Skip to main content

Robust Multi-agent Optimization: Coping with Byzantine Agents with Input Redundancy

  • Conference paper
  • First Online:
Book cover Stabilization, Safety, and Security of Distributed Systems (SSS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10083))

Abstract

This paper addresses the multi-agent optimization problem in which the agents try to collaboratively minimize \(\frac{1}{k}\sum _{i=1}^k h_i\) for a given choice of k input functions \(h_1, \ldots , h_k\). This problem finds its application in distributed machine learning, where the data set is too large to be processed and stored by a single machine. It has been shown that when the networked agents may suffer Byzantine faults, it is impossible to minimize \(\frac{1}{k}\sum _{i=1}^k h_i\) with no redundancy in the local cost functions.

We are interested in the impact of the local cost functions redundancy on the solvability of \(\frac{1}{k}\sum _{i=1}^k h_i\). In particular, we assume that the local cost function of each agent is formed as a convex combination of the k input functions \(h_1, \ldots , h_k\). Depending on the availability of side information at each agent, two slightly different variants are considered. We show that for a given graph, the problem can indeed be solved despite the presence of faulty agents. In particular, even in the absence of side information at each agent, when adequate redundancy is available in the optima of input functions, a distributed algorithm is proposed in which each agent carries minimal state across iterations.

This research is supported in part by National Science Foundation awards NSF 1329681 and 1421918. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the funding agencies or the U.S. government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anthonisse, J., Tijms, H.: Exponential convergence of products of stochastic matrices. J. Math. Anal. Appl. 59(2), 360–364 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chatterjee, S., Seneta, E.: Towards consensus: some convergence theorems on repeated averaging. J. Appl. Probab. 14(1), 89–97 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally asynchronous systems. Inf. Comput. 105, 132–158 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duchi, J., Agarwal, A., Wainwright, M. Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans. Autom. Control (2012)

    Google Scholar 

  7. Fekete, A.D.: Asymptotically optimal algorithms for approximate agreement. Distrib. Comput. 4(1), 9–29 (1990)

    Article  MathSciNet  Google Scholar 

  8. Friedman, R., Mostefaoui, A., Rajsbaum, S., Raynal, M.: Asynchronous agreement and its relation with error-correcting codes. IEEE Trans. Comput. 56(7), 865–875 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. LeBlanc, H.J., Zhang, H., Sundaram, S., Koutsoukos, X.: Consensus of multi-agent networks in the presence of adversaries using only local information. In: Proceedings of the 1st International Conference on High Confidence Networked Systems, HiCoNS 2012, pp. 1–10. ACM, New York (2012)

    Google Scholar 

  10. Mostefaoui, A., Rajsbaum, S., Raynal, M.: Conditions on input vectors for consensus solvability in asynchronous distributed systems. J. ACM (JACM) 50(6), 922–954 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mostefaoui, A., Rajsbaum, S., Raynal, M.: Using conditions to expedite consensus in synchronous distributed systems. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 249–263. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39989-6_18

    Chapter  Google Scholar 

  12. Mostefaoui, A., Rajsbaum, S., Raynal, M.: Synchronous condition-based consensus. Distrib. Comput. 18(5), 325–343 (2006)

    Article  MATH  Google Scholar 

  13. Nedic, A., Olshevsky, A.: Distributed optimization over time-varying directed graphs. IEEE Trans. Autom. Control 60(3), 601–615 (2015)

    Article  MathSciNet  Google Scholar 

  14. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robbins, H., Siegmund, D.: A convergence theorem for non negative almost supermartingales and some applications. In: Lai, T., Siegmund, D. (eds.) Herbert Robbins Selected Papers, pp. 111–135. Springer, New York (1985)

    Chapter  Google Scholar 

  17. Su, L., Vaidya, N.: Byzantine multi-agent optimization: Part i. arXiv,abs/1506.04681 (2015)

  18. Su, L., Vaidya, N.: Byzantine Multi-agent optimization: part II (2015)

    Google Scholar 

  19. Su, L., Vaidya, N.H.: Fault-tolerant multi-agent optimization: optimal iterative distributed algorithms. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 425–434. ACM (2016)

    Google Scholar 

  20. Su, L., Vaidya, N.H.: Multi-agent optimization in the presence of byzantine adversaries: fundamental limits. In: Proceedings of IEEE American Control Conference (ACC), July 2016

    Google Scholar 

  21. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M., et al.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vaidya, N.H.: Matrix representation of iterative approximate Byzantine consensus in directed graphs. CoRR, abs/1203.1888 (2012)

    Google Scholar 

  23. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate byzantine consensus in arbitrary directed graphs. In: Proceedings of ACM Symposium on Principles of Distributed Computing (PODC) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Su, L., Vaidya, N.H. (2016). Robust Multi-agent Optimization: Coping with Byzantine Agents with Input Redundancy. In: Bonakdarpour, B., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2016. Lecture Notes in Computer Science(), vol 10083. Springer, Cham. https://doi.org/10.1007/978-3-319-49259-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49259-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49258-2

  • Online ISBN: 978-3-319-49259-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics