

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-864667

Julian Eberius, Maik Thiele, Wolfgang Lehner

Exploratory Ad-Hoc Analytics for Big Data

Erstveröffentlichung in / First published in:

Albert Y. Zomaya, Sherif Sakr, Hgg., 2017. Handbook of Big Data Technologies. Cham:
Springer, S. 365–407. ISBN 978-3-319-49339-8.

DOI: https://doi.org/10.1007/978-3-319-49340-4_11

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-864667
https://doi.org/10.1007/978-3-319-49340-4_11

Exploratory Ad-Hoc Analytics
for Big Data

Julian Eberius, Maik Thiele and Wolfgang Lehner

Abstract In a traditional relational database management system, queries can only
be defined over attributes defined in the schema, but are guaranteed to give single,
definitive answer structured exactly as specified in the query. In contrast, an informa-
tion retrieval system allows the user to pose queries without knowledge of a schema,
but the result will be a top-k list of possible answers, with no guarantees about the
structure or content of the retrieved documents. In this chapter, we present Drill
Beyond, a novel IR/RDBMS hybrid system, in which the user seamlessly queries
a relational database together with a large corpus of tables extracted from a web
crawl. The system allows full SQL queries over a relational database, but addition-
ally enables the user to use arbitrary additional attributes in the query that need not
to be defined in the schema. The system then processes this semi-specified query
by computing a top-k list of possible query evaluations, each based on different
candidate web data sources, thus mixing properties of two worlds RDBMS and IR
systems.

1 Exploratory Analytics for Big Data

While the term Big Data is most often associated with the challenges and oppor-
tunities of today’s growth in data volume and velocity, the phenomenon is also
characterized by the increasing variety of data [36]. In fact, data is collected in more
and more different forms from increasingly heterogeneous sources. The spectrum of
additional data sources ranges from large-scale sensor networks, over measurements
from mobile clients or industrial machinery, to the log- and click-streams of ever

J. Eberius · M. Thiele (B) · W. Lehner
Faculty of Computer Science, Database Technology Group,
Technische Universität Dresden, 01062 Dresden, Germany
e-mail: maik.thiele@tu-dresden.de

J. Eberius
e-mail: julian.eberius@tu-dresden.de

W. Lehner
e-mail: wolfgang.lehner@tu-dresden.de

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

 art

 art

Machine
GenerateData

(Logs, …)

Textual Data
(Customer
Emails, …)

Web Data,
Open Data,

Social Media

Opera onal
Data Store

ERP

CRM

ETL
Extract

Transform
Load

Data Warehouse

Data Mart

OLAP

Repor ng

Data Mining

Text
Analysis

Predic ve
Analy cs

…

Data Lake
Loose collec on of (un-
/semi-) structure data

Da
ta

 W
ar

eh
ou

se
 La

nd
sc

ap
e

B
g

Da
ta

 La
nd

sc
ap

e

Exploratory
Analy cs

Fig. 1 The growing big data analytics landscape

more complex software architectures and applications. In addition, there is more
publicly available data, such as social network data, as well as Web and Open Data.
More and more organizations strive to efficiently harness all forms and sources of
data in their analysis projects to gain new insights, or enable new features in their
products.

However, conventional data warehouse infrastructures (upper part of Fig. 1)
assume controlled ETL processes with well-defined input and target schemata, that
define the data pipelines in the organization. The data sources typically are opera-
tional databases and common enterprise IT systems, such as Customer Relationship
Management (CRM) and Enterprise Resource Planning (ERP) systems. Tradition-
ally, the data sink in such an architecture has been thewarehouse or datamarts, whose
schemata define what is immediately queryable for an analyst. If there is an ad-hoc
information need that can not be satisfied with the current schema because external
information has to be integrated, an intricate process has to be followed. Because
the warehouse is a crucial piece of infrastructure, it is highly controlled: ad-hoc inte-
gration and analytics is not a feature that it is designed for. Still organizations today
aim at generating value from all available data, which includes novel internal, but
also increasingly external sources. Consider the lower part of Fig. 1, which depicts
key changes to the traditional architecture. Beside the continued growth of data vol-
ume and its increasing heterogeneity, there are also changes at the data consumption
side, where we can see a development towards agile and exploratory data analy-
sis overcoming inflexible data warehouse infrastructures. Instead, new information
management principles such as data lake [44, 47] MAD [12] arise, that aim to easily
ingest, transform, and analyze data in an exploratory and agile manner. In addition,
information needs are often ad-hoc or situational [42], or require the use of hetero-

