Skip to main content

A Better Chain Rule for HILL Pseudoentropy - Beyond Bounded Leakage

  • Conference paper
  • First Online:
Information Theoretic Security (ICITS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10015))

Included in the following conference series:

Abstract

Chain rules are inequalities used to estimate by how much entropy decreases when conditioning on some extra knowledge. Their popular application is to argue about security, by proving that the entropy of a secret remains sufficiently high even in the presence of leakage. We provide a chain rule for HILL/Metric conditional pseudoentropy (applicable for leakage-resilient cryptography), with the following new features:

  1. (a)

    Better quality loss - when conditioning on already conditioned distribution, the loss due to the “internal” conditional part is additive, not multiplicative as conjectured in folklore,

  2. (b)

    Better quantity loss - the leakage length is replaced by the effective leakage length which equals the “pseudoentropy gap” of the leakage conditioned on the secret,

  3. (c)

    Flexible quality loss - the loss can be continuously traded between both computational resources: time and advantage.

The relevance of these results is as follows: (a) is a result complementary to recent negative results (TCC’13) on the chain rule for HILL pseudoentropy - it explains that an efficient chain rule for HILL pseudoentropy is possible under certain conditions. With (b) we can extend some leakage resilient constructions, beyond the bounded leakage model, to capture noisy leakages (studied extensively in recent EUROCRYPT papers); interestingly, we show that the new chain rule can handle specific noisy leakages better than the noisy-leakage framework. Finally using (c) we can unify all previous results and techniques about pseudoentropy chain rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Theoretically, this could be also a bit of the output and then it can be distinguished from random with advantage close to \(\frac{1}{2}\).

  2. 2.

    Our setting is non-uniform so here we think of circuit size as “time”.

  3. 3.

    We note that in a more standard notion the entire stream \(X_1,\ldots ,X_{q}\) is indistinguishable from random. This is implied by the notion above by a standard hybrid argument, with a loss of a multiplicative factor of q in the distinguishing advantage.

References

  1. Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM 2003. LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003)

    Google Scholar 

  2. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dodis, Y., Pietrzak, K., Wichs, D.: Key derivation without entropy waste. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 93–110. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  5. Dodis, Y., Yu, Y.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_24

    Chapter  Google Scholar 

  7. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6_6

    Google Scholar 

  8. Dziembowski, S., Faust, S., Skórski, M.: Optimal amplification of noisy leakages. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 291–318. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0_11

    Chapter  Google Scholar 

  9. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 293–302. IEEE Computer Society, Washington, DC, USA (2008)

    Google Scholar 

  10. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptography. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 213–232. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_13

    Chapter  Google Scholar 

  11. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption: new constructions and a connection to computational entropy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9_33

    Chapter  Google Scholar 

  12. Fuller, B., Reyzin, L.: Computational entropy and information leakage. Cryptology ePrint Archive, Report 2012/466 (2012). http://eprint.iacr.org/

  13. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4_10

    Chapter  Google Scholar 

  15. Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Sahai, A. (ed.) TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Krenn, S., Pietrzak, K., Wadia, A.: A counterexample to the chain rule for conditional HILL entropy. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 23–39. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. George, M., Michael, L.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1994)

    Google Scholar 

  18. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Pietrzak, K., Skórski, M.: The chain rule for HILL pseudoentropy, revisited. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 81–98. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22174-8_5

    Chapter  Google Scholar 

  20. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_9

    Chapter  Google Scholar 

  21. Reingold, O., Trevisan, L., Tulsiani, M., Vadhan, S.: Dense subsets of pseudorandom sets. In: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 76–85. IEEE Computer Society, Washington (2008)

    Google Scholar 

  22. Shaltiel, R.: An introduction to randomness extractors. In: Loeckx, J. (ed.) ICALP 2011. LNCS, vol. 14, pp. 21–41. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8_2

    Chapter  Google Scholar 

  23. Skórski, M.: Modulus computational entropy. In: Lehmann, A., Wolf, S. (eds.) ICITS 2013. LNCS, vol. 9063, pp. 179–199. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Skorski, M.: Metric pseudoentropy: characterizations, transformations and applications. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 105–122. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17470-9_7

    Google Scholar 

  25. Skórski, M., Golovnev, A., Pietrzak, K.: Condensed unpredictability. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 1046–1057. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_85

    Google Scholar 

  26. Vadhan, S., Zheng, C.J.: A uniform min-max theorem with applications in cryptography. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 93–110. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with minimum public randomness. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 223–238. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36095-4_15

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Skórski .

Editor information

Editors and Affiliations

Appendices

A Proof of Corollary 2

Proof

Let \(Y^{*}\) be the distribution maximizing the expectation of \(\mathsf {D}\) as in Eq. (2) \(\mathsf {D}'\) be defined as in Lemma 2. Since \(\mathsf {D}'\)

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}'(X,Z)&= {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z)}\max (\mathsf {D}(x,z)-t(z),0) \nonumber \\&\geqslant {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z)}\mathsf {D}(x,z) - {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z)}t(z) \end{aligned}$$
(15)
$$\begin{aligned}&= {{\mathrm{\mathbb {E}}}}\mathsf {D}(X,Z) - {{\mathrm{\mathbb {E}}}}t(Z) \end{aligned}$$
(16)

Denote \({\mathbf {H}}_{\infty }\left( Y^{*}|Z=z\right) = k(z)\). We have \({{\mathrm{\mathbb {E}}}}_{z\sim Z} 2^{-k(z)} = 2^{-k}\). In the other hand, from Eq. (4) we have

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}'(Y^{*},Z)&= \sum _{x,z} \max \left( \mathsf {D}(x,z) -t(z), 0 \right) \cdot \mathbf {P}_{Y^{*},Z}(x,z) \nonumber \\&= \sum _{x,z}\left( \mathsf {D}(x,z) -t(z) \right) \cdot \mathbf {P}_{Y^{*},Z}(x,z) \nonumber \\&= {{\mathrm{\mathbb {E}}}}\mathsf {D}(Y^{*},Z) - {{\mathrm{\mathbb {E}}}}t(Z) \end{aligned}$$
(17)

Given Eqs. (16) and (17) we have

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}'(X,Z) \geqslant {{\mathrm{\mathbb {E}}}}\mathsf {D}'(Y^{*},Z) + \epsilon \end{aligned}$$

but in view of Corollary 1 this proves much more, namely

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}'(X,Z) \geqslant {{\mathrm{\mathbb {E}}}}\mathsf {D}'(Y,Z) + \epsilon \quad \text {for every }Y\text { such that }\widetilde{\mathbf {H}}_{\infty }\left( Y|Z\right) \geqslant k. \end{aligned}$$
(18)

   \(\square \)

B Proof of Theorem 3

Proof

Threshold transformation Assuming contrarily, for the sake of a contradiction, we have

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}(X,Z_1,Z_2) \geqslant {{\mathrm{\mathbb {E}}}}\mathsf {D}(Y,Z_1,Z_2) + \epsilon ' \end{aligned}$$
(19)

Then, according to Eq. (6) we have

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}'(X,Z_1,Z_2) - {{\mathrm{\mathbb {E}}}}\mathsf {D}'(Y,Z_1,Z_2) \geqslant \epsilon ' \end{aligned}$$
(20)

for every Y such that \(\widetilde{\mathbf {H}}_{\infty }\left( Y|Z_1,Z_2\right) \geqslant k\) and some \(\mathsf {D}\) of size \(s'\). and moreover, by Eq. (7), that for some \(t_0\)

$$\begin{aligned} \forall z_1,z_2: \sum _{x,z_1,z_2}\mathsf {D}'(x,z_1,z_2) = t_0. \end{aligned}$$
(21)

Distinguisher for conditional part removed Let \(Y=Y^{*}\) be the distribution maximizing \({{\mathrm{\mathbb {E}}}}\mathsf {D}'(Y,Z_1,Z_2)\) over the constraint \(\widetilde{\mathbf {H}}_{\infty }\left( Y|Z_1,Z_2\right) \geqslant k'\). For the maximizing distribution we can assume \(\widetilde{\mathbf {H}}_{\infty }\left( Y^{*}|Z_1,Z_2\right) = k'\). According to Eqs. (20) and (21) we have

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}_{z\sim Z_2}\left[ {{\mathrm{\mathbb {E}}}}\left. \mathsf {D}'((X,Z_1)\right| _{Z_2=z_2},z_2)\right]&= {{\mathrm{\mathbb {E}}}}\mathsf {D}'(X,Z_1,Z_2) \nonumber \\&\geqslant {{\mathrm{\mathbb {E}}}}\mathsf {D}'(Y^{*},Z_1,Z_2) + \epsilon ' \nonumber . \\&= 2^{-k'} t_0 + \epsilon ' \end{aligned}$$

