
Algorithm Agility
– Discussion on TPM 2.0 ECC Functionalities

Liqun Chen1,2 and Rainer Urian3

1 Hewlett Packard Laboratories, liqun.chen@hpe.com
2 University of Surrey, liqun.chen@surrey.ac.uk

3 Infineon Technologies AG, rainer.urian@infineon.com

Abstract. The TPM 2.0 specification has been designed to support a
number of Elliptic Curve Cryptographic (ECC) primitives, such as key
exchange, digital signatures and Direct Anonymous Attestation (DAA).
In order to meet the requirement that di↵erent TPM users may favor
di↵erent cryptographic algorithms, each primitive can be implemented
from multiple algorithms. This feature is called Algorithm Agility. For
the purpose of performance e�ciency, multiple algorithms share a small
set of TPM commands. In this paper, we review all the TPM 2.0 ECC
functionalities, and discuss on whether the existing TPM commands can
be used to implement new cryptographic algorithms which have not yet
been addressed in the specification. We demonstrate that four asymmet-
ric encryption schemes specified in ISO/IEC 18033-2 can be implemented
using a TPM 2.0 chip, and we also show on some ECDSA variants that
the coverage of algorithm agility from TPM 2.0 is limited. Security anal-
ysis of algorithm agility is a challenge, which is not responded in this
paper. However, we believe that this paper will help future researchers
analyze TPM 2.0 in more comprehensive methods than it has been done
so far.

Keywords: algorithm agility, elliptic curve cryptography, trusted plat-
form module

1 Introduction

Trusted Platform Module (TPM) is an international standard for a tamper-
resistant crypto processor. TPM’s technical specification is developed by a com-
puter industry standard body called Trusted Computing Group (TCG). The first
broadly used TPM specification is TPM version 1.2 [29], which was released in
2003. International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) standardized this specification as ISO/IEC
11889 in 2009 [1].

The TPM 1.2 specification only supported a small number of cryptographic
algorithms: RSA encryption and digital signatures, SHA-1 hash function, HMAC
message authentication code and Direct Anonymous Attestation (DAA) based
on the RSA problem. This fixed algorithm coverage was not satisfactory to world-
wide TPM users. Besides an obvious reason that SHA-1 is no longer suitable for

2

digital signatures based on the attack in [31], people from di↵erent countries and
regions may favor di↵erent cryptographic algorithms, especially elliptic curve
cryptography. This required the TCG to revise the TPM specification.

As a reaction, the TCG now continuously revises the TPM specification, and
the biggest step was to move from TPM 1.2 to TPM 2.0. The latest TPM 2.0
release is Trusted Platform Module Library Specification Revision 01.16 released
in October 2014 [30]. ISO/IEC standardized this specification as ISO/IEC 11889
in December 2015 [2] and meanwhile the previous 2009 edition [1] was withdrawn.

Among many important modifications from TPM 1.2, the most attractive
change from the authors of this paper’s view point is that the TPM 2.0 supports
Algorithm Agility, which means that each cryptographic primitive can be
used by multiple cryptographic algorithms. This is managed by using the TCG
Algorithm Registry [28].

Although algorithm agility is a well received property, the performance ef-
ficiency is still one of the most important requirements in the development of
the TPM 2.0 family. In order to achieve a balance between algorithm agility and
high performance, the TPM 2.0 specification allows a set of TPM commands to
be shared by multiple algorithms.

The new cryptographic functionalities from TPM 1.2 include a number of El-
liptic Curve Cryptographic (ECC) primitives, such as Elliptic Curve (EC) based
digital signatures, key exchange and DAA. This paper is focused on discussing
the algorithm agility for TPM 2.0 ECC functionalities. We aim to make the
following contributions:

1. Find whether the existing TPM 2.0 commands can be used to implement new
cryptographic algorithms which have not yet addressed in the current spec-
ification [2, 30]. We demonstrate that four asymmetric encryption schemes
specified in ISO/IEC 18033-2 [4] can be implemented using a TPM 2.0 chip.
We also show that the coverage of algorithm agility from TPM 2.0 is limited.

2. Show some obstacles one faces when implementing an algorithm in such way
that it will be usable from many di↵erent standards.

3. Provide a concise description of the ECC functionalities in TPM 2.0, which
is easier to follow by cryptographic researchers than the specification [2, 30].

In the literature, there are many papers aimed to analyze security features
of a TPM. They all focus on individual cryptographic algorithms or functions;
for example, analyzing privacy-CA solution [15, 19] and DAA [10, 33, 13]. To the
best of our knowledge, a comprehensive security analysis of multiple TPM func-
tionalities, such as algorithm agility, does not exist. This is a big challenge. We
notice that one reason why this has not happened yet is because the TPM spec-
ification is not reader friendly for cryptographic researchers, with the evidence
that the specification [2, 30] is over 1500 pages long. Although this paper does
not aim to provide a complete response to this challenge, we believe that the
content of this paper will help the future cryptographic researcher analyst TPM
2.0 in more comprehensive methods than it has been done so far.

The remaining part of this paper is arranged as follows. In the next section,
we will review the existing TPM 2.0 ECC functionalities, which include a short

3

overview of the TPM’s key handling method and commands, and the TPM ECC
related commands. In Section 3 we list the EC-based cryptographic algorithms
and protocols which were already addressed in the TPM 2.0 specification. In Sec-
tion 4, we will discuss a number of asymmetric encryption algorithms, which can
be implemented by using the existing TPM 2.0 ECC functionalities, although
they have not been mentioned in the specification yet. In this section we also
show the limitation of TPM algorithm agility by variants of ECDSA signature
algorithms. In Section 5, taking an example of the EC-based Schnorr digital sig-
nature scheme, we will further discuss on some issues in compatibility. Section 6
will share our considerations about TPM performance. We will conclude the
paper in Section 7 with an open question on how to define and prove security
notions for the TPM 2.0 algorithm agility property.