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

geneous or unstructured data that are not integrated in a data warehouse. An instant
integration of Big Data is not even desirable, as the future use cases of the data is not
known. Implementing the data lake principle allows to store the mentioned variety
of data sources. However, while a new wealth of data is available, the integration
of a large variety of sources is still a complicated, laborious and mostly manual
process that has to be performed by experts and that is required before queries on the
combined data can be issued. This limits the ability of non-expert users to include
more data into their analysis tasks in exploratory manner. Without additional tool
support, the effort of data integration will most likely prevent those users from taking
advantage of the wealth of Big Data today.

To illustrate the problems with today’s data management tool let us consider the
following scenario: Imagine you are a working in the marketing department of a
company and you need to select customers that should be targeted by a specific
campaign. To achieve this you have to group your customers according to different
properties of the their home countries. While the customer master data is part of
your enterprise data warehouse detailed country information, e.g. population, life
expectancy, GDP, debt, etc., is missing. To get this data you need to identify relevant
data sources manually, for example through a regular search engine. Then, the data
has to be extracted and cleaned, i.e., converted into a form that is usable in a regular
database. In a next step, it needs to be integrated into an existing database, which
includes mapping of corresponding concepts, but may also include instance-level
transformations. Only after this process is finished, the original query can be issued.
Still, the result may not be what the user originally desired, or the user may want
to see the query result when using a different Web data source. In this case, another
iteration of the process is necessary. The overall process is extremely cumbersome
and you will be likely miss a large fraction of all relevant data sources that are
available on the Web [37].

To solve this problem we propose a novel method for Top-k Entity Augmentation
(Sect. 2), that enables us to enrich a given set of entities with additional attributes
based on a large corpus of heterogeneous data. This allows for ad-hoc data search
and integration in Big Data environments with large collections of heterogeneous
data such as data lakes or publicly available data. We extend this approach to an
Exploratory Ad-Hoc Analytics System called DrillBeyond (Sect. 3), where we incor-
porate entity augmentation into traditional relational DBMS, to enable their efficient
use in analytical query contexts. This enables users to issue analytical ad-hoc queries
on a database while referencing data to be integrated as if it were already defined
in the database, without providing specific sources or mappings. In case of our mar-
keting scenario the country properties would be seamlessly integrated during query
execution and instantly used to answer the user request.

In the remainder of this section, we will derive requirements (Sect. 1.1) for a novel
data management architecture focused on ad-hoc integration of heterogeneous data
sources with traditional data management systems. Given that, we will propose an
architectural blueprint (Sect. 1.2) that also serves as the outline for the rest of the
chapter.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Parts of the material presented in this chapter have already been published in [22]
and [21].

1.1 Requirements

To put it succinctly, we identify two trends: first, we observe an ever increasing
amount and diversity of available data sources, both inside organizations and outside.
Organizations are stockpiling data in a quantity and of a variety not seen in the
past. At the same time, developments such as the Open Data trend and sophisticated
technologies forWeb data extraction lead to higher availability of public data sources.
As a consequence, there is an increasing demand to enhance and enrich data by
integrating it with external data sources which introduces additional complexity.
Second, there is a growing demand for exploratory analytics and ad-hoc integration,
driven by the broadening spectrum of data users. This demands that the tools and
processes of data integration become simpler, and able to cater to a larger audience.
While data processing and analysis traditionally were the domain of IT departments
and BI specialists, more and more users from other departments are becoming active
data users and require easy access to all valuable data sources, both inside and
outside organizational boundaries. In addition, the focus of data use has broadened:
Traditional BI processes focused on defined data flows, typically from source systems
to a data warehouse, and aimed at producing well-defined reports or dashboards.
However, a new type of investigative data analysis, often associated with the role of
the data scientist, increases the demand for ad-hoc integration of the variety of data
sources mentioned above.

Still, even with all these new sources for data, the focus of most of the analysis
tasks is on the respective core data of each organization. This most valuable data will
still be stored in controlled data warehouse environments with defined schemata.
Therefore, new ad-hoc data integration techniques need to take this analytics con-
text into account. From these observations, we derive requirements for a novel data
management architecture focused on fulfilling the need for exploratory analytics.

Exploratory Integration and Analytics The novel data sources discussed above do not
lend themselves to classical data integration with centralized schemata and expert-
defined mappings and transformations. Data fromWeb and Open sources, as well as
from heterogeneous management platforms such as data lakes, should be integrated
dynamically at the time it is needed by a user. The volume and variety of data sources
in these scenarios makes single, centralized integration effort infeasible. Instead of
consolidating all available sources as soon as they are available, sources should be
retrieved and integrated based on a specific analytical need. In such a scenario, data
search takes the place of exhaustive schemata covering all available information.
We therefore propose methods and systems to enable exploratory analysis over large
numbers of heterogeneous sources.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Minimal Up-front User EffortWhen developingmethods for answering ad-hoc infor-
mation needs, an important factor is theminimization of up-front costs for the user. In
other words, our ambition is to minimize the user effort necessary before first results
become available. Specifically, we want to reduce the reliance on IT personnel and
integration experts, or the need to search data repositories or master integration tools
before external sources can be included in a data analysis scenario. In the ideal case,
a user should be able to declaratively specify the missing data and be presented with
workable answers automatically. To facilitate this, we propose keyword queries that
allow to specify the users’ information need and which can be iteratively refined
during an analytical session. While this approach minimizes the user effort it also
introduces ambiguities that need to be resolved by the underlying retrieval system.

TrustworthyAutomated IntegrationThe two goals introduced above amount to reduc-
ing user effort and time-to-result in data search and integration. As a consequence,
we propose novel methods for automating these highly involved processes. How-
ever, exact data integration has been called an “AI-complete” problem [30], and is
generally considered not to be automatically solvable in the general case. In fact, all
proposed methods return results with varying confidence values, instead of perfect
answers, requiring human validation in many cases. We therefore introduce methods
that automatize the data search and integration processes as much as possible, while
also facilitating user understanding and verification of the produced results.

System Integration Finally, ad-hoc integration queries should not introduce an iso-
lated, new class of systems into existing datamanagement architectures.As discussed
above, the wealth of Big Data collected by organizations or found on theWeb is very
promising. However,most analytical taskswill still focus on the core databases inside

Web Table Index Web Table Store

Data Source Management
indexes

Top k En ty Augmenta on System

API (JSON and REST based)

RDBMS

DrillBeyond

n_name gdp avg(o_totalprice)

Germany 3.73 29.1

US 16.77 48.9

France 2.80 27.4

Open World SQL Top k Result

Fig. 2 Architecture overview of a combined database and information retrieval engine

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

organizations, with ad-hoc integrated sources supplementing, not replacing, them.
Therefore, methods developed to support ad-hoc integration can not be deployed in
a vacuum, but need to work hand in hand with systems managing core data. In detail,
we propose an RDBMS/IR system hybrid system that allows querying and analyzing
a regular relational database while using additional attributes for which the values
could be found only in external data sources (Fig. 2).

1.2 Architecture Overview

In the following, we provide an architectural blueprint of a combined database and
information retrieval engine in order to perform powerful queries over DBMS and
heterogeneous data sources in an efficient, easy-to-use and seamless manner that
fulfills the requirements outlined in Sect. 1.1. Our proposed architecture consists of
a series of layers providing increasingly higher-level services. We assume a large
collection of external tabular structured data, e.g. a corpus of Web tables, i.e., data-
carrying tables extracted from the open Web, datasets published on an Open Data
platform, or spreadsheets part of a corporate data lake [44].Without limiting the gen-
erality of the proposed systemwe utilizeWeb tables for the remainder of this chapter,
since they are freely available such as Dresden Web Table Corpus (DWTC) [19],
that consists of 125M Web tables extracted from a public Web crawl. This corpus
is indexed by an industry-standard document index server such as Solr1 or Elastic-
Search.2