Thus, for every \(\ell \) there exists a subset S of \(|S| = \ell \) elements \(z_2\) (more precisely: the set of values z corresponding to the biggest values of \({{\mathrm{\mathbb {E}}}}\left. \mathsf {D}'((X,Z_1)\right| _{Z_2=z_2},z_2) \) such that

$$\begin{aligned} \sum _{z_2\in S}\mathbf {P}_{Z_2}(z_2) {{\mathrm{\mathbb {E}}}}\mathsf {D}'(\left. (X,Z_1)\right| _{Z_2=z_2},z_2) \geqslant \frac{\ell }{2^{m_2}}\left( 2^{-k'}t_0 + \epsilon '\right) \end{aligned}$$
(22)

Note that

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z_1)} \max _{z_2\in S}\mathsf {D}'( x,z,z_2)&\geqslant \sum _{x,z_1}\mathbf {P}_{X,Z_1}(x,z_1)\sum _{z_2\in S}\mathbf {P}_{Z_2|X=x,Z_1=z_1}(z)\mathsf {D}'(x,z_1,z_2) \nonumber \\&= \sum _{z_2\in S}\mathbf {P}_{Z_2}(z_2) {{\mathrm{\mathbb {E}}}}\mathsf {D}'(\left. (X,Z_1)\right| _{Z_2=z_2},z_2) \end{aligned}$$
(23)

In turn, for every fixed value \(z_1\) by Eq. (21) we obtain

$$\begin{aligned} \frac{\ell }{2^{m_2}} \cdot 2^{-k'}t_0&= 2^{-k'-m_2}\cdot \sum _{x}\sum _{z_2 \in S} \mathsf {D}'(x,z_1,z_2) \nonumber \\&\geqslant 2^{-k'-m_2}\cdot \sum _{x}\max _{z_2\in S} \mathsf {D}'(x,z_1,z_2) \end{aligned}$$
(24)

Define

$$\begin{aligned} \mathsf {D}''(x,z_1) = \max _{z_2\in S}\mathsf {D}'( x,z_1,z_2) . \end{aligned}$$
(25)

Combining Eqs. (22) to (24) we obtain

$$\begin{aligned} \forall z_1:\quad {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z_1)}\mathsf {D}''(x,z) \geqslant 2^{-k'-m_2}\cdot \sum _{x}\mathsf {D}''(x,z_1) + \frac{\ell \epsilon '}{2^{m_2}} \end{aligned}$$
(26)

(note that only the right-hand side depends on \(z_1\)). Let Y be any distribution such that \(\widetilde{\mathbf {H}}_{\infty }\left( Y|Z_1\right) \geqslant k = k'+m_2\), and let \({\mathbf {H}}_{\infty }\left( \left. Y\right| _{Z_1=z}\right) = k(z)\). Note that we have

$$\begin{aligned} \max _{z_1}\left( 2^{-k'-m_2}\cdot \sum _{x}\mathsf {D}''(x,z_1) \right)&= 2^{-k}\cdot \max _{z_1}\left( \sum _{x}\mathsf {D}''(x,z_1) \right) \nonumber \\&\geqslant \sum _{z_1}\mathbf {P}_{Z_1}(z_1)\sum _{x}\mathsf {D}''(x,z_1) \cdot 2^{-k(z_1)} \nonumber \\&\geqslant \sum _{z_1}\mathbf {P}_{Z_1}(z_1)\sum _{x}\mathsf {D}''(x,z_1) \cdot \mathbf {P}_{\left. Y\right| _{Z_1=z_1}}(z_1) \nonumber \\&= {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (Y,Z_1)}\mathsf {D}''(Y,Z_1) \end{aligned}$$
(27)

Since Eq. (26) holds for every \(z_1\), Eq. (27) implies

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z_1)}\mathsf {D}''(x,z) \geqslant {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (Y,Z_1)}\mathsf {D}''(Y,Z_1) + \frac{\ell \epsilon '}{2^{m_2}}, \end{aligned}$$
(28)

for every Y such that \(\widetilde{\mathbf {H}}_{\infty }\left( Y|Z\right) \geqslant k\).

Complexity To complete the proof it remains to observe that \(\mathsf {D}''\) can be computed by a cicuit of size \(s=\ell s' + 2^{m_1}\ell +\ell \). Indeed, computing \(\mathsf {D}'(x,z_1,z_2) = \max ( \mathsf {D}(x,z_1,z_2)-t(z_1,z_2),0)\) for all possible values \(z_2\in S\) requires size \(\ell s'+2^{m_1}\ell +\ell \), and then computing \(\mathsf {D}''=\max _{z_2 \in S}\mathsf {D}'(x,z_1,z_2) \) from \(\mathsf {D}'\) requires an additive overhead \(\ell \) (maximum over \(\ell \) outputs).    \(\square \)

