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Abstract. Automatic Speech Recognition has reached almost human
performance in some controlled scenarios. However, recognition of im-
paired speech is a difficult task for two main reasons: data is (i) scarce
and (ii) heterogeneous. In this work we train different architectures on
a database of dysarthric speech. A comparison between architectures
shows that, even with a small database, hybrid DNN-HMM models out-
perform classical GMM-HMM according to word error rate measures. A
DNN is able to improve the recognition word error rate a 13% for sub-
jects with dysarthria with respect to the best classical architecture. This
improvement is higher than the one given by other deep neural networks
such as CNNs, TDNNs and LSTMs. All the experiments have been done
with the Kaldi toolkit for speech recognition for which we have adapted
several recipes to deal with dysarthric speech and work on the TORGO
database. These recipes are publicly available.
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1 Introduction

Automatic speech recognition (ASR) consists on automatically transcribing voice
into text. It is not an easy task: one has do deal with noise, differences among
speakers and spontaneous speech phenomena among others. For some controlled
scenarios where one can minimise the effect of these phenomena, ASR approaches
or exceeds the accuracy of humans on several benchmarks [2, 19].

Despite the good performance of the recently proposed end-to-end neural
speech recognizers [2], Hidden Markov Models (HMM) are still the backbone of
competitive speech recognition systems [19]. HMMs model speech signals with a
sequence of states with an associated probability distribution for every observed
vector. This probability can be represented using different approaches such as
Gaussian mixture models (GMM) or artificial neural networks (ANN). In this
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work, we refer to the former systems as classical architectures and to the latter
ones as neural network architectures.

Although in its infancy ANNs were not able to deal with long time-sequences
of speech signal by themselves, hybrid systems ANN-HMM already showed to
be state-of-the-art at the beginning of the 90s [24]. ANNs solve at least two
problems with respect to GMMs [3]: (i) assumptions about the shape of the
statistical distribution of input features are not required and (ii) all training data
is used to train a state (an not only that aligned to that state). On the opposite,
they need of larger computing capabilities especially for large vocabularies.

Currently, and due to the existence of huge computing capabilities, hybrid
deep neural network architectures DNN-HMM have been able to improve signif-
icantly ASR with respect to GMM-HMM systems for large vocabulary tasks [21,
4, 8]. Increasing the number of neurons and hidden layers in the network improves
the word error rate (WER) in the recognition. However, for sparse data —small
data sets— such amount of parameters cannot be properly fit and performance
diminishes [10].

When dealing with impaired speech, one must face the problems of data
sparsity. Since gathering data is even more difficult in this case, few databases
exist, and the ones that exist are small. Besides, differences among speakers
are larger and databases tend to be more heterogeneous. This poses a problem
for ANNs, but also for GMMs which are more sensitive to differences between
training and test data.

Here, we study the performance of both classical and neural network ar-
chitectures when training on a small database of speakers with dysanthria, the
TORGO database [9]. We discuss the differences not only between classical and
neural systems, but also the suitability of using speaker adaptation techniques
in this case. All the systems are trained using the Kaldi Speech Recognition
toolkit [15]. We have adapted several recipes in order to prepare the data, ex-
tract the features and train the systems3.

The remaining of the paper is organized as follows. First, Section 2 describes
the database we use for the experiments. Next, Section 3 introduces the main
architecture of an ASR and the specific techniques and resources we use. Sec-
tion 4 makes emphasis in the acoustic model module and presents the different
recognition systems that are evaluated in this task. Finally, we discuss the results
and draw the conclusions in Sections 5 and 6 respectively.

2 The TORGO Database

Serveral speech disorders can alter the correct uttering of sounds. Speakers with
dysarthria show difficulties to articulate phonemes due to a lesion in the nervous
system. This may cause changes in voice quality, slow rate of speech or abnormal
pitch and rhythm.