On top of the inverted index we propose an Entity Augmentation System (EAS)
that forms the basic building block for ad-hoc data integration. EAS’s aim at extend-
ing a given set of entities with an additional, user-requested attribute that is not yet
defined for them. In Sect. 2, we will present a novel approach to the problemwhich is
especially suited for analytical uses cases. It is based on an extended version of the set
cover problem, called top-k consistent set covering for which we introduce several
algorithms. The EAS consists of a Data Source Management System providing stor-
age and indexing facilities for Web tables, enabling the higher layers to retrieve raw
Web tables based on keyword matches in data, schema or other metadata. Further it
orchestrates several schema and instance matching systems, knowledge repositories
and ranking schemes to create a candidate dataset D given an augmentation query.
Finally, it includes a JSON-based REST API, which enables other systems to easily
integrate with it and pose entity augmentation queries.

On top of that, we propose an RDBMS/IR system hybrid system called DrillBe-
yond (see Sect. 3), that allows querying and analyzing a regular relational database
while using additional attributes not defined in said database. Therefore, we propose
a new type of database queries, which we denote asOpen World Queries. In short, in
an Open World SQL, the user is allowed to reference arbitrary additional attributes

1http://lucene.apache.org/solr/.
2https://www.elastic.co/.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

http://lucene.apache.org/solr/
https://www.elastic.co/

not defined in this database. An exemplary query is shown in Fig. 8. The goal is to
enable users to specify information needs requiring external data declaratively, just
as if only local data was used, without having to integrate data up-front. Leveraging
the Entity Augmentation System a database can be augmented at query time with
Web data sources providing those attributes. The system will not respond to Open
World Queries with a single, perfect result, as it would be the case with normal
database queries. Instead, it should produce a ranked list of possible answers, each
based on different possible data sources and query interpretations. The users can
then pick the result most suitable to their information need. To this end, our system
tightly integrates regular relational processing with new data retrieval and integration
operators that encapsulate our novel augmentation techniques. In Sect. 3 we describe
the challenges in processing this new query type, such as efficient processing of
multi-result SQL queries, and present how our novel DrillBeyond system solves
them.

2 A Top-K Entity Augmentation System

In the previous section, we discussed the need to support ad-hoc information needs in
analytical scenarioswith tools for exploratorydata search and lightweight integration.
Specifically, we want to enable a user working on a dataset to effortlessly retrieve
and integrate other relevant datasets from a large pool of heterogeneous sources. One
compelling type of query in this context are so-called entity augmentation queries, or
EAQ. These queries are definedby a set of entities, for example a set of companies, and
an attribute that has been undefined so far for these entities, for example “revenue”.
The result of the query should then associate each of the entities with a value for the
queried attribute, by automatically retrieving and integrating data sources that can
provide them. We will call this attribute the augmentation attribute, and the system
processing such queries EntityAugmentation System, orEAS. The user has to specify
the augmented attribute just by a keyword, while the EAS decides on how to lookup
data sources, how to match them to the existing data, and possibly how to merge
multiple candidate sources into one result. This makes entity augmentation queries
both powerful and user-friendly, and thus interesting for exploratory data analysis.
Effectively, an EAS aims at automating the process of data search, as well as the
following integration step.

In principle, any type of data source could be used for answering entity aug-
mentation queries. For example, a large ontology such as YAGO [52] could answer
some EAQ rather easily, though only if the augmentation attribute is defined in this
knowledge base. In recent related work, several systems that process such queries
on the basis of large Web table corpora have been proposed, for example InfoGather
[56, 57], theWWT system [48, 50], and theMannheim Search Join Engine [37]. An
advantage of methods using tables extracted from the Web is that they offer more
long tail information, and do not rely on the queried attribute being defined in a
central knowledge base. Methods based on Web tables as their data source can, in

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

principle, also be used with any other large collection of heterogeneous data sources.
The techniques for automatic data search and integration introduced there could be
applied to enterprise data lakes [44, 47] as well. In fact, many challenges, such as
identifying relevant datasets in light of missing or generic attribute names, bridging
semantic or structural differences, or eliminating spurious matches, have already
been tackled by existing augmentation systems, which we review in Sect. 2.4.

Though solving these fundamental issues of data integration remains the most
important factor for the success of an EAS, we argue that several other challenges
are still unanswered in entity augmentation research. These challenges, are discussed
in Sect. 2.1 and used to derive design requirements for a novel entity augmentation
method in Sect. 2.2. Next, in Sect. 2.3, we will map the entity augmentation problem
to an extended version of the Set Cover problem, which we call Top-k Consistent Set
Cover and provide basic Greedy algorithm that solves this problem. Finally, we will
survey related work in Sect. 2.4.

Parts of the material presented in this chapter have already been published in [22].

2.1 Motivation and Challenges

In this section, we will discuss an exemplary entity augmentation scenario based on a
heterogeneous table corpuswith partially overlapping sources. Our example scenario
is depicted in Fig. 3, with the query represented as a table on the top, and the available
candidate data sources below it. The query table consists of a set of five companies,
and the augmentation attribute “revenue”. The candidate data sources depicted below
the query table vary in coverage of the query domain, the exact attribute they provide,
and their context. They are further annotated with their relevance with respect to the
query, which is depicted as a numeric score on each source. In [22] we provide
detailed scores and similarity measurements to compute the overall relevance score
of the candidate data sources.

As an introductory example let us assumean algorithm that picks, for everyqueried
entity, the respective value from the source with the highest relevance score. In our
example, this naïve algorithmwould pick values from the sources S7 for “Rogers”, S8
for “AT&T”, S5 for “Bank of China” and “ChinaMobile”, and finally S3 for “Banco
do Brasil”, using the highest ranked available source for each queried entity. This
means that the algorithm picks a large number of data sources, almost one distinct
source for each entity. More sophisticated methods for pruning candidate tables
and picking values from the remaining candidates can be used, such as correlating
or clustering sources, mapping sources to knowledge bases, or quality-weighted
majority voting (again, see Sect. 2.4). However, these methods do not fundamentally
change the fact that the integration is performed on a by-entity basis, which leads
to a large number of distinct sources being used to construct the result. It has been
argued that in data integration, and especially selection of sources to integrate, “less
is more” [18]. Choosing too many sources not only increases integration cost, but
may even deteriorate result quality if low quality sources are added. For example,

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Fig. 3 Example augmentation scenario: query table and candidate data sources

adding S8 to the example result made the result inconsistent: In contrast to the other
sources, this one is, in fact, concerned with US revenue only. This is just one intuitive
example of a problem introduced by inadequate source selection and combination in
the augmentation process. In the following, we will identify specific challenges that
are insufficiently solved with existing by-entity fusion methods.

Trust and Lineage Our first argument is concerned with the usability of an entity
augmentation result. In many application domains, the user can not blindly trust an
automatic integration result, no matter how sophisticated the method used is. Rather,
the result will serve as a starting point in a semi-automatic integration process,
where the user will manually check the sources proposed by the system, correct
errors made by the automated integration techniques, and even switch some of the
sources for others. Choosing a large number of sources therefore increases the users’
verification effort. We argue that existing fuse-by-entity models diminish trust and
hinder understanding of data lineage, two properties that are important in the overall
process of working with data, because the number of distinct sources they fuse is not
considered in source selection. In this chapter, we therefore investigate methods that
produce not only consistent augmentation results from several sources, but minimal
augmentations, i.e., augmentations that use a minimal number of sources to facilitate
the usage of the result. In the running example, such a result would be S2, S3, as
it only uses two sources to augment all entities, even though the sources’ average
score is slightly worse than the score of the naïve solution introduced above. To
summarize, when coercing a large number of data sources into one result, properties

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

important for data analysis such as transparency, lineage and trustworthiness of the
result are diminished.