2 Overview of the TPM 2.0 ECC Functionalities

In this section we give an overview of the Elliptic Curve Cryptographic (ECC)
functionalities which are specified in the TPM 2.0 specification [2, 30]. Because
the TCG TPM 2.0 specification [30] is still under development, the information
used in this section is based on a version of the TPM library published by
ISO/IEC in 2015 [2]. We introduce a set of major TPM 2.0 commands that are
used to implemented the TPM 2.0 ECC functions. After that we list all the
EC-based cryptographic algorithms that are mentioned in the specification.

2.1 Introduction to TPM Keys

To describe ECC keys in the TPM 2.0 environment, we use the notation shown
in Table 1.

TPM Key Structures In the TPM 2.0 environment, TPM keys are arranged
with key hierarchies. For the reason of limiting TPM resources, keys are normally
stored outside. Each key except a root key is associated with a parent key,
parentK, and the top parent key is a root key.

Let an ECC key be denoted by tk with a private potion tsk and a public
potion tpk. Some system parameters about an ECC key, known by a TPM,
include coe�cients of the curve, a field modulus of the curve, an order of group
elements on the curve and a generator of the group. For simplicity, we use tpk

to cover all of these parameters. Each key tk is associated a key name denoted
by tk.name, key blob denoted by tk.blob and key handle denoted by tk.handle,
which have the following meanings.

– Key name: tk.name is a message digest of tpk and the key’s attributes. It is
usually used for verifying the integrity of the key.

– Key blob: Each TPM key stored outside of the TPM is in a format of a
key blob; tk.blob includes the following information: tsk encrypted under
its parentK, tpk, and an integrity tag. The tag allows the TPM to verify

4

Notation Descriptions

tk ECC key created by TPM
tpk/tsk public/private portion of tk
parentK a key used to introduce another key
k.name name of key k used for identifying the key

externally
k.blob key blob of key k wrapped by its parentK
k.handle handle of key k used for identifying the key

internally by a TPM
kdf(s) key derivation function using s as seed
mac

k

(m) message authentication code of m com-
puted using key k

(m)
k

encryption of m under symmetric key k

xky concatenation of x and y

G
p

an elliptic curve group of prime order p
G a generator of G

p

Table 1. Notation used in this paper

integrity and authenticity of the key and is achieved by using a message
authentication code (mac). Both the encryption key sk and MAC key mk
are derived from parentK by using a key derivation function (kdf). The
following is a brief description of tk.blob:

(sk,mk) := kdf(parentK),

tk.blob := (tsk)skktpkkmacmk((tsk)skktpk.name).

– Key handle: If tk is associated with multiple commands, the connection
between these commands is presented as tk.handle that uniquely identifies
the key. tk.handle is assigned by the TPM when tk is loaded into the
TPM. Such a key handle is a 4 byte (word) value. The first byte designates
the handle type and the remaining three bytes are uniquely referring the
key. After the loading command, when tk is subsequently used in another
command (or multiple commands), the handle is taken as input for each
command. If more than one key are involved in a command, all handles of
these keys are taken as input for the command.

The usage of each ECC key are classified by three key base attributes as re-

stricted, sign and decrypt. Table 2 shows valid combinations.
The sign attribute is used to allow the key to perform signing operations,

e.g. this key can be used for the TPM2 Sign() command.
The decrypt attribute is used to allow the key to perform decryption opera-

tions, e.g. this key can be used for the TPM2 ECDH ZGen() command.
The restricted attribute needs a bit more explanation. Let’s first explain re-

stricted sign keys. The TPM can be used to sign externally given messages or to
sign internally generated data. For instance, the TPM2 Quote() command signs

5

sign decrypt restricted description

0 0 0 no key, user defined data blob
0 0 1 not allowed
0 1 0 a decryption key but may not be a parentK
0 1 1 may be a parentK
1 0 0 a key for signing external date
1 0 1 a key for signing TPM generated data only
1 1 0 a general-purpose key
1 1 1 not supported

Table 2. Key base attributes

the values of some platform configuration registers and the TPM2 Certify() com-
mand signs a TPM generated key. A verifier must be assured that the signatures
actually have been performed by those commands on internal TPM data. To do
this, the TPM puts a special tag word called TPM GENERATED VALUE in the
message header of the signature. This tag proves to the verifier that the signature
belongs to TPM created data. If the signing key has the restricted attribute, the
TPM will only sign an externally given message by TPM2 Sign(), if the message
does not start with the TPM GENERATED VALUE tag. This protects that the
TPM2 Sign() command cannot be misused to fake a platform attestation.

The restricted decryption attribute is mainly used for the parent key to pro-
tect a key blob. Here it must be targeted that only the TPM can decrypt the
key blob. The restricted attribute protects this key from being used for general
purpose decryption commands (e.g. TPM2 ECDH ZGen()). If the key would not
be restricted an attacker could simply use the TPM2 ECDH ZGen() command
to decrypt the key blob.

In addition to the base attributes there are other key attributes. We will not
go into detail here but only mention the most important ones.

– userWithAuth and adminWithPolicy: they control authorization of the key.
– fixedTPM and fixedParent: they control if the key can be duplicated under

another parent key of the same TPM or another one.

2.2 TPM 2.0 Key Handling Commands

All TPM functions are served by using a set of TPM commands. Most of the
TPM commands have multiple options, regarding to di↵erent types of keys and
applications. For simplicity, we only explain these options which are related to
the implementation of the TPM ECC functions that will be discussed in the
later part of the paper. For the same reason, we may also omit some input and
output information if they are not relevant to our purposes.

Generate a key: TPM2 Create(). An ECC key tk can be generated by using
this command. The command takes a handle of a parent key (say parentK)

6

that has already been loaded into the TPM and public parameters about the
curve, algorithm identifier and so on as input, creates a fresh ECC key pair
tk = (tpk, tsk), and outputs a wrapped key blob, tk.blob as described before.

In the context of the ECC functions, to respond to this command, the TPM
performs the following steps:

1. TPM picks a random x Z
p

and computes Y = [x]G, where the values p
and G are a part of the public parameters dependent on the ECC algorithms
that will be discussed in the next subsection.

2. TPM sets tpk := Y , tsk := x, and tk := (tpk, tsk).
3. TPM wraps tk with the parent key and outputs a key blob tk.blob.

A variation of this command is TPM2 CreatePrimary(), in which the private
key tsk is derived from a primary seed of the TPM using a key derivation
function (kdf). A primary seed is a secret key stored inside of the TPM. As a
result, the key tk is a root key of the key hierarchy. The same primary seed can
be used to create multiple root keys. In order to make each created key unique,
some index value(s) shall be used. Primary keys will be used internally as root
keys which protect a key hierarchy of ordinary keys. They will normally not be
used for cryptographic services and we therefore ignore them in the remaining
of this paper.

Load a key into TPM: TPM2 Load(). When tk is created in TPM2 Create(),
it is not stored inside of the TPM. In order to use tk, the key has to be loaded
into the TPM using the command TPM2 Load(). This command takes as input
a parent key handle and a key blob tk.blob. The TPM verifies integrity of the
key by checking the validation of the blob under the parent key, optionally also
verifies the user authorization and the attributes consistence. If all the verifica-
tion succeeds, the TPM outputs a handle tk.handle and the name tk.name for
the key. After TPM2 Load() has been called, tk is now stored inside the TPM
and can be used for future operations.

Load an external key to TPM: TPM2 LoadExternal(). An external key
that is not part of a TPM key hierarchy can also be loaded into the TPM. This
will normally be a public key only. For example, if a signature verification is the
purpose, then the public verification key will be loaded into the TPM with this
command.

2.3 TPM 2.0 ECC Commands

Commit an ephemeral secret for signing: TPM2 Commit(). Several EC-
based signature schemes are implemented using two phases: committing and
signing. The committing process is achieved using the command TPM2 Commit().
It takes as input a key handle of a signing key tk, a point P1 in G

p

, a string ŝ,
and an integer ŷ , where ŝ and ŷ are used to construct another point P2 in G

p

,

7

see below for details. The TPM outputs three points R1, R2, K2, and a counter
ctr to the host, where ctr is used for identifying the random value r created
by this command. To respond this command the TPM performs the following
steps:

1. TPM computes x̂ := H(ŝ) where H is a collision-resistant hash function,
and sets P2 := (x̂, ŷ).

2. TPM verifies P1 and P2 are elements in G
p

.
3. TPM chooses a random integer r Z

p

.
4. TPM computes R1 := [r]P1, R2 := [r]P2, and K2 := [tsk]P2.
5. TPM outputs R1, R2,K2 and ctr while keeping r internally.

Note that some input to this command can be empty. If ŝ and ŷ are empty,
then R2 and K2 are not computed. If all the three elements P1, ŝ and ŷ are
empty, then R1 = [r]G, where G is a long-term base in the curve parameters
and was used in creating tk.

Sign: TPM2 Sign(). This command can be used as a one-phase signing oper-
ation or the second phase of the two-phase signing protocols. It takes as input
a handle of the signing key tk, a message digest c

h

, and optionally a counter
value ctr , and outputs a signature � on the message. The counter value ctr is
only needed when the sign command is called after executing a commit com-
mand TPM2 Commit(). Standard digital signature algorithms can be used, such
as RSA, ECDSA, or ECSchnorr signatures. If a conventional signature scheme
is used, then there is no need to call the commit command. In the context of a
two-phase signing protocol, the TPM responds to this command by performing
the following steps:

1. TPM retrieves r from the commit command based on the ctr value.
2. TPM computes s := r + c · tsk mod p and deletes r.
3. TPM outputs s.

Note: Recently Xi et. al. [33] and Camenisch et. al. [13] reported an issue in
the security proof of [16], that requires to a modification of the scheme in [2] by
adding the nonce n

t

. Note also that the nonce n
t

is in another version of EC-DAA
schemes specified in ISO/IEC 20008-2 [6], so this issue does not require such a
modification to ISO/IEC 20008-2. This modification has of course implications
also to other protocols which rely on the ECDAA functionality. Here is the
modified sign algorithms.

1. TPM created a nonce n
t

! Z
p

.
2. TPM computes c := H(c

h

, n
t

).
3. TPM retrieves r from the commit command based on the ctr value.
4. TPM computes s := r + c · tsk mod p and deletes r.
5. TPM outputs � = (n

t

, s).

The TPM 2.0 specification also contains commands which perform a signa-
ture over TPM internally stored date. For instance, TPM2 Quote() is used to
sign platform configuration registers and TPM2 Certify() will sign another TPM
stored key. We will not go into detail of those commands.

8

Compute an ephemeral key: TPM2 ECDH KeyGen(). This command takes
as input the public portion of a loaded key including an EC point P in the curve,
chooses an element d uniformly at random from the space of the ECC private
key, computes Q := [d]P and outputs P and Q. The TPM does not record or
output the value d. Since the operation can be performed by software, no au-
thorization is required to use the loaded key and the key may be either sign or
encrypt.

Compute a static DH key: TPM2 ECDH ZGen(). This command takes
as input a loaded key with the private portion d along with the corresponding
public parameters, and an elliptic curve point P . The TPM first verifies whether
P matches with the public parameters. If the verification passes, the TPM com-
putes Z := [d]P and outputs Z. Since this operation uses the private portion of
an ECC key, authorization of the key is required. The attributes of the key is
the restricted attribute CLEAR and the decrypt attribute SET.

Commit an ephemeral secret for key exchange: TPM2 EC Ephemeral().
This command takes as input the public parameters for an ECC key with the
elliptic curve point G, generates an ephemeral private portion of an ECC key r
by using a counter technique as used in TPM2 Commit(), and computes a public
key P := [r]G. The value of P is returned to the caller along with the counter
value associated with r.

Compute a DH key: TPM2 ZGen 2Phase(). This command takes as in-
put a scheme selector and the counter value returned by TPM2 EC Ephemeral()
along with the corresponding public parameters, recreates r and regenerates the
associated public key. After that the TPM will “retire” the r value so that it will
not be used again. This command can be used to achieve multiple key exchange
protocols, which may have di↵erent operations. The scheme selector is used to
tell the TPM which key exchange protocols should be implemented.

The TPM 2.0 specification also contains the TPM2 ActivateCredential() com-
mand which uses an ECC decryption algorithm internally. This command can-
not be used for decryption of general purpose data. Therefore, we will not go
into the detail of this commands.

3 Known ECC Use Cases for the TPM 2.0

The TPM 2.0 specification [2] supports three ECC primitives: conventional dig-
ital signatures, anonymous digital signatures that is called direct anonymous
attestation, and Di�e-Hellman (DH) key exchange.

9

3.1 Conventional Digital Signatures

The following three conventional digital signature algorithms are mentioned in
the TPM 2.0 specification [2].

1. ECDSA. The specification does not explain any details about this algorithm,
but simply referring it to ISO/IEC 14888-3 [3]. This algorithm is originally
described in NIST Fips 186-3 [23]. It is also defined in numerous other spec-
ifications, e.g. BSI TR-03111 [12].

2. ECSchnorr. The specification specifies an implementation of the EC Schnorr
signature scheme, which is assigned as the TPM ALG ECSCHNORR scheme.
The scheme includes the EC Schnorr signing operation and signature verifi-
cation operation. The reference for the EC Schnorr signature scheme given
in the TPM 2.0 specification is ISO/IEC 14888-3 [3].

3. SM2. The specification specifies the SM2 digital signature scheme, which
is the Chinese EC-based signature scheme, originally published as the Chi-
nese National Standard [27]. This digital signature scheme has recently been
adopted by ISO/IEC and the process of adding it into an amendment of
ISO/IEC 14888-3 [3] is in progress.

3.2 Direct Anonymous Attestation (DAA)

One of the main purposes of a TPM chip is to attest the state of the platform
configuration to some verifier. This is basically been done by signing the values
of platform configuration registers inside the TPM. It is an important privacy
requirement that two attestations shall not be linkable. In the pre-DAA epoch,
this has been accomplished by using a privacy certification authority (privacy
CA). This basically worked in the following way. For each attestation, the TPM
contacts the privacy CA and requests a new key, the “Attestation Identity Key”
(AIK) together with a corresponding X.509 certificate. This enables privacy,
because the verifier always sees a di↵erent public key. If the verifier gets two
attestations, then he cannot tell if they came from two di↵erent TPMs or form
the same one. In this case, the attestations are unlinkable from the verifier.

The downside of this approach is that the privacy CA is involved in every
attestation. Furthermore this CA can link two signatures from the same TPM
and can find which TPM was the signer. Therefore TGC were looking for a
solution which didn’t need the privacy CA: In the TCG history, DAA was the
only cryptographic primitive that was designed to meet the TCG special privacy
requirement. DAA is an anonymous digital signature. A DAA protocol accom-
plishes unlinkability by randomizing the signatures and associated certificates.

The first RSA DAA scheme was introduced by Brickell, Camenisch and
Chen [10] for the TPM 1.2 specification [29]. The TPM 2.0 specification has
been designed to support a new family of Elliptic Curve (EC) based DAA proto-
cols. The TPM 2.0 specification [2] supports two di↵erent DAA protocols which

10

are based on pairings over elliptic curves. The first [17] is based on Camenisch-
Lysyanskana (CL) credentials [14] and the second one [11] is based on sDH
credentials [9]. The paper from Chen and Li [16] shows how both DAA protocols
can be used with a TPM 2.0 chip.

3.3 DAA with attributes (DAA-A)

Chen and Urian [18] have recently preposed an extension of DAA by adding
multiple attributes. This protocol is related to the U-Prove protocol but has
a significant advantage over it: In contrast to the U-prove protocol, DAA-A
is multi-show unlinkable. The DAA-A protocol comes in two variants, which
correspond to the respective ECDAA protocols:

– the CL DAA-A protocol which corresponds to the CL ECDAA protocol.
– the sDH DAA-A protocol which corresponds to the sDH ECDAA (aka Epid)

protocol.

In a nutshell, the DAA-A protocol works as follows: Each attribute value will be
encoded as an exponent for an ECC key which is normally stored on the host but
can also be for better security stored on the TPM. The DAA-A Issuer defines the
list of attributes which shall be used in a DAA-A credential. According to the
minimum disclosure principle, the TPM/host shall only reveal a minimum set of
attributes to the Verifier. The TPM/host decide on each individual attestation
what attributes they will reveal to the Verifier and what attributes they will hide
form him. The revealed attributes will be sent by the TPM/host to the Verifier
as part of the DAA-A Sign protocol. The correctness of the hidden attributes
will be proved to the Verifier by a zero-knowledge proof.

Attributes can be stored on the host or on the TPM. TPM hosted at-
tributes are stored as conventional signature keys. The DAA-A scheme uses the
TPM2 Sign() and TPM2 Commit() commands, specified in ISO/IEC 11889 [2],
as sub-protocols to aid in the generation of the DAA-A signature (see [18] for
details).

Due to the proposed change of the TPM2 Sign() command for ECDAA (see
2.3), the integration of DAA-A with this command must also be changed. We
leave how to handle this new adaption as an open problem, and from our point
of view this problem is not trivial.

3.4 U-Prove

The U-Prove protocol [25] from Microsoft is an attribute based protocol with
user controlled selective disclosure. The paper of Chen and Li [16] shows how
U-Prove can be integrated with a TPM 2.0 chip. But the U-Prove protocol has
the severe drawback that it is not multi-show unlinkable. The reason for this is
that the authentication token of the U-Prove protocol is signed by a Schnorr-
like signature and the signature value can be used as a correlation handle. To
be unlinkable, a U-Prove token may only be used once.

11

3.5 Key Exchange

The following Di�e-Hellman (DH) based key exchange schemes in the EC setting
are mentioned in the TPM 2.0 specification [2]. Interestingly this technique is
called “secret sharing” in the TPM 2.0 specification. Secret sharing has been
broadly used as a di↵erent cryptographic protocol, in which multiple entities
each holds a share of a common secret and a number of these entities can work
together and retrieve such a secret. In order to avoid any confusion, we name
this technique “key exchange” throughout the paper.

1. One-Pass DH. The specification specifies the one-pass DH key exchange
scheme and refers it to NIST SP800-56A [26].

2. Two-Pass DH. The specification specifies the two-pass DH key exchange
scheme, which is also from NIST SP800-56A [26].

3. ECMQV. The specification specifies the two-pass DH key exchange scheme,
which is known as EC-based MQV [26].

4. SM2 key exchange. The specification specifies the two-pass DH key exchange
scheme from the SM2 family, the Chinese National Standard on ECC [27].

4 New ECC Use Cases for TPM 2.0

In this section we will discuss how cryptographic protocols can be used with a
TPM 2.0, although they have not been mentioned in the specification yet. First
we will show that a TPM can nicely be integrated in asymmetric encryption
schemes. Then we will show the limitation of TPM integration by discussing
some variants of signature algorithms.

4.1 Asymmetric Encryption

Based on the TPM 2.0 specification [2, 30], ECC is not used directly for en-
cryption. It is well-known that in ECC, a key exchange functionality is used to
establish a symmetric key from an ECC key, and then a symmetric algorithm is
used for data encryption, which is known as the hybrid encryption, i.e., Key En-
capsulation Mechanism and Data Encapsulation mechanism (KEM-DEM). The
TPM 2.0 specification does not specify any KEM-DEM scheme. In this section,
we demonstrate how to use TPM 2.0 to implement the ElGamal based KEM
schemes in the ECC setting from ISO/IEC 18033-2 [4]. For the performance
consideration (as a TPM chip is not e�cient for data encryption/decryption
compared with software), a DEM scheme would likely be implemented by soft-
ware, and therefore we do not discuss it in this paper.

Generally speaking, a KEM consists of three algorithms:

– A key generation algorithm KEM.KeyGen() that takes as input the public
system parameters par and outputs a public-key/private-key pair (pk, sk).

12

– An encryption algorithm KEM.Encrypt() that takes as input (pk, par) and
outputs a secret-key/ciphertext pair (K,C).

– A decryption algorithm KEM.Decrypt() that takes as input (sk, C, par) and
outputs K.

The public system parameters par depend on the particular scheme, and in
the ECC setting they should include an elliptic curve defined over a given finite
field, a subgroup of the elliptic curve group with a prime order q and a generator
G, a hash function hash() and a key derivation function kdf(). For simplicity,
we omit other items in par.

ISO/IEC 18033-2 [4] specifies three ElGamal-based KEM schemes in the
ECC setting. Respectively, they are ECIES (Elliptic Curve Integrated Encryp-
tion Scheme) based on the work of Abdalla, Bellare, and Rogaway [7, 8], PSEC
(Provably Secure Elliptic Curve encryption) based on the work of Fujisaki and
Okamoto [22] and ACE (Advanced Cryptographic Engine) based on the work
of Cramer and Shoup [21, 20]. Recently a new submission of the ElGamal-based
KEM scheme in the ECC setting [24] has been adopted by ISO/IEC and an
amendment of ISO/IEC 18033-2 specifying this new scheme is in progress. This
scheme is called FACE (Fast ACE).

Table 3 shows the algorithms in these four KEMs. Note that we have changed
the notation used in ISO/IEC 18033-2 for the purpose of this paper, because we
want to demonstrate that the same set of TPM functions can be used for all the
three KEMs.

By using a TPM 2.0 chip to operate a KEM, we mean that the TPM gen-
erates a public-key/private-key pair, stores the key pair in the TPM protected
environment and uses the private-key to decrypt a secret key, which is used
for the DEM operation in a later stage. For the best use of the TPM, we only
make use of the TPM for the operations involving the private-key and leaves
other operations, such as the KEM.Encrypt() algorithm, the kdf() function and
the hash() function, to the software. With this consideration, these three KEM
schemes can be implemented by using the same TPM ECC functionalities.

Now, let us see how to implement the KEM.KeyGen() and KEM.Decrypt()
algorithms in ECIES and PSEC using a number of TPM 2.0 commands, which
were introduced in Section 2.2. We assume that a caller enabling to run these
software operations mentioned before has authorization to use the TPM com-
mands as follows.

1. In the KEM.KeyGen() algorithm, The caller first chooses an existing TPM
key as a parent key parentK. If the key is stored outside of the TPM, the caller
uses the TPM2 Load() command to load the key and receives a key handle
parentK.handle from the TPM. In order to generate the public-key/private-
key pair tk = (pk, sk), where sk = x and pk = Y = [x]G, the caller calls
TPM2 Create(), that takes as input the public system parameters par along
with parentK.handle, generates the key pair tk and a key blob tk.blob, and
outputs the blob. Recall that tk.blob includes sk encrypted under parentK,
pk and a tag to check integrity.

13

KEM.KeyGen(par) KEM.Encrypt(pk, par) KEM.Decrypt(sk, C, par)
ECIES x 2 [1, q) r 2 [1, q) C0 = C

[7, 8] Y = [x]G C0 = [r]G, C = C0 D = [x]C0

sk x D = [r]Y K = kdf(C0||D)
pk Y K = kdf(C0||D) Return K

Return (pk, sk) Return (K,C)
PSEC x 2 [0, q) seed 2 {0, 1}seedLen Parse C = C0||F
[22] Y = [x]G t = u||K = kdf(0||seed) D = [x]C0

sk x r = u mod q E = kdf(1||C0||D)
pk Y C0 = [r]G, D = [r]Y seed = F � E

Return (pk, sk) E = kdf(1||C0||D) t = kdf(0||seed) = u||K
C = C0||(seed� E) r = u mod q

Return (K,C) Return K, if C0 = [r]P
Otherwise, return Fail

ACE x1, x2, x3, x4 2 [0, q) r 2 [0, q) Parse C = C0||D1||E
[21, 20] Y1 = [x1]G C0 = [r]G ↵ = hash(C0||D1)

Y2 = [x2]G D1 = [r]Y1, D4 = [r]Y4 t = x2 + x3 · ↵ mod q

Y3 = [x3]G ↵ = hash(C0||D1) If D1 6= [x1]C0 _ E 6= [t]C0

Y4 = [x4]G r

0 = ↵ · r mod q return Fail
sk (x1, x2, x3, x4) E = [r]Y2 + [r0]Y3 Otherwise calculate
pk (Y1, Y2, Y3, Y4) C = C0||D1||E D4 = [x4]C0

Return (pk, sk) K = kdf(C0||D4) K = kdf(C0||D4)
Return (K,C) Return K

FACE a1, a2 2 [0, q) r 2 [0, q) Parse C = U1||U2||T
[24] G1 = [a1]G U1 = [r]G1 ↵ = hash(U1||U2)

G2 = [a2]G U2 = [r]G2 t1 = x1 + y1 · ↵ mod q

x1, x2, y1, y2 2 [0, q) ↵ = hash(U1||U2) t2 = x2 + y2 · ↵ mod q

C = [x1]G1 + [x2]G2 r

0 = ↵ · r mod q V = t1U1 + t2U2

D = [y1]G1 + [y2]G2 V = [r]C + [r0]D K||T 0 = kdf(V)
sk (x1, x2, y1, y2) K||T = kdf(V) Return K, if T = T

0

pk (G1, G2, C,D) C = U1||U2||T Otherwise, return Fail
Return (pk, sk) Return (K,C)

Table 3. Four KEMs in ISO/IEC 18033-2 [4] and ISO/IEC 18033-2/AMD1 [5]

2. In the KEM.Decrypt() algorithm, the caller first loads the key pair tk into
the TPM using TPM2 Load() that will return a tk.handle. The caller then
calls TPM2 ECDH ZGen() with the input tk.handle and the value C0 = [r]P .
The TPM will computes and outputs D = [x]C0. The caller can take care of
the remaining operations using software to obtain the secret key K, and in
PSEC the K value can be obtained if the necessary check C0 = [r]P passes;
otherwise the caller will get a Fail message.

In the ACE KEM, the key pair tk = (pk, sk) consists of four private-key
values sk = (x1, x2, x3, x4) and four corresponding public-key values pk =
(Y1, Y2, Y3, Y4). The caller can treat them as four independent key pairs tk1 =
(Y1, x1), tk2 = (Y2, x2), tk3 = (Y3, x3) and tk4 = (Y4, x4). In the KEM.KeyGen()
algorithm, the caller runs the operation in the first bullet four times each obtain-

14

ing one key pair tk
i

for i = [1, 4]. In the KEM.Decrypt() algorithm, again the caller
calls the same TPM commands in the second bullet four times, each with C0 as
input but loading a di↵erent key pair tk

i

to obtain (D1, D2, D3, D4). Obviously
the caller can verify the value E since E = D2 + [↵]D3 and ↵ = Hash(C0||D1).
By following the remaining part of the decryption algorithm, the caller can ver-
ify the ciphertext C and retrieve the secret key K if the verification succeeds or
obtain a Fail message if the verification fails.

The FACE scheme first might need some explanation regarding the value T .
The kdf function for this scheme does not only generate the bits for a key K,
but instead generates some additional bits for the so called Tag value T . The
size of the Tag value are defined in the system parameters.

The FACE KEM algorithm has four public keys and four private keys.
But the private and public keys are not directly related. In the KEM.KeyGen()
algorithm, one has to calculate two public points G1 and G2 without corre-
sponding private keys. To use a TPM here, one can use two invocations of the
TPM2 ECDH KeyGen() TPM command to generate them as ephemeral points.
Then four private keys x1, x2, y1, y2 must be generated and two further public
keys: C = [x1]G1 + [x2]G2 and D = [y1]G1 + [y2]G2. The TPM calculates the
intermediate points X1 = [x1]G1, X2 = [x2]G2, Y1 = [y1]G1, Y2 = [x2]G2 with
four TPM2 ECDH ZGen() command calls. The host then finalises the calculation
by adding the points to get C = X1+X2 and D = Y1+Y2. In the KEM.Decrypt()
algorithm, the receiver has to calculate t1 = x1 + ↵y1 and t2 = x2 + ↵y2
and then V = [t1]U1 + [t2]U2. In order to use the TPM, one must a bit re-
arrange the equations. The TPM calculates the intermediate pointsX1 = [x1]U1,
X2 = [x2]U2, Y1 = [y1]U1, Y2 = [y2]U2 with four TPM2 ECDH ZGen() com-
mand calls. The host then finalises the calculation by computing the point
V = X1 +X2 + [↵](Y1 + Y2).

4.2 Limitations of Algorithmic Agility

The ECDSA algorithm implemented in the TPM is described in NIST Fips 186-3
[23]. It is also defined in numerous other specifications, e.g. ISO/IEC 14888-3 [3]
and BSI TR-03111 [12]. Despite this standard ECDSA scheme, [3] also describes
three further national schemes:

– EC-GDSA (Elliptic Curve German Digital Signature Algorithm)
– EC-KCDSA (Elliptic Curve Korean Certificate-based Digital Signature Al-

gorithm)
– EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)

It would be nice if the current TPM 2.0 specification could also be integrated
in those schemes. But this seems to be impossible. Generally speaking, in order to
integrate a TPM for implementing an algorithm, one has to split the algorithm
into two parts in such a way that the TPM can calculate one part, and the
host can calculate the remaining part. It is thereby crucial that the host only
performs the operation that needs the public keys only. Every operation involing

15

the private key must be done by the TPM. Such a splitting can be done easily
if the underling primitive is as simple as an ECDH point multiplication. This
was the case in the KEM schemes above. But the ECDSA-type of signature
schemes require to make more complicated operations on the private key. For
instance, there is no obvious way to calculate [x�1]G by using the existing TPM
commands in which the public key is formed as Y = [x|G.

Now, instead of implementing each algorithm separately on a TPM, a sugges-
tion for a future TPM related research could be to split the di↵erent signature
algorithms in simple “atomic” pieces, where the private key parts can be easily
implemented on a TPM.

5 Compatibility Issue in Algorithm Agility

Algorithm compatibility is crucial for algorithm agility. However it is a common
practice in cryptographic standardization to ignore this. That means, di↵erent
standards for the same cryptographic protocol often use di↵erent and incom-
patible implementation choices. This will not be an issue if the TPM has been
considered at the time when the cryptographic protocol is designed. But it will
be a problem if the TPM shall be used to enhance the security for an already
existing cryptographic system.

The TCG noticed this especially for the elliptic curve based Schnorr signature
scheme. Therefore, they decided to revise the current Schnorr implementation
in the TPM 2.0 specification in order to optimize interoperability. By the date
of writing this paper, the final version of this revision has not been done. The
following discussion shows the problems one faces by trying to reach a maximum
amount of interoperability.

The public system parameters par for the EC-based digital signature scheme
also depend on the particular scheme, and they should include an elliptic curve
defined over a given finite field, a subgroup of the elliptic curve group with a
prime order q and a generator G, and a hash function hash(). We use x to
denote the private key and Y for the public key. For simplicity, again we omit
other items in par.

The Schnorr signature algorithm basically consists of the following steps:

1. Choose a random value r and calculate the point R = [r]G.
2. Calculate the signature value c by hashing the x-coordinate R

x

of the point
R and a given message M , c = hash(M,R

x

). See the discussion below for
the di↵erent choices how this hashing can be done on the bit level.

3. Calculate the signature value s. Here we have the two choices to calculate
either (a) s = r + c · x mod q or (b) s = r � c · x mod q.

4. Return the signature (c, s).

The Schnorr signature verification algorithm to the signature (c, s) for the
message M consists of the following steps:

1. Calculate the point R0. Here we must use the correct version corresponding
to the sign variant, i.e. either (a) R0 = [s]G� [c]Y or (b) R0 = [s]G+ [c]Y .

16

2. Calculate the signature value c0 by hashing the x-coordinate R0
x

of the point
R0 and message M as c0 = hash(M,R0

x

).

3. Return Accept, if c = c0 or Reject, otherwise.

Note that the di↵erent calculation variants for the signature value s can easily
be transformed into each other by inverting the s value, i.e. if (c, s) is a signature
for variant (a), then (c,�s) will be a signature for variant (b) (and vice-versa).

Let us now discuss the di↵erent hash calculation variants. The first decision
to make is the bit encoding of the value R

x

. Since R
x

is an element of the finite
field with q elements, it can be encoded as a byte string of length dlog256(q)e. Let
this be the default encoding. This encoding can contain leading zero bytes. As
an alternative encoding one can strip down those leading zeroes from the default
encoding. Let the trz(x) denote the function which truncates the leading zeroes
from the default encoded byte string x. The next choice we must make is in
which order the message M and the value R

x

will enter the hash function, i.e.
either as h = hash(M ||R

x

) or as h = hash(R
x

||M). The next choice regards
the truncation of the value h. This is necessary only if the bit size � of the hash
result is bigger than the bit size l of the binary encoding of the number q, i.e.
l = dlog2 qe. Here one has the choices to either leave the value as it is or truncate
the �� l least significant bits of h. Let us denote this truncation of a bit string
x as trh(x). As a last choice, we can now set c = h or reduce h first to h0 = h
mod q and set c = h0.

For comparison, in Table 4, we list the three existing implementations of
the EC Schnorr signature scheme in ISO/IEC 14888-3 [3], ISO/IEC 11889 [2]
and BSI TR-03111 [12] respectively, and a new implementation proposed by the
TCG recently [32].

Sign(par, x,M) Verify(par, Y, s, c,M)
ISO/IEC r 2 [1, q), R = [r]G R

0 = [s]G� [c]Y
14888-3 c = hash(R

x

||M) c

0 = hash(R0
x

||M)
[3] s = r + c · x mod q Accept, i↵ c = c

0

BSI r 2 [1, q), R = [r]G R

0 = [s]G+ [c]Y
TR-03111 c = trh(hash(M ||R

x

)) c

0 = trh(hash(M ||R0
x

))
[12] s = r � c · sk mod q Accept, i↵ c = c

0

ISO/IEC r 2 [1, q), R = [r]G R

0 = [s]G� [c]Y
11889 c = hash(M ||(trz(R

x

mod q)) mod q c

0 = hash(M ||(trz(R0
x

mod q)) mod q

[2] s = r + c · x mod q Accept, i↵ c = c

0

New TCG r 2 [1, q), R = [r]G R

0 = [s]G� [c]Y k

proposal c = trh(hash(R
x

||M)) c

0 = trh(hash(R0
x

||M)
[32] s = r + c · x mod q Accept, i↵ c = c

0

Table 4. Di↵erent EC Schnorr implementation variants

17

6 Performance considerations

TPM chips are optimized to provide a high level of hardware security. This
means they have to be resistant against sophisticated physical attacks, like fault
injection or side channel leakage. Security certifications according to Common
Criteria or FIPS give evidence for this security level. TPM chips are also re-
quired to be cost optimized devices. This implies that they will be somewhat
restricted regarding processor speed and memory resources. However the perfor-
mance of TPM chips is continuously increasing due to higher clock frequencies,
sophisticated cryptographic co-processors and firmware optimizations.

As a TPM chip is normally invoked by the software stack of an multitasking
operating system, the performance also depends on that software part. It is
therefore di�cult to provide meaningful performance measurements for TPM
chips.

The bottom line is that a host CPU is faster but provides no hardware
security while the TPM chip is slower but provides a far high level of hardware
security. Due to this performance/security asymmetry, it is very important to
cleverly split the algorithm between the host CPU and the TPM chip. The TPM
should only perform the operations involving the private key.

7 Conclusion with an Open Question

In this paper, we have shown that a TPM 2.0 chip is a reasonably powerful
cryptographic engine, which can potentially achieve more than what have be
specified in its published specification [2]. This benefits from the property of al-
gorithm agility. However, the algorithm agility has made the environment much
more complex than these algorithms individually implemented and analyzed in
their original security proof. Therefore, it is a real challenge to make a sound
security analysis for the entire TPM/host system. This paper has not done any-
thing in this topic. We finish this paper with an open question: How to define the
security notion of algorithm agility? On the other words, whether it is possible
and then how to build a security model for TPM 2.0 ECC functionalities and to
prove it?

References

1. ISO/IEC 11889:2009 (all parts) Information technology – Trusted platform mod-
ule.

2. ISO/IEC 11889:2015 (all parts) Information technology – Trusted platform module
library.

3. ISO/IEC 14888-3:2016 Information technology – Security techniques – Digital sig-
natures with appendix – Part 3: Discrete logarithm based mechanisms.

4. ISO/IEC 18033-2:2006 Information technology – Security techniques – Encryption
algorithms – Part 2: Asymmetric ciphers.

5. ISO/IEC 18033-2/amd1 Encryption algorithms – Part 2: Asymmetric ciphers –
Amendment 1.

18

6. ISO/IEC 20008-2:2013 Information technology – Security techniques – Anonymous
digital signatures – Part 2: Mechanisms using a group public key.

7. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHAES: an encryption
scheme based on the Di�e- Hellman problem. Cryptology ePrint Archive, Re-
port 1999/007, 1999. http://eprint.iacr.org.

8. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Di�e-Hellman
assumptions and an analysis of DHIES. In In Topics in Cryptology - CT-RSA
2001, volume 2045 of LNCS, pages 143–158. Springer, 2001.

9. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Ad-
vances in Cryptology — EUROCRYPT ’04, volume 3027 of LNCS, pages 56–73.
Springer, 2004.

10. Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM Conference on Computer and Communications
Security, pages 132–145. ACM Press, 2004.

11. Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further reducing TPM
resources. In Proceedings of 3rd International Conference on Trust and Trustworthy
Computing, volume 6101 of LNCS, pages 181–195. Springer, 2010.

12. BSI. Technical Guideline TR-03111, Elliptic Curve Cryptography, v2.0. BSI, 2012.
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/

TechGuidelines/TR03111/BSI-TR-03111_pdf.html.
13. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally composable direct

anonymous attestation. In Public-Key Cryptography – PKC 2016, volume 9615 of
LNCS, pages 234–264. Springer, 2016.

14. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Advances in Cryptology — CRYPTO ’04, volume
3152 of LNCS, pages 56–72. Springer, 2004.

15. Liqun Chen, Ming-Feng Lee, and Bogdan Warinschi. Security of the enhanced
TCG privacy-CA solution. In Proc. 6th International Symposium on Trustworthy
Global Computing (TGC 2011), volume 7173 of LNCS, pages 121–141. Springer,
2011.

16. Liqun Chen and Jiangtao Li. Flexible and scalable digital signatures in tpm 2.0.
In Proceedings of the 2013 ACM Conference on Computer and Communications
Security, pages 37–48. ACM Press, 2013.

17. Liqun Chen, Dan Page, and Nigel P. Smart. On the design and implementation
of an e�cient DAA scheme. In Proceedings of the 9th Smart Card Research and
Advanced Application IFIP Conference. Springer, 2010.

18. Liqun Chen and Rainer Urian. DAA-A: Direct anonymous attestation with at-
tributes. In TRUST 2015, volume 9229 of LNCS, pages 228–245. Springer.

19. Liqun Chen and Bogdan Warinschi. Security of the TCG privacy-CA solution. In
Proc. 6th IEEE/IFIP International Symposium on Trusted Computing and Com-
munications (TrustCom 2010), pages 609–616. IEEE Press, 2010.

20. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. Cryptology
ePrint Archive, Report 2001/108, 2001. http://eprint.iacr.org.

21. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Advances in Cryptology-Crypto
’98, pages 13–25. Springer, 1998.

22. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Advances in Cryptology — CRYPTO ’99, vol-
ume 1666 of LNCS, pages 537–554. Springer, 1999.

19

23. Patrick Gallagher, Deputy Director Foreword, and Cita Furlani Director. Fips
pub 186-3 federal information processing standards publication digital signature
standard (dss), 2009.

24. Kaoru Kurosawa and Le Trieu Phong. Kurosawa-Desmedt key encapsulation mech-
anism, revisited and more. In AFRICACRYPT 2014, volume 8469 of LNCS, pages
51–68. Springer, 2014.

25. Microsoft U-Prove Community Technology. U-Prove cryptographic specification
version 1.1, 2013. http://www.microsoft.com/u-prove.

26. National Institute of Standards and Technology. Recommendation for pair-wise key
estabishment schemes using discrete logarithm cryptography. Special Publication
800-56A, March 2007.

27. Chinese National Standards. Public key cryptographic algorithm SM2 based on
elliptic curves – Part 2: digital signature algorithm.

28. TCG. TCG algorithm registry. Committee Draft, January 7, 2016.
29. Trusted Computing Group. TCG TPM specification 1.2, 2003. http://www.

trustedcomputinggroup.org.
30. Trusted Computing Group. TCG TPM library 2.0, 2014. http://www.

trustedcomputinggroup.org/tpm-library-specification/.
31. Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding collisions in the full SHA-1.

In Crypto 2005, volume 3621 of LNCS, pages 17–36. Springer, 2005.
32. David Wooten. Final schnorr algorithm. email to TCG TPMWG, 2016.
33. Li Xi, Kang Yang, Zhenfeng Zhang, and Dengguo Feng. DAA-related APIs in

TPM 2.0 revisited. In TRUST 2014, volume 8564 of LNCS, pages 1–18. Springer,
2014.