C Proof of Theorem 4

Proof

The proof is based on the proof of Theorem 3 and starts exactly in the same way as the proof of Theorem 3, repating its first step. The difference is in the second step, where we define the distinguisher. Similarly, we start with the inequality

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}_{z\sim Z_2}\left[ {{\mathrm{\mathbb {E}}}}\left. \mathsf {D}'((X,Z_1)\right| _{Z_2=z_2},z_2)\right]&= {{\mathrm{\mathbb {E}}}}\mathsf {D}'(X,Z_1,Z_2) \nonumber \\&\geqslant {{\mathrm{\mathbb {E}}}}\mathsf {D}'(Y^{*},Z_1,Z_2) + \epsilon ' \nonumber . \\&= 2^{-k'} t_0 + \epsilon '. \end{aligned}$$

Similarly to Eq. (22), for any \(\ell \) there is a set S of cardinality \(\ell \) (whose elements correspond to \(\ell \) biggest values being averaged on the left-hand side) such that

$$\begin{aligned} \sum _{z_2 \in S}\mathbf {P}_{Z_2}(z_2) {{\mathrm{\mathbb {E}}}}\mathsf {D}'(\left. (X,Z_1)\right| _{Z_2=z_2},z_2) \geqslant \frac{\ell }{2^{m_2}}\left( 2^{-k'}t_0 + \epsilon '\right) \end{aligned}$$
(29)

The left-hand side can be alternatively written as

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}''(X,Z_1,Z_2) = \sum _{z_2 \in S}\mathbf {P}_{Z_2}(z_2) {{\mathrm{\mathbb {E}}}}\mathsf {D}'(\left. (X,Z_1)\right| _{Z_2=z_2},z_2) \end{aligned}$$

where \(\mathsf {D}''(x,z_1,z_2) = \mathsf {D}'(x,z_1,z_2)\cdot \mathbf {1}_{S}(z_2)\), (here \(\mathbf {1}_{S}\) is the characteristic function of S). Suppose that \(\mathbf {H}^{\mathrm {Metric}}_{s'',\epsilon ''}(Z_2|Z_1,X) \geqslant m_2-\Delta \) where \(s''\) is bigger than the complexity of \(\mathsf {D}''\). Then there is \(Z_2'\) such that \(\widetilde{\mathbf {H}}_{\infty }\left( Z_2'|Z_1,X\right) = m_2-\Delta \) and \({{\mathrm{\mathbb {E}}}}\mathsf {D}''(X,Z_1,Z_2) \leqslant {{\mathrm{\mathbb {E}}}}\mathsf {D}''(X,Z_1,Z_2')+\epsilon ''\). Therefore, we have

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\mathsf {D}''(X,Z_1,Z_2)-\epsilon ''&\leqslant {{\mathrm{\mathbb {E}}}}\mathsf {D}''(X,Z_1,Z_2') \nonumber \\&= \sum _{x,z_1}\mathbf {P}_{X,Z_1}(x,z_1)\sum _{z_2}\mathbf {P}_{Z_2'|Z_1=z_1,X=x}(z_2)\mathsf {D}''(x,z_1,z_2) \nonumber \\&= \sum _{x,z_1}\mathbf {P}_{X,Z_1}(x,z_1)\sum _{z_2\in S}\mathbf {P}_{Z_2'|Z_1=z_1,X=x}(z_2)\mathsf {D}'(x,z_1,z_2) \nonumber \\&\leqslant 2^{\Delta -m_2} t_0, \end{aligned}$$

where in the last line we used Eq. (21) and \(\widetilde{\mathbf {H}}_{\infty }\left( Z_2'|Z_1,X\right) = m_2-\Delta \). This can be rewritten as

$$\begin{aligned} \epsilon ''+ \sum _{x,z_1}\mathbf {P}_{X,Z_1}(x,z_1)\frac{\sum _{z_2 \in S}\mathsf {D}'(x,z_1,z_2)}{2^{m_2-\Delta }}&\geqslant \sum _{z_2 \in S}\mathbf {P}_{Z_2}(z_2) {{\mathrm{\mathbb {E}}}}\mathsf {D}'(\left. (X,Z_1)\right| _{Z_2=z_2},z_2) \end{aligned}$$
(30)

From Eqs. (29) and (30) we conclude that

$$\begin{aligned} \epsilon ''+ 2^{\Delta } {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z_1)} \left[ \frac{\sum _{z_2 \in S}\mathsf {D}'( x,z,z_2)}{2^{m_2}}\right]&\geqslant \frac{\ell }{2^{m_2}} \left( 2^{-k'}t_0 + \epsilon '\right) \end{aligned}$$

or equivalently

$$\begin{aligned} \frac{2^{m_2}\epsilon ''}{\ell }+ 2^{\Delta } {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z_1)} \left[ \frac{\sum _{z_2 \in S}\mathsf {D}'( x,z,z_2)}{\ell }\right]&\geqslant \left( 2^{-k'}t_0 + \epsilon '\right) \end{aligned}$$
(31)

In turn, for every fixed value \(z_1\) by Eq. (21) we obtain

$$\begin{aligned} 2^{-k'}t_0&= 2^{-k'}\ell ^{-1}\cdot \sum _{x}\sum _{z_2 \in S} \mathsf {D}'(x,z_1,z_2) \nonumber \\&= 2^{-k'}\cdot \sum _{x}\frac{\sum _{z_2\in S} \mathsf {D}'(x,z_1,z_2)}{\ell } \end{aligned}$$
(32)

Defining a new distinguisher \(\mathsf {D}''\) as the average over S from \(\mathsf {D}'\) (note that it outputs numbers between 0 and 1)

$$\begin{aligned} \mathsf {D}''(x,z_1) = \frac{\sum _{z_2\in S}\mathsf {D}'(x,z_1,z_2)}{\ell } \end{aligned}$$
(33)

we can combine Eqs. (31) and (32) with Eq. (21) as

$$\begin{aligned} \forall z_1:\quad \frac{ 2^{m}\epsilon ''}{2^\Delta \ell }+ {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z_1)}\mathsf {D}''(x,z) \geqslant 2^{-k'-{\Delta }}\cdot \sum _{x} \mathsf {D}''(x,z_1) + \frac{\epsilon '}{2^{\Delta }} \end{aligned}$$
(34)

Let Y be any distribution such that \(\widetilde{\mathbf {H}}_{\infty }\left( Y|Z_1\right) \geqslant k = k'+\Delta \), and let \({\mathbf {H}}_{\infty }\left( \left. Y\right| _{Z_1=z}\right) = k(z)\). Note that we have

$$\begin{aligned} \max _{z_1}\left( 2^{-k'-\Delta }\cdot \sum _{x}\mathsf {D}''(x,z_1) \right)&= 2^{-k}\cdot \max _{z_1}\left( \sum _{x}\mathsf {D}''(x,z_1) \right) \nonumber \\&\geqslant \sum _{z_1}\mathbf {P}_{Z_1}(z_1)\sum _{x}\mathsf {D}''(x,z_1) \cdot 2^{-k(z_1)} \nonumber \\&\geqslant \sum _{z_1}\mathbf {P}_{Z_1}(z_1)\sum _{x}\mathsf {D}''(x,z_1) \cdot \mathbf {P}_{\left. Y\right| _{Z_1=z_1}}(z_1) \nonumber \\&= {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (Y,Z_1)}\mathsf {D}''(Y,Z_1) \end{aligned}$$
(35)

Since Eq. (35) holds for every \(z_1\), Eq. (34) implies

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (X,Z_1)}\mathsf {D}''(x,z) \geqslant {{\mathrm{\mathbb {E}}}}_{(x,z)\sim (Y,Z_1)}\mathsf {D}''(Y,Z_1) + \frac{\epsilon '-2^{m}\ell ^{-1}\epsilon ''}{2^{\Delta }}, \end{aligned}$$
(36)

for every Y such that \(\widetilde{\mathbf {H}}_{\infty }\left( Y|Z\right) \geqslant k\).

Step 3: Complexity To complete the proof it remains to observe that \(\mathsf {D}''\) can be computed by a cicuit of size \(s=\ell s' + 2^{m_1}\ell + \ell \). Indeed, computing \(\mathsf {D}'(x,z_1,z_2) = \max ( \mathsf {D}(x,z_1,z_2)-t(z_1,z_2),0)\) for all possible values \(z_2\in S\) requires size \(\ell s'+2^{m_1}\ell +\ell \), and then computing \(\mathsf {D}''= \ell ^{-1}\sum _{z_2}\mathsf {D}'(x,z_1,z_2) \) from \(\mathsf {D}'\) requires an additive overhead \(\ell \) (average over \(\ell \) outputs).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Skórski, M. (2016). A Better Chain Rule for HILL Pseudoentropy - Beyond Bounded Leakage. In: Nascimento, A., Barreto, P. (eds) Information Theoretic Security. ICITS 2016. Lecture Notes in Computer Science(), vol 10015. Springer, Cham. https://doi.org/10.1007/978-3-319-49175-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49175-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49174-5

  • Online ISBN: 978-3-319-49175-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics