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Abstract We consider snap-stabilizing algorithms in anonymous networks.
Self-stabilizing algorithms are well known fault tolerant algorithms : a self-
stabilizing algorithm will eventually recover from arbitrary transient faults.
On the other hand, an algorithm is snap-stabilizing if it can withstand ar-
bitrary initial values and immediately satisfy its safety requirement. It is a
subset of self-stabilizing algorithms. Distributed tasks that are solvable with
self-stabilizing algorithms in anonymous networks have already been char-
acterized by Boldi and Vigna in [BV02b].

In this paper, we show how the more demanding snap-stabilizing algo-
rithms can be handled with standard tools for (not stabilizing) algorithms in
anonymous networks. We give a characterization of which tasks are solvable
by snap-stabilizing algorithms in anonymous networks. We also present a
snap-stabilizing version of Mazurkiewicz’ enumeration algorithm.

This work exposes, from a task-equivalence point of view, the complete
correspondence in anonymous networks between self or snap-stabilizing tasks
and distributed tasks with various termination detection requirements.

1 Introduction

In the world of fault-tolerance, distributed tasks that admits self-stabilizing
solutions have been long studied [Dol00]. An algorithm is self-stabilizing if,
starting from arbitrary initial values in the registers used by the algorithm, it
can eventually stabilize to a correct final value. In particular, when looking at
some computed values, the algorithm can output incorrect values as long as
it eventually outputs correct ones.

In contrast, an algorithm is snap-stabilizing if it can withstand arbitrary
initial values and output only correct values [BDPV99]. Snap-stabilizing tasks
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form a subset of self-stabilizing tasks where the algorithm is required to re-
tain computed values until it is ”sure” that they are correct. Snap-stabilizing
algorithms have really interesting properties, they can withstand arbitrary
transient failures, while at the same time, improving on self-stabilizing algo-
rithms about a key point : the stabilization moment is not unknown : when a
response is given, it is correct.

We present here the first characterization of snap-stabilizing tasks on anony-
mous networks. Not only we are reusing techniques borrowed from the study
of the non-stabilizing tasks in anonymous networks and show they apply
also here, but we complete the correspondence between self/snap-stabilizing
tasks and termination detection.

How does snap-stabilizing tasks differ from self-stabilizing tasks has not
been considered so far in anonymous networks to the best of our knowledge.
Here we show that, on anonymous networks, there are tasks that admit self-
stabilizing solutions but that have no snap-stabilizing ones. We show that the
difference between self and snap stabilization is actually the same one gets
with non-stabilizing tasks when considering implicit vs explicit termination.
This result completes the understanding of the computability power of fault-
tolerant and non fault-tolerant algorithms.

1.1 Our Result

We give the first characterization of the computability of snap-stabilization.
In order to show that it complements known results about self-stabilizing
and non self-stabilizing tasks in anonymous networks, we recall the previous
equivalence established by Boldi and Vigna. Solving a task means solving a
given specification linking inputs labels to output labels for a given set of
graphs. Informally an algorithm has implicit termination if it is allowed to
write numerous times a (tentative) solution in the dedicated OUT register.
An algorithm has explicit termination when it is possible to write in OUT

only once. Whenever the OUT register is defined, this means that (locally) the
algorithm has terminated its computation.

Theorem 1 (Boldi and Vigna [BV01,BV02b]) A task is solvable on a family of
anonymous networks by a self-stabilizing algorithm if and only if it is solvable with
implicit termination.

The “only if” part being obvious, the merit of [BV02b] is to show that
there is a universal algorithm to solve tasks (that are at all solvable) by a
self-stabilizing algorithm on anonymous networks, and that the condition
for solvability (informally speaking: stability of the specification by lifting)
is exactly the one required by implicit termination. In other words, once a
task is solvable with implicit termination, it admits a reliable self-stabilizing
solution without any additional condition.

Theorem 2 (this paper) A task is solvable on a family of anonymous networks by
a snap-stabilizing algorithm if and only if it is solvable with explicit termination.
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As in the Boldi and Vigna result, the “only if” part is immediate. We there-
fore focus on establishing the “if” part. So the main contribution of this paper
is a universal snap-stabilizing algorithm that solves the task at hand if this
task satisfies the condition for being solvable by an algorithm with explicit
termination.

This condition is given in Theorem 3. It is the same as the one given in
[CGM08] for solvability with explicit termination. We first prove our results
for terminating tasks in the asynchronous model, then we show how to ex-
tend the technique for long lived tasks in the synchronous model (for sim-
plicity of exposition).

The roadmap is the following. Section 2 introduces the model of com-
putation and the definition of snap-stabilizing algorithms. Section 3 intro-
duces the algebraic tools that are necessary to express the condition in Theo-
rem 3. Section 4 describes a universal snap-stabilizing algorithm based upon
Mazurkiewicz enumeration algorithm [Maz97].

1.2 Related Work

Given a distributed task, the condition for it being solvable by an algorithm
with explicit termination was first given in [BV01]. The presentation we will
use in this paper is the one given in [CGM08]. Instead of the View algorithm
of [YK96,BV01], we use Mazurkiewicz’ algorithm [Maz97]. A variation of
Mazurkiewicz’ algorithm was proved to be self-stabilizing in [God02], in the
Mazurkiewicz model, a model that offers strong synchronization between
neighbours. We present here a version for the cellular model.

Snap-stabilizing algorithms were introduced in [BDPV99]. A more recent
exposition can be found in [CDD+16]. In [CDV09,CDD+16], a general trans-
formation technique is given to obtain simple snap-stabilizing algorithms
from self-stabilizing ones. The authors expose a snap-stabilizing transformer
for non-anonymous networks which implies that, in networks with identi-
ties, the tasks that are solvable by snap-stabilizing algorithms are exactly
the ones that are solvable by self-stabilizing algorithms. In this paper, we
prove the task equivalence between snap-stabilization and explicit termina-
tion in anonymous networks and show that this implies that the expressivity
of snap-stabilizing algorithms is different of self-stabilizing algorithms in the
anonymous context.

In [AD14], a probabilistic correction condition is proposed for snap-stabilizing
algorithms. A Las Vegas algorithm is an algorithm whose termination is not
guaranteed but whose outputs is always correct. The condition of [AD14] de-
fines, in a sound way, what is a Las Vegas stabilizing algorithm that is robust
to arbitrary corruption of the initial memory.

Anonymous networks are networks where nodes do not have a name
that is unique. It has seen many works since the seminal work of Angluin
[Ang80]. There have been two main universal algorithms proposed to solve
problems in this setting. The first one has been proposed by Yamashita and
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Kameda in [YK96]. Its universality has been extended by Boldi and Vigna in
and [BV01] (explicit termination) and [BV02b] (implicit termination). It com-
putes the (possibly infinite) universal cover of the underlying graph. The sec-
ond one computes a minimal base of the underlying graph. It was presented
by Mazurkiewicz [Maz97] to solve enumeration. Its universality has been ex-
tended in [GM02a]. Its extension to numerous other models has been done by
Chalopin in [Cha06], its application to the Election problem in the message
passing model has been done in [CGM12]. Boldi and Vigna have also shown
how to derive a minimal base (in a finite time) from the universal covering
[BV02b]. One of the main advantage of Mazurkiewicz’ algorithm is that it
is always stabilizing, contrary to the View algorithm of [BV02b] where it is
necessary to know or derive an estimate of the size to make it stabilizing. On
the distributed computability side, the first complete characterization of tasks
that admits self-stabilizing algorithms has been given in [BV02b]. Here, we
use a mix of different techniques from the second approach, some of which
were first introduced in [CGM08].

There is an unpublished version of Mazurkiewicz’ algorithm in the com-
munication model of this paper but without transient faults in [Cha06, chap.
4], where the model is coined the “cellular model”.

2 Definitions and Notations

2.1 Basic Definition for Computability

A network is represented by a graph or digraph G where vertices corresponds
to nodes and edges or arcs corresponds to (possibly asymmetric) communi-
cation links. The set of vertices is denoted by V (G). We consider a fixed set of
labels Λ. Labels are used to represent the local states of parts of the commu-
nication network.

So we consider labelled graphs in the general sense. Nodes can be labelled
(internal state of the nodes), arcs can be labelled (messages in transit, port
numbering). We will use G to denote a (di)graph with all its associated la-
bels. Since the input labels can be encoded in the labels, we consider all la-
belled graphs as the possible inputs for distributed algorithms. The set of all
labelled graphs is denoted G. Given a labelled graph G = (G, λ), where G

is the underlying graph and λ : V (G) 7→ Λ is the labelling function, we will
conveniently note (G, λ′) the graph G labelled by λ× λ′.

Given a network G ∈ G and a vertex v in G, we assume that the state of a
node v during the execution of any algorithm is of the form (λ(v), MEM(v), OUT(v)).
This tuple of registers has the following semantics. λ(v) is a read-only part of
the state, MEM(v) is the internal memory of v, OUT(v) will contain the output
value, i.e. the result of the computation at node v. When the register OUT is
not defined, it contains the value ⊥.

A distributed algorithm is an algorithm that is replicated on every node
and operates on the local state of the node v by way of communication with
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the neighbours of v. The communication here is done in the locally shared vari-
ables model of Dijsktra, that is also called the cellular model [Cha06]. A dis-
tributed algorithm is a set of rules (pairs of precondition and command) that
describe how a node has to change its current state (the command) according
to its own state and the state of all its neighbors (the precondition or guard). We
say that a rule R is activable at a node v if the neighborhood of v satisfies the
precondition of R. In this case, the vertex v is also said to be activable. If a rule
R is activable in v, an atomic move for v consists of reading the states of all its
neighbors, computing a new value of its state according to the command of
R, and writing this value to the register MEM and/or OUT. If more than one
rule is activable at a node, one is chosen non-deterministically. Of course, it is
possible to have priorities for rules, and to discard this non-determinism.

A daemon is a distributed adversary that chooses at each step a set of
activated nodes among the activable ones. If only one node can be chosen
at a time, this is called the central daemon. If any set can occur, this is called
the asynchronous daemon. If the sets of activated nodes is exactly the set of ac-
tivable nodes this is called the synchronous daemon. Given a daemon, an exe-
cution, or run, is a sequence of atomic moves of activated nodes. We consider
here the asynchronous daemon (whose executions contain the synchronous
daemon execution).

A vertex-relabelling relation is a relation between labelled graphs where
the underlying graphs are identical. The evolution of the global system can be
seen as a sequence of relabelling steps where only the state part of the labels
of the graphs is modified, according to the application of rules prescribed by
the algorithm at a set of locations that depends of the kind of daemon that
is considered. Under a given execution ρ, the evolution of the global con-
figuration of the network G is described by the sequence of labelled graphs
G, (G, MEM1 × OUT1), (G, MEM2 × OUT2), · · · ; this is usually abbreviated to
G0,G1,G2, · · · for convenience.

If the sequence is finite, that is if there is a step t ∈ N where no rule is
applicable, or if there is an infinite suffix starting from step t ∈ N where the
registers OUT are not modified, we say that the execution has stabilized and
denote by G

f the graph labelled with OUTt,G
f = (G, OUTt). It is the terminal

state of the computation.
A terminating problem is a distributed problem for which it is expected

that the nodes have final values. For example, the Election problem is a termi-
nating problem that should be compared with the Mutual Exclusion problem
where nodes have to solve indefinitely the problem of entering the critical
section one node at a time. We formally define now what is a terminating
distributed problem.

Definition 1 A terminating task is a couple (S,F) where F ⊂ G is a family of
labelled graphs and S is a vertex-relabelling relation on G.

The specification S is a general way to describe our distributed problem in
terms of relation between inputs and outputs. This description is indepen-
dent of the domain F where we want to solve our problem.
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For example, the well-known Election problem is specified by SLE such
that GSLEG

′ if G′ = (G, λ′) has only one node labelled by the special label
ELECTED. The Size problem where the algorithm has to compute the number
of nodes of the network is specified by Ssize such that GSsize(G, |V (G)|).

Definition 2 Given a terminating task (S,F), an algorithm ALGO solves S

on G ∈ F if for any execution (G0,G1,G2, · · · ) with G0 = G:

decision ∀v ∈ V (G), OUT(v) is written exactly once by v;
stabilization the execution stabilizes and the terminal state is denoted G

f ;
correction GSGf .

Definition 3 The terminating task (S,F) is solvable if there exists an algo-
rithm ALGO such that ALGO solves S for all G ∈ F .

When the stabilization is obtained with only finite executions, we say the
algorithm is silent. When, besides correction, the stabilization property is
the only property, we talk about implicit termination (or message termination
[Tel00]). When we have both stabilization and decision, we talk about ex-
plicit termination (or process termination [Tel00]). In the context of this paper
solvability is meant in the explicit termination setting. Implicit termination is
weaker than explicit termination, and for obvious reason, it is the termination
for self-stabilizing algorithms. Note that, in a distant area of Distributed Com-
puting, this is also the termination type of failure detectors [CT96]. Those are
the two main termination mode that are classically considered in distributed
algorithms. See also [CGM08,GMT10] for other types of termination.

2.2 Self- and Snap-Stabilization

Informally, a distributed algorithm is said to be self-stabilizing if an execution
starting from any arbitrary global state has a suffix belonging to the set of le-
gitimate states. Note that when we consider the terminating task (S,F), the
set of legitimate states corresponds simply to the set of S−admissible out-
puts for the given input graph, that is the set {(G, MEM, OUT) ∈ G | G ∈
F ,GS(G, OUT)}. So, in the context of terminating tasks, this corresponds to
the definition of solvability with implicit termination if we require the do-
main F to be closed by arbitrary corruption of the initial memory.

More formally, it is possible to define self-stabilization in the framework
of the previous section. Given a family F , we define F = {(G,mem) | G ∈
F ,mem : V (G) → Λ}. The terminating task (S,F) is solvable with self-stabi-
lization if (S,F) is solvable with implicit termination.

Here we focus on snap-stabilization and give only a formal definition for
snap-stabilization. Snap-stabilizing algorithms were introduced in [BDPV99].
A more recent exposition can be found in [CDD+16]. A snap-stabilizing al-
gorithm computes tasks that are initiated by ”requests” at some nodes of the
network. A request is a special event. This event is an event exterior to the

6



algorithm and occurs after the end of the faults that led to arbitrary incorrect
values. Given that the initial memory can be arbitrarily corrupted, the safety
requirement of the problem specification has to have a special form that takes
into account the fact that starting nodes have seen a request, see [CDD+16].
In order to have a unified framework, we chose in our equivalent presenta-
tion, to accept any specification S but to ”implement” the special form in the
definition, independently of the specific specification.

So since the initial memory can be arbitrarily corrupted, the correction
of the OUT register is only required to be satisfied by nodes that have been
causally influenced by the initial requests, i.e. nodes for which there exists a
sequence of atomic moves that follow a path originating from a node where
a request has been made. In other words, a distributed algorithm is snap-
stabilizing if an execution starting from any arbitrary global state has all its
causal suffixes belonging to the set of legitimate states.

Given a specific daemon and an algorithm, the system evolves according
to the daemon and the algorithm: at one step, some nodes are activable and
activated (their actions are processed). Given an execution ρ on G, that is a se-
quence G0,G1,G2... of relabelling of G where G0 = G, we denote A1, A2, · · ·
the sequence of activated nodes. We have that Gi is obtained by applying to
Gi−1 the actions for the nodes of Ai.

We proceed to the formal definition. One or more external actions, the
requests, are applied at some nodes U ⊂ V (G). At time t, a node v is causally
influenced by U if there exists a path u0, u1, · · · , uk such that u0 ∈ U , uk = v,
and there exists a strictly increasing function σ : N −→ N ∀i ≥ 1, ui ∈ Aσ(i),
and σ(k) ≤ t.

Definition 4 Given a terminating task (S,F), an algorithm ALGO is snap-
stabilizing to S on G ∈ F if for any request applied to U ⊂ V (G),

causal decision ∀v ∈ V (G), OUT(v) is written exactly once after v has been
causally influenced by U ;

stabilization the execution stabilizes and the terminal state is denoted G
f ;

correction GSGf .

Definition 5 The terminating task (S,F) is solvable by snap-stabilization if
there exists an algorithm ALGO such that ALGO is snap-stabilizing to S for
all G ∈ F .

For the sake of simplicity, in the following we always assume that F = F .

2.3 Examples

To illustrate the various definitions we present in Fig. 1 an Election algorithm
inspired by the well-known Le Lann Chang-Roberts algorithm [LeL77,CR79].
We will show that it is (non-silently) self-stabilizing to the Election task on
unidirectional rings, but that it is not snap-stabilizing.
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LCR1 : Initiate
Guard :
– min(v0) < min(v),
– min(v0) < id(v0),
Action :
– min(v0) := id(v0),
– ttl(v0) := N

LCR2 : Circulate
Guard :
– min(v0) > min(v),
Action :
– min(v0) := min(v)
– ttl(v0) := ttl(v) − 1

LCR3 : Cleaning
Guard :
– min(v0) 6= min(v) or ttl(v0) 6= ttl(v) − 1
– ttl(v0) 6= N
Action :
– min(v0) := id(v0),
– ttl(v0) := N

LCR4 : Election
Guard :
– id(v0) = min(v),
– ttl(v) = 1,
Action :
– OUT(v0) =ELECTED

– ttl(v0) = 0,

Fig. 1 A LCR Election algorithm. The center of the cell is denoted v0, v is pred(v0).

We consider a unidirectional ring of known size N . The predecessor of a
node v is denoted pred(v). Each node v is equipped with a unique identity
denoted id(v). The algorithm maintains two variables min and ttl.

By considering the sequences of consecutive nodes, it is immediate to see
that the labels are stable if and only if the sequence starts from a local min-
imum and the variables follow the semantic of the propagation of this local
minimum according to the original LCR algorithm. This algorithm is there-
fore self-stabilizing but not snap-stabilizing even when adding a special Ini-
tiate rule to deal with the requests as below.

snapLCR1 : Initiate
Guard :
– Request(v0)
Action :
– min(v0) = id(v0),
– ttl(v0) = N

8



Indeed any node corrupted in such a way that the Election rule is im-
mediately applicable will incorrectly set its output value to ELECTED if its
predecessor is requested.

3 Computability of Terminating Tasks

We start by considering snap-stabilizing terminating tasks. We show how the
general techniques from explicitly terminating non-stabilizing tasks can be
extended to the snap-stabilizing case as well.

3.1 Digraphs and Fibrations

3.1.1 Definitions

In the following, we give the definitions for the tools introduced by Boldi
and Vigna, and extensively studied in [BV02a], to characterize self-stabilizing
tasks in [BV02b]. To introduce the main tool, that is fibrations, we need to
consider directed graphs (or digraphs) with multiple arcs and self-loops. A
digraph D = (V (D), A(D)) is defined by a set V (D) of vertices and a set
A(D) ⊂ V (D) × V (D) of arcs. Given an arc a, we denote s(a) and t(a), the
source and target of the arc. An undirected graph G corresponds to the di-
graph Dir(G) obtained by replacing all edges of G by the two corresponding
arcs. In the following, we will not distinguish G and Dir(G) when the con-
text permits. The family of all digraphs with multiple arcs and self-loops is
denoted D. Note that the simple symmetric graphs of G have direct counter-
parts in D via Dir.

A dipath π of length p from u to v in D is a sequence of arcs a1, a2, · · · , ap
such that s(a1) = u, t(ap) = v and for all i, s(ai+1) = t(ai). A digraph is
strongly connected if there is a path between all pairs of vertices. We assume
all digraphs to be strongly connected.

Labelled digraphs will be designated by bold letters like D, G, H ...

A homomorphism γ between the digraphs D and D′ is a mapping γ :
V (D) ∪ A(D) −→ V (D′) ∪ A(D′) such that the image of a vertex is a ver-
tex, the image of an arc is an arc and for each arc a ∈ A(D), γ(s(a)) = s(γ(a))
and γ(t(a)) = t(γ(a)). A homomorphism γ : V (D)∪A(D) −→ V (D′)∪A(D′)
is an isomorphism if γ is bijective.

As previously we consider labelled graphs and digraphs. We extend the
definition of homomorphisms to labelled digraphs by adding the condition
they also preserve the labelling (λ(v) = λ(γ(v)) for any vertex v).

In a digraph G, given v0 ∈ V (G) and r ∈ N, we denote by B−
G
(v0, r) the

in-ball of center v0 and radius r, that is the set of vertices v and arcs a such
that there is a dipath of length at most r from v to v0.
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3.1.2 Fibrations and Quasi-Fibrations

The notions of fibrations and quasi-fibrations enable to describe exactly the
”similarity” between two anonymous networks that yields ”similar” execu-
tion for any algorithm in the model of this paper. For the model of Angluin
(used by Mazurkiewicz), the notions of coverings and quasi-coverings are the
graph morphisms to be used, see eg. [GM02b].

A digraph D
′ is a fibration of a digraph D via φ if φ is a homomor-

phism from D
′ to D such that for each arc a ∈ A(D) and for each vertex

v ∈ φ−1(t(a)) (resp. v ∈ φ−1(s(a))), there exists a unique arc a′ ∈ φ−1(a) such
that t(a′) = v (resp. s(a′) = v).

The following lemma shows the importance of fibrations when we deal
with anonymous networks. This is the counterpart of the lifting lemma that
Angluin gives for coverings of simple graphs [Ang80] and the proof can be
found in [BCG+96,BV02b,CM07].

Lemma 1 (Lifting Lemma [BCG+96]) If D′ is a fibration of D via φ, then for any
daemon, any execution ρ of an algorithm ALGO on D can be lifted up to an execution
ρ′ of ALGO on D

′, such that at any step, for all v ∈ V (D′), (MEM(v), OUT(v)) =
(MEM(φ(v)), OUT(φ(v)).

In particular, when the execution ρ has stabilized, the execution ρ′ has also stabi-
lized and the computed values are the same for v and φ(v).

In the following, one also needs to express similarity between two di-
graphs up to a certain distance. The notion of quasi-coverings was introduced
as a formal tool in [MMW97,GM02a] for this purpose in the Mazurkiewicz
model. The next definition is an adaptation of this tool to fibrations.

Definition 6 Given digraphs K and H, and integer r and v ∈ V (K) and an
homomorphism γ from B−

K
(v, r) to H, K is a quasi-fibration of H of center v

and radius r via γ if there exists a finite or infinite digraph G such that G is
a fibration of H via a homomorphism φ and there exists w ∈ V (G) and an

isomorphism δ from B−
K
(v, r) to B−

G
(w, r) such that for any x ∈ V (B−

K
(v, r))∪

A(B−

K
(v, r)), γ(x) = φ(δ(x))

If a digraph G is a fibration of H, then for any v ∈ V (G) and for any
r ∈ N, G is a quasi-fibration of H, of center v and of radius r. Conversely,
if K is a quasi-fibration of H of radius r strictly greater than the diameter of
K, then K is a fibration of H. The following lemma is the counterpart of the
lifting lemma for quasi-fibrations.

Lemma 2 (Quasi-Lifting Lemma, [CGM08,CGM12]) Consider a digraph K

that is a quasi-fibration of H of center v and of radius r via γ. For any algorithm
ALGO, any execution ρ of ALGO on H can be lifted up to an execution ρ′ of ALGO

on K, such that at any step t ≤ r, for all v ∈ V (K), (MEM(v), OUT(v)) =
(MEM(φ(v)), OUT(φ(v)).

In particular, when the execution ρ has stabilized in less than r steps, the execu-
tion ρ′ has also stabilized and the computed values are the same for v and φ(v).
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3.2 Main Result

In this section we state our main result in Theorem 3. By comparing its state-
ment to that of [CGM08] we obtain Theorem 2. It is obvious that the impos-
sibility result of [CGM08] applies here, as well as its proof. We present the
impossibility result integrally here to make the paper self-contained.

We recall some technical notations and definitions from [CGM08]. We
denote D• the set {(G, v) | G ∈ D, v ∈ V (G)}. Given a family F ⊂ G, we
denote by F• the set {(G, v) | G ∈ F , v ∈ V (G)}. A function f : D −→
Λ ∪ {⊥} is an output function for a task (S,F) if for each network G ∈ F
the labelling obtained by applying f on each node v ∈ V (G) satisfies the
specification S. That is GS(G, λ) where ∀v ∈ V (G), λ(v) = f(G, v).

In order to give our characterization, we need to formalize the follow-
ing idea. When the in-ball at distance k of two processes v1, v2 in two di-
graphs D1,D2 cannot be distinguished (this is captured by the notion of
quasi-fibrations and Lemma 2), and v1 computes its final value in k rounds,
then v2 computes the same final value.

Definition 7 Given a function r : D• −→ N ∪ {∞} and a function f : D• −→
Λ ∪ {⊥}, the function f is r−lifting closed if for all K,H ∈ D such that K
is a quasi-fibration of H, of center v ∈ V (K) and of radius k ∈ N via the
homomorphism γ, if k ≥ min{r(K, v), r(H, γ(v))}, then f(K, v) = f(H, γ(v)).

Intuitively, a function f is r − lifting closed if f(G, v) depends only of
B−

G
(v, r(G, v)), and it is undefined if r(G, v) = ∞.
We give now the characterization of terminating snap-stabilizing tasks.

We give the proof of the necessary condition. The converse will be proved in
the following section, by describing a snap-stabilizing version of Mazurkiewicz’
algorithm.

Theorem 3 A terminating task (S,F) is solvable by snap-stabilization if and only
if there exists a function r : D• −→ N ∪ {∞} and an output function f : D• −→
Λ ∪ {⊥} for (S,F) such that,

3.i for all (G, v) ∈ D•, r(G, v) 6= ∞ if and only if f(G, v) 6= ⊥;
3.ii f and r are r − lifting-closed;

Proof (of the necessary condition) Consider ALGO a distributed algorithm that
snap-stabilizes to S on F in t rounds.

We construct r and f by considering a subset of the possible executions
of ALGO. We consider the synchronous execution of ALGO on any digraph
G ∈ D. For any v ∈ V (G), if OUT(v) = ⊥ during the whole execution, then
we set f(G, v) = ⊥ and r(G, v) = ∞. This is possible since it could be that
F  D and ALGO might be not terminating on graphs not in F . Let rv be
the first causal step after which OUT(v) 6= ⊥; in this case, if rv ≤ t, we set
f(G, v) = OUT(v) and r(G, v) = rv . If t < rv , then we set f(G, v) = ⊥ and
r(G, v) = ∞. By construction, 3.i is satisfied.
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We also show that f is an output function and that f and r satisfy 3.ii.
Consider two digraphs K and H such that K is a quasi-fibration of H, of cen-
ter v0 ∈ V (K) and of radius k via γ with k ≥ r0 = min{r(K, v0), r(H, γ(v0))}.
If r0 = ∞, then r(K, v0) = r(H, γ(v0)) = ∞ and f(K, v0) = f(H, γ(v0)) = ⊥.

Otherwise, from Lemma 2, we know that after r0 rounds, OUT(v0) =
OUT(γ(v0)). Thus r0 = r(K, v0) = r(H, γ(v0)) and f(K, v0) = f(H, γ(v0)).
Consequently, f and r are r−lifting closed.

�

The previous proof shows that the output function f can be seen as cor-
responding to the final values obtained from the deterministic execution of
an algorithm solving (S,F) under the synchronous daemon. The value of
r(G, v) can be understood as the number of steps needed by v to compute its
final value in G.

4 Main Algorithm

In this section, in order to obtain our sufficient condition, we present a gen-
eral algorithm Mf,r in Figure 2 for which we use parameters that depend
on functions f and r corresponding, via Theorem 3, to the terminating task
(S,F) we are interested in solving. This algorithm is a combination of a snap-
stabilizing enumeration algorithm, adapted from [God02] and a generaliza-
tion of an algorithm of Szymanski, Shy and Prywes (the SSP algorithm for
short) [SSP85].

The algorithm in [God02] is described in a different model, where each
computation step involves some strong synchronization between adjacent
processes. It is a self-stabilizing adaptation of an enumeration algorithm pre-
sented by Mazurkiewicz in [Maz88]. The SSP algorithm enables to detect the
global termination of an algorithm provided the processes know a bound on
the diameter of the graph. The Mazurkiewicz-like algorithm always stabilizes
on any network G and during its execution, each process v can compute an
integer n(v) and reconstruct at some computation step i a digraph Gi(v) such
that G is a quasi-fibration of Gi(v) and the image of v is n(v).

By applying the output function f on Gi(v) for n(v), v can compute its
OUT value. However, the enumeration algorithm does not enable v to com-
pute effectively the radius of this quasi-fibration. We use a generalization of
the SSP algorithm to compute a counter that is a lower bound on this ra-
dius, as it has already been done in Mazurkiewicz’ model [GMT10] and in
the message passing model [CGM08]. When the SSP counter is greater than
r(Gi(v), n(v)), the condition on f and r from Theorem 3 implies than the OUT

value at v is correctly computed for S.
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4.1 Modifying Mazurkiewicz’ Enumeration Algorithm

An enumeration algorithm on a network G is a distributed algorithm such
that the OUT value are integers and the result of any computation is a la-
belling of the vertices that is a bijection from V (G) to {1, 2, · · · , |V (G)|}. In
particular, an enumeration of the vertices where vertices know whether the
algorithm has terminated solves the Election Problem. Since Election is not
solvable in all networks, it is not possible to solve the Enumeration problem
on all networks. However, even if not solving Enumeration, in any network
G, the Enumeration algorithm of Mazurkiewicz always stabilizes and yields
a digraph Gi(v) such that G is a quasi-fibration of Gi(v).

We give first a general description of the Mazurkiewicz algorithm. Ev-
ery vertex attempts to get its own name in N1. A vertex chooses a name and
broadcasts it together with the name of its adjacent vertices all over the net-
work. If a vertex u discovers the existence of another vertex v with the same
name, then it compares its local view, i.e., the labelled in-ball of center u and
radius 1, with the local view of its rival v. If the local view of v is “stronger”,
then u chooses another name. Node u also chooses another name if its ap-
pears twice in the view of some other vertex as a result of a corrupted initial
state. Each new name is broadcast again over the network. At the end of the
computation it is not guaranteed that every node has a unique name, unless
the graph is fibration minimal. However, all nodes with the same name will
have the same local view, i.e., isomorphic labelled neighborhoods.

The crucial property of the algorithm is based on a total order on local
views such that the “strength” of the local view of any vertex cannot decrease
during the computation. To describe the local view we use the following no-
tation: if v has degree d and its in-neighbors have names n1, · · · , nd , with
n1 > · · · > nd , then N(v), the local view, is the d−tuple (n1, · · · , nd). Let T be
the set of such ordered tuples. The lexicographic order defines a total order,
≺ , on T . Vertices v are labelled by triples of the form (n,N,M) representing
during the computation:
– n(v) ∈ N is the name of the vertex v,
– N(v) ∈ T is the latest view of v,
– M(v) ⊂ N× T is the mailbox of v and contains all information received at

this step of the computation.
We introduce other notations. We want to count the number of times a

given name appear in a local view. For a local view N , and n ∈ N, we define
δN (n) to be the cardinality of n in the tuple N. For a given view N , we denote
by sub(N,n, n′) the copy of N where any occurrence of n is replaced by n′.

The complete algorithm is given in Fig. 2. The rules are given in the priority
order and v0 denotes the center of the cell (ie the in-ball of radius 1).

The labeling function obtained at the end of a run ρ of Mazurkiewicz’
algorithm is noted πρ. If v is a vertex of G, the couple πρ(v) associated with v

1 this name shall be an integer between 1 and |V (G)| to have an actual Enumeration algo-
rithm. Here we would need more work to enforce this, however since this is not needed for our
purpose, these technicalities will be skipped. See [God02] for a way to get a real Enumeration.
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Enum1 : Initialization
Guard :
– Request(v0)
Action :
– n(v0) := 0,
– N(v0) := N(v0),
– M(v0) := ∅,
– a(v0) := −1.

Enum2 : Diffusion rule
Guard :
– There exists v ∈ B(v0) such that

M(v) 6= M(v0).
or (n(v0), N(v0)) /∈ M(v0),
or N(v0) 6= N(v0).
Action :
– M(v0) :=

⋃

w∈B(v0)

M(w) ∪

{(n(v0), N(v0))}.
– N(v0) := N(v0).
– a(v0) := −1.

Enum3 : Renaming rule
Guard :
– For all v ∈ B(v0),M(v) = M(v0).
– (n(v0) = 0) or (n(v0) >

0 and there exists (n(v0), N) ∈
M(v0) such that ((N(v0) ≺ N))).

– n(v0) > 0 and ∃(n1, N1) ∈ M(v0)
such that δN1

(n(v0)) ≥ 2.

Action :
– n(v0) = 1 + max{n ∈ N |

(l, n,N) ∈ M(v0) for some l, N}.
– M(v0) = M(v0)∪{(n(w), N(w))|w ∈

B(v0)},
– a(v0) = −1.

gSSPfix : Fix gSSP counter
Guard :
– If there exists v ∈ B(v0), |a(v) −

a(v0)| ≥ 2 or (M(v) 6= M(v0) and
a(v0) 6= −1)

Action :
– a(v0) := −1.

gSSP : gSSP rule
Guard :
– ∀v ∈ B(v0), M(v) = M(v0),

|a(v) − a(v0)| ≤ 1 and ¬P(v0)
Action :
– a(v0) := 1 + min{a(v) | v ∈

B(v0)}.

Decision : Output rule
Guard :
– For all v ∈ B(v0), M(v) = M(v0)

and P(v0)
Action :
– OUT(v0) = f(K(v0), w(v0))

Fig. 2 Snap-stabilizing algorithm Mf,r . The parameters are the functions f and r from Theo-
rem 3. K is defined by a local procedure and the predicate P depends on r.

is denoted (nρ(v),Mρ(v)). We also note the final local view of v by Nρ(v). For
a given mailbox M and a given n ∈ N, we note STRONGM (n) the local view
that dominates all N, (n,N) ∈ M (i.e. N ≺ STRONGM (n). Except for the first
corrupted stages, STRONGM(v)(n) is actually the “strongest local view” of n.

Theorem 4 A run ρ of Mazurkiewicz’ Enumeration Algorithm on G with any ini-
tial values finishes and computes a final labeling πρ verifying the following condi-
tions for all vertices v, v′ of V (G) :

4.i Mρ(v) = Mρ(v
′).

4.ii STRONGMρ(v′)(nρ(v)) = N(v) = Nρ(v).
4.iii nρ(v) = nρ(v

′) if and only if Nρ(v) = Nρ(v
′).

Proof Even if the model is different, beside technicalities, this can be proved
similarly to the proof of [God02].

�

Now we explain how it is possible to extract the map of a minimal base.
This is usually done by considering the graphs induced by the numbers and
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associated local views that have maximal views. However, here, due to the
arbitrary initial failures, the mailbox should be cleaned up before use. It is
possible to have some maximal (n,N) but n does not actually exists on any v.

Finally, each vertex shall compute locally the set of actual final names from
the final mailbox Mρ. We note Gρ the graph defined by

Vρ = {nρ(v)|v ∈ V (G)},

Aρ = {(nρ(v1), nρ(v2))|(v1, v2) ∈ A(G)}.

For a mailbox M and an integer n, we define the set V M (n) by induction.

V M
0 = {n},

V M
i+1 = V M

i ∪ {t|∃s V M
i , δSTRONGM (s)(t) = 1}.

If i0 is such that V M
i0

= V M
i0+1 then we define V M (n) = V M

i0
. Finally, we

have,

Lemma 3 ([God02]) For all v ∈ V (G), V Mρ(nρ(v)) = Vρ.

By defining AM by {(n1, n2)|n1, n2 ∈ V M (n) and δSTRONGM (n1)(n2) = 1},

we obtain a graph GM(v) = (V M(v), AM(v)). We can not readily use GM(v)

since it could be that it is not in F . We denote by K(v) a digraph that is
in F and that is a quasi-fibration of GM(v) of radius a(v) and of center w(v).
Such a digraph can be found by a local procedure enumerating all graphs and
vertices of F• until one is found. This semi-algorithm will always terminate
because of the following property.

Proposition 1 Let P be the set of requesting processes. Let v that has been causally
influenced by P , and such that a(v) ≥ 0. The graph G is a quasi-fibration of GM(v)

of center v and radius a(v).

Proof We add that every w ∈ B(v, a(v)) has been influenced to the statement
and prove this new statement by induction on i, the number of steps since P

has received the requests.
Initially, at step 1, the requests are being processed by Enum1, i.e. the set

of influenced nodes is P and the property holds trivially.
Assume the property holds at step i and consider v0 a vertex that is ac-

tivated at round i + 1. We have to consider two cases, either v0 was already
influenced at round i or it is a newly influenced node.

If v0 is a newly influenced node. The only rule of interest is gSSP because
other rules are setting a(v0) to −1. But we show that v0 cannot apply this
rule. Indeed, assume M(v0) 6= ∅, then, the causality path to v0 starts in a
root whose variables have been reset, and from which the causality chain of
applications will propagate its new name. So M(v0) has to be updated to, at
least, this name before being able to apply gSSP.

If v0 has already been influenced then the induction statement applies at
the previous round. Denote a(v0) the value of the counter at the end of round
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i and assume that for all v ∈ N(v0), a(v) = a(v0). We prove that the statement
holds for a(v0) + 1 at round i+ 1.

If a(v0) = 0 then, by the same argument as in the previous case, the neigh-
bours of v0 have all been influenced and the statement holds with a radius
1.

If a(v0) > 0 then the neighbours have been influenced by induction as-
sumption. Moreover, every v ∈ N(v0) is the center of a quasi-fibration of
radius a(v0). Therefore, v0 is the center of a quasi-fibration of radius a(v0)+1.
Similarly, every w ∈ B(v, a(v0)) has been influenced and the ball B(v0, a(v0)+
1) is totally influenced. The statement holds at round i+ 1.

�

The algorithm from Fig. 2 uses the functions f and r given in the neces-
sary condition of Theorem 3. The two functions are used to define a digraph
K (defined above) and a predicate P defined below. The predicate needs to
make the counter a to increase when what can be extracted from the mail-
boxes (that is the minimum base of G)) is the same locally. But it must also
make the algorithm stop when there is enough information to conclude. This
information is enough when the value r for the reconstructed base matches
the counter of stability a.

Theorem 5 With P(v) := (a(v) < r(K(v), n(v))), the algorithm Mf,r snap-
stabilizes to S for any set P of requested nodes.

Proof Consider a node v just after it has applied rule Decision, we have STRONG(M(v))
that is constant in the neighbourhood, r(K(v), n(v)) ≤ a(v) and out(v) =
f(K(v), w(v)). Since, by construction, K(v) is a quasi-fibration of GM(v) of
radius a(v) ≥ r(K(v), n(v)) and of center n(v), and since f and r are r−lifting
closed, OUT(v) = f(K(v), w(v)) = f(GM(v), n(v)), and r(K(v), w(v)) = r(GM(v), n(v)).
From Prop. 1, since a(v) ≥ r(GM(v), n(v) and since f is r−lifting closed,
OUT(v) = f(GM (v), n(v)) = f(G, v).

Since f is an output function for (S,F), the OUT labels are correct for S in
G.

�

4.2 Complexity

The algorithm Mf,r is a universal algorithm and therefore for given s,F) it
can have a bigger complexity than a tailored algorithm. However it should
be noted that the complexity of Mf,r is divided in two components, the sta-
bilization of the Enumeration part and the increase of the SSP counter until it
is greater than r. Note that the former depends on the graph G only and that
the latter depends on the family F . The complexity from the Enumeration has
been shown in [God02] to be, in the Angluin model, at most t|V (G)|2 where
t is the sum of the number of vertices and of the highest name n initially
known. The proof can be extended to the model of this paper.
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5 Conclusion

We have shown that for anonymous networks, the terminating tasks that can
be solved by a snap-stabilizing algorithms are exactly the ones that can be
solved by a distributed algorithm with explicit termination. This comple-
ments the already known task-equivalence between self-stabilizing terminat-
ing tasks and distributed tasks computed with implicit termination. The im-
portant consequence is that the partial knowledge (like bound on the size,
diameter etc ...) that could be used to get explicit termination in the non-
stabilizing case are also the ones that can be used to have snap-stabilizing
solutions.

A limit of this result is that it does not give the intrinsic complexity of
a problem and it could be that solving a problem by snap-stabilization is
harder than solving it with explicit termination. The computability is equiv-
alent however whether the complexity is also equivalent is an open problem.

For lack of space, we do not discuss probabilistic snap-stabilization [AD14].
It is not difficult to see that the techniques presented here enable to prove that
a task has a probabilistic snap-stabilizing solution if and only it has a (non-
stabilizing) Las Vegas solution.

An interesting open question, as in the self-stabilizing case, would be to
find a direct way to transform any given anonymous algorithm into a snap-
stabilizing one. Such transformation might have benefits regarding the com-
plexity.

The author wishes to thank Jérémie Chalopin for sharing ideas and fruit-
ful discussions about distributed computability in various settings, including
some closely related to this paper.
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