3 Recipes are publicly available at https://github.com/cristinae/ASRdys



Table 1. Figures for the 15 speakers in the TORGO database ranked according to
their degree of disorder

Speaker F01 M01 M02 M04 M05 F03 F04 M03

Degree severe severe severe severe sev-mid mid mild mild
#audios 228 739 772 659 610 1097 675 806

Speaker FC01 FC02 FC03 MC01 MC02 MC03 MC04

Degree none none none none none none none
#audios 296 2183 1924 2141 1112 1661 1614

The TORGO database [9] contains speeches from 15 subjects, 6 females and
9 males. In total, the database contains about 3 hours per speaker of recorded
speech, and one third corresponds to impaired speech. Four speakers have se-
vere dysanthria, one is moderately-to-severely dysanthric and one is moderately
dysanthric. Two other subjects have very mild dysanthria and the remaining 7
subjects are control speakers without any disorder. Table 1 describes the 15 sub-
jects and includes the number of audios available in the database. For most of
the utterances we use both, the audio obtained with a head-mounted microphone
and the one obtained with a directional microphone.

Using the two microphones, we have 5586 utterances for speakers with dysan-
thria (a mean of 698 per speaker) and 10931 utterances for control speakers (a
mean of 1562). An utterance can be a single word or a sentence, and the mean
of words per utterance is of 3.5.

3 System’s Architecture

All the systems described in the following sections share a common main archi-
tecture with four modules: (i) feature extraction, (ii) acoustic modeling, (iii) lan-
guage modeling and (iv) pronunciation lexicon. Only feature extraction and
acoustic modeling differ among systems.

3.1 Feature Extraction

As basic acoustic features we use 13 Mel-frequency cepstral coefficients (MFCCs).
The features are generated in 25 ms windows shifted by 10 ms for the control
speakers and 15 ms for dysanthric speech. This configuration for dysanthric
speakers was shown to be adequate in Ref. [9]. As explained in Section 2, this
disorder can make speakers talk slower and widening the shift between consec-
utive frames helps to homogenise the differences between patients and control
speakers. For convolutional neural networks (CNN), we use 40 dimensional fil-
terbank features in order to account for the correlations in the signal, estimated
at the same window intervals.



Besides, in order to obtain more evolved speaker independent (SI) features,
we apply a Linear Discriminative Analysis transformation (LDA) for projecting
sequences of frames into 40 dimensions and, afterwards, a Maximum Likelihood
Linear Transformation (MLLT) to diagonalise the matrix and gather the cor-
relations among vectors [6]. For speaker dependent features (SD), we apply a
feature-space Maximum Likelihood Linear Regression (fMLLR) [16]. In some
cases, we also add 100-dimensional iVectors to gather specific information for
every speaker and for the environment [5, 20].

3.2 Acoustic Modeling

In this work we use a monophone model and several standard three-state con-
text dependent triphone models that differ on the features used, the training
methodology and how the probability associated to each HMM state is calcu-
lated. Section 4 describes the main characteristics of the acoustic models used.

3.3 Language Modeling and Pronunciation Lexicon

The SRILM Toolkit [22] is used to build a standard 3-gram language model with
interpolated Kneser-Ney discounting on the training data transcripts. For the
lexicon, we choose the Carnegie Mellon University Pronouncing Dictionary4 for
North American English. It contains over 134,000 words and their pronunciations
in the ARPAbet phoneme set with 39 phonemes.

4 Acoustic Modeling

Two types of models are distinguished in the following subsections: classical
architectures GMM-HMM and hybrid neural network architectures DNN-HMM.

4.1 Classical Architectures

We study different variations on the nature of the features and the kind of
training used in a standard GMM-HMM architecture. Below, we list the systems
analysed in this work with their main characteristics. For an easy comparison,
we also show for every system and between parentheses the nomenclature used
in Kaldi. We have adapted Kaldi’s recipes to fit our data, and trained 7 classical
systems with 1800 HMM states and a total of 9000 Gaussians:

MONO Monophone model with MFCC features (mono)

TRI Basic triphone model with features MFCC+∆+∆∆ (tri2a)

TRI-SI Triphone model with speaker-independent transformations applied
MFCC+LDA+MLLT (tri2b)

4 http://www.speech.cs.cmu.edu/cgi-bin/cmudict



TRI-SD Triphone model with speaker-dependent transformations added
MFCC+LDA+MLLT+fMLLR (tri3b)

TRI-SDdis Triphone model TRI-SD with a discriminative Maximum Mutual
Information (MMI) and a feature-space MMI training (fMMI),
TRI-SD+MMI+fMMI. We use a learning rate of 0.001 (tri3b fmmi)

Several discriminative trainings can be done to fit the HMM parameters. We
have done experiments with MMI training, boosted MMI, Minimum Phone Er-
ror (MPE), and direct and indirect feature-space discriminative MMI training
(fMMI) with several learning rates. Model TRI-SDdis is the best performing one
for dysarthric speakers and, therefore, it is the one included in the analysis.

Finally, we also consider subspace Gaussian Mixture Models [14] with 8000
states and 19000 substates:

sGMM Subspace GMM on top of SD features MFCC+LDA+MLLT+fMLLR
(sgmm2 4a)

sGMM2 Subspace GMM with additional speaker adapted transformations fM-
LLR (sgmm2 4a fmllr)

4.2 Neural Network Architectures

In hybrid systems, ANNs are trained to estimate the probabilities of the HMM
states. Different networks and configurations can be used for this purpose:

DNNCE Deep Neural Network trained on alignments obtained with MFCC+
+LDA+MLLT+fMLLR features using cross-entropy. The DNN has 6 hidden
layers, 1024 neurons and 1800 output units. The net is initialised with stacked
restricted Boltzmann machines (RBMs) (dnn4b pretrain-dbn dnn)

DNNsMBR We introduce a sequence discriminative training that minimises the
error on the state labels in a sentence. Departing from DNNCE, 6 itera-
tions of state-level minimum Bayes risk (sMBR) are applied (dnn4b pretrain-
dbn dnn smbr)

Notice that several kinds of sequence-discriminative training can be used.
Reference [25] presents experiments with MMI, MPE, sMBR and boosted MMI.
Although their training sets are larger (300h and 110h) only small differences
were found among objective functions, being slightly better sMBR, the one we
use in the following sections.

CNNba CNN with convolution along the frequency axis. It uses 40-dim filter-
bank features, two convolutional layers and a learning rate of 0.008 (cnn4c)

CNNsMBR A DNNsMBR is built on top CNNba. First, the CNN is trained and
then we build RBMs on top, train a 6-layer DNN with cross-entropy and af-
terwards 6 iterations of discriminative training (cnn4c pretrain-dbn dnn smbr)

Finally, we select two kinds of neural networks especially devoted to deal
with time sequences: time delay neural networks and recurrent neural networks.



Table 2. WER scores for the 8 speakers with dysarthria and a set of selected systems.

F01 M01 M02 M04 M05 F03 F04 M03

MONO 70.86 80.10 76.55 88.62 77.71 57.02 29.10 43.32
TR1 70.68 91.18 81.09 88.62 84.59 41.80 18.62 26.01
TRI-SI 76.80 79.12 83.67 88.68 96.71 53.08 18.97 32.59
TRI-SD 47.30 78.91 68.49 81.16 97.16 42.88 13.29 17.06
TRI-SDdis 45.68 74.74 66.49 79.29 70.46 39.87 12.82 11.57
sGMM 43.71 77.83 64.01 71.46 98.43 37.26 11.42 10.19
sGMM2 43.53 78.37 63.33 71.34 97.31 37.22 11.24 9.74

DNNCE 39.57 62.20 42.89 69.05 62.60 39.30 13.06 17.71
DNNsMBR 35.61 62.30 47.95 69.30 62.53 37.01 10.95 12.76
CNNba 53.24 66.04 77.66 83.62 65.67 46.78 15.81 37.88
CNNsMBR 53.06 66.74 50.47 81.40 65.74 33.89 11.24 10.44
TDNN 66.19 69.50 62.28 73.51 88.18 47.46 14.34 28.04
TDNNiV 94.96 95.62 84.14 92.59 93.94 91.98 39.29 70.97
LSTM 59.71 71.61 67.33 72.97 84.73 48.28 12.00 27.50
LSTMiV 71.04 75.01 76.13 77.30 72.85 69.33 19.61 32.20

TDNN Multi-splice Time Delay Neural Network trained on alignments ob-
tained with MFCC+LDA+MLLT+fMLLR features. It uses high-resolution
MFCC features. The network has 3 hidden layers with p-norm input dimen-
sion of 2000 and output dimension of 250. The learning rate evolves from
0.01 to 0.007 (nnet tdnn a noIvec)

TDNNiV Same characteristics as the previous network but we add 100-dim
iVectors to the 40-dim high-resolution MFCC input features for speaker
adaptation (nnet tdnn a)

LSTM Long-Term Short-Term Memory network with 3 hidden layers with 1024
neurons. The network is trained for 10 epochs with a learning rate that
evolves from 0.0012 and 0.00036, and with momentum 0.5 (lstm noIvec)

LSTMiV Same characteristics as the previous network but we add 100-dim
iVectors to the 40-dim MFCC input (lstm ivec)

5 Results and Discussion

We use 14 speakers for training the parameters in the acoustic model and test
the systems on the 15th. So, during training, there is no distinction between
speakers with and without dysarthria besides the different shift in the frame defi-
nition for extracting the features. Since there is few data especially for dysarthric
speakers, a training done only with impaired speech does not improve the re-
sults. Similarly, the language model used for testing is estimated on the same
14 speakers, and including additional corpora of a different domain to train the
language model does not improve the results either. For cross-validation in neu-
ral networks training, we always use the data coming from a speaker with mild



Table 3. WER scores for the 7 control speakers.

FC01 FC02 FC03 MC01 MC02 MC03 MC04

MONO 22.40 30.27 29.88 39.52 42.99 33.59 51.19
TR1 13.06 24.06 23.38 36.73 30.66 30.10 42.07
TRI-SI 13.20 24.73 26.30 38.30 32.98 33.28 42.48
TRI-SD 8.01 21.96 16.71 16.96 19.46 27.47 36.27
TRI-SDdis 7.42 21.72 15.43 17.49 18.23 26.51 37.40
sGMM 7.86 20.87 13.57 15.12 16.16 24.89 28.82
sGMM2 7.57 20.93 13.55 14.90 16.12 24.96 28.38

DNNCE 6.53 19.62 11.01 15.32 14.72 22.11 27.06
DNNsMBR 6.38 19.24 10.41 12.03 13.38 20.37 23.76
CNNba 15.58 22.38 14.63 25.01 38.25 33.25 44.66
CNNsMBR 9.64 18.28 12.35 11.65 15.91 23.79 38.16
TDNN 10.98 18.97 12.90 35.67 58.69 32.90 31.90
TDNNiV 16.32 24.51 21.48 51.31 62.00 49.92 62.99
LSTM 8.46 19.30 13.21 24.06 41.80 25.53 21.78
LSTMiV 6.38 19.93 13.91 21.47 37.20 27.25 29.92

dysarthria regardless the nature of the test speaker —we use subject F03, or
F04 in case the test subject is F03.

Table 2 shows the results for speakers with dysarthria. We measure the qual-
ity of the systems by means of WER. Notice that for severe dysarthric speakers,
triphone models are not able to improve on monophone models. In fact, for
these speakers, significant improvements in the WER score only appear when
speaker dependent transformations are applied. The same happens for control
speakers (Table 3) but in this case a base triphone system is always better than
monophone systems. In general, intrinsic differences among the 15 speakers make
necessary speaker adaptation techniques.

Subspace Gaussian Mixture Models are the best performing classical models.
Only in cases where the recognition is extremely difficult (M01 and M05) the
TRI-SDdis system outperforms the sGMM family. It is remarkable the hardness
of the task: whereas the mean error rate for control speakers is an 18%, the mean
for the six patients with the most severe disease reaches a 65%. For patients with
a mild pathology WER is lower and equivalent to that of control speakers.

The best performing network resulted to be a DNN trained with GMM-HMM
alignments. DNN-HMM systems show the lowest WERs for 11 out of 15 test
speakers, 6 out of 8 for the speakers with dysarthria. If we consider all the neural
network architectures compared to the classical ones, these figures increase to 14
out of 15 and 7 out of 8 respectively. For subjects with a severe disease, there is
no difference between a DNN only trained by minimising cross-entropy (DNNCE)
and that including a subsequent sequence discriminative training (DNNsMBR),
the mean error rate varies from 52.6 to 52.5. For the control speakers, WER
diminishes from 16.6 to 15.1 when adding the discriminative training.



Several works report improvements using CNNs, TDNNs and LSTMs with
respect to DNNs, especially for large vocabularies [17, 1, 13, 18, 7, 11]. We do not
find this behaviour in our task. The reasons are twofold: the TORGO database
is small and data are heterogeneous. For comparison with other small databases,
the authors in Ref. [13] train a TDNN on the Resource Management database,
with about 3 hours of recorded speech. In their study, a standard DNN performed
slightly better, although for larger amount of data a TDNN got better results.
On the other hand, CNNs outperfom DNNs on the 50-hours English Broadcast
News task [17] and on the 18-hours Microsoft-internal voice search task [1].

The neural network architectures we present apply speaker adaptation, at
least through fMLLR features in the seed classical model and/or in the training
of the network itself. For TDNNs and LSTMs, we also study the consequences of
including iVectors. Although in other studies with larger databases the inclusion
of iVectors improves a baseline without [12, 23], in our task it clearly damages
the performance. For TDNNs the system with iVectors TDNNiV increments the
WER in 24 points for dysarthric speakers and 12 points for control speakers.
Results are not so negative for LSTMs but there is still a preference for the base
LSTM: for dysarthric speakers the inclusion of iVectors causes an increment of
6 points of WER and for control speakers both systems are even.

This work is not the only one devoted to build an ASR for dysarthric speak-
ers. The creators of the TORGO database trained an ASR in Ref. [9]. In their
analysis, as in ours, simple triphone models are not able to improve significantly
monophone models. So, instead of experimenting with new architectures built on
triphone models, their approach is based on adapting speaker and acoustic mod-
els to incorporate a specific lexicon for each speaker. This lexicon includes pro-
nunciations for several words that follow the guidelines of pronunciation detected
in patients with dysarthria. When adapting the acoustic models to dysarthric
speakers, the authors report a relative improvement in WER of 23% for the av-
erage of the 6 speakers with more severe dysarthria and a 3% further with the
addition of the lexicon.

The creation of lexicons is difficult to generalize automatically since it de-
pends on an analysis of the errors committed by each new speaker. Within our
approach, we hope that deep neural networks can learn this behaviour from
other speakers with similar problems. Our speaker adaptation models such as
TRI-SD and sGMM2 are similar to that in [9]. Still, for the same 6 speakers,
we get minor improvements with this adaptation: the sGMM2 model achieves
and improvement in WER of a 10% with respect to the baseline, much smaller
than their 23%. The difference is given mainly by the subject M05, while the
best models in [9] reach a 15% WER, our models do not surpass a 70% WER for
this speaker. The difference can only be explained by different data. Our best
architecture with neural networks, DNNsMBR, achieves a 23% of improvement
in WER compared to baseline, which is similar to that in Ref. [9] but without
building any resource manually.



6 Conclusions

Recognising dysarthric speech is a difficult task. We have trained an ASR for
speakers with and without dysarthria using the TORGO database, a database
of dysarthric articulation. With about three hours of recorded speech per each
of the 15 subjects, moderate word error rate scores are obtained even for control
speakers. A mean WER of 15% is obtained in this case, while it rises to 52% for
the six test patients with more severe dysarthria.

Hybrid DNN-HMM systems are those with a best performance. DNNs out-
perfom the best classical system in 14 out of 15 test speakers: the WER score
is improved a 3% for control speakers and a 13% for subjects with dysarthria
with respect to the best classical architecture, a subspace GMM model with ad-
ditional speaker adapted transformations fMLLR. Both in classical and neural
architectures, speaker adaptation techniques are important for improving the
recognition. For classical systems, fMLLR transformations make a qualitative
leap with respect to the speaker independent transformations MLLT. Neural
networks use TRI-SD models for training. However, in this task, iVector carac-
terisations of the speaker and the environment have a negative impact on the
quality of the final systems.

Current results have been obtained using a database that combines impaired
and normal speech. It remains to be seen whether including additional data for
normal speech is able to further improve the recognition.
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