that case, if sparsity is required, one may trade some level of
security for sparsity using the Elastic-net SVM. Finally, we think that an inter-
esting extension of our work may be to investigate the trade-off between sparsity
and security also in the context of classifier poisoning (in which the attacker can
contaminate the training data to mislead classifier learning) [9,26,27].
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Roli, F.: Evasion attacks against machine learning at test time. In: Blockeel, H.,
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