Attribute Variations Another problem that we identified with related work is the
underlying assumption of a single true value for any combination of entity and
augmentation attribute. This single-truth idea, however, does not reflect the complex
realities. For example, the augmentation attribute in our scenario was given simply as
“revenue”. However, the concept is actually more complex, with many variants such
as “US revenue” or “emerging markets revenue” (S8 and S9) and derived attributes
such as “revenue growth” (S5 and S6). Furthermore, many types of values come
with temporal or spatial constraints, such as different years of validity, or may have
been measured in different ways, for example using different currencies. Therefore,
we argue that even when only sources of high relevance are picked, they may be
correct and of high quality when considered on their own, but still do not form a
consistent result for the overall query domain when combined. The differences in
precise semantics can, in most cases, not be decided based on the extracted attribute
values, but on the level of data sources, for example by considering the context of
a table. Even though better methods for creating consistent augmentations for some
important dimensions such as time and unit of measurement have been proposed
[50, 57], source consistency is not considered as a general dimension in entity aug-
mentation so far. To summarize the argument: due to the existence of subtle attribute
variations, the notion of source consistency needs to be taken into account when
combining several sources to a single augmentation result.

Unclear User Intent Extending our argument based on the intricacies of attribute
variations, we will discuss an additional challenge: the problem of unclear user
intent. In entity augmentation queries, the information need of the user is relatively
underspecified, especially when compared to queries on a database with a defined
schema. Even though entity augmentation also operates on structured data, for exam-
ple on a large-scale Web table corpus, the user is still forced to pose queries on data
whose extent or schema is unknown to him or her. Forming precise queries may
therefore not always be possible, especially in the presence of attribute variations.
In turn, the entity augmentation system may not always be able to pinpoint the exact
attribute the user is interested in. To give one example, in the scenario in Fig. 3 it
is unclear whether the user is interested in any specific year, or just in the highest
ranked sources. In this example, a solution based on the sources S1, S4 may be more
useful than the higher-ranked solution S2, S3 proposed above, because both sources
explicitly state a certain year of validity. However, which solution the user would
prefer can not be decided from the query alone.

Exploratory Search Even if the user can specify a precise query, in the case of
situational or ad-hoc analysis, they may not even yet know which attribute variant is
themost relevant. In those situations, the underspecifiednature of entity augmentation
queries may even be turned into an advantage. For example, a user may want to
stumble over new aspects of his or her information need, similarly to the way it
may happen with a Web search engine. In the example scenario, the user may have

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

queriedonly for “revenue”, but a solution showing “revenuegrowth”basedon sources
S5, S6 may, in some situations, give the ongoing analysis process a new perspective
or direction. However, such serendipitous query answering is not supported with
current augmentation systems. One partial exception is theMannheim Search Engine
[37], which allows so-called unconstrained queries, in which the system returns
augmentations for all attributes it can retrieve from all available sources. However,
this may leave the user with an unfocused, large and hard-to-comprehend result that
is not connected to the information need at hand. In other words, the exploratory
nature of entity augmentation queries is not done justice in current approaches.

Error Tolerance Finally, we note that all existing augmentation systems are based
on techniques for automated schema matching, entity resolution and automated rele-
vance estimation. All these components by themselves have a certain margin of error
that, no matter how sophisticated the underlying methods become, can never be fully
eliminated. In combining these systems to higher-level service such as entity aug-
mentation, the individual errors will evenmultiply. Still, none of the existing systems,
while of course striving to optimize their precision in various ways, offer explicit
support for tolerating possible errors.

2.2 Requirements

Having introduced and discussed five significant open challenges in entity aug-
mentation, we now want to discuss requirements for a novel entity augmentation
method that alleviates these challenges. First, let us discuss the challenges lineage
and attribute variants. We already discussed that using a large number of sources
impedes the user’s understanding. Further, we discussed that, to detect and correctly
exploit the existing variants of the queried attribute, we need to take consistency
between sources into account. Therefore, we investigate methods that produce both
augmentation results that are both consistent and minimal, i.e., augmentations that
use a minimal number of distinct sources, with each of them representing the same
attribute variant. To determine this consistency of datasets, it is possible to measure
the similarity between their attribute names, compare global properties of their value
sets, or analyze the associated metadata such as dataset titles and context. We will
discuss our notion of consistency in more detail and also give formal definitions in
the following sections.

Now let us consider two further challenges: unclear user intent and error toler-
ance. Both of these challenges result from various forms of uncertainty: The first
from uncertainty about the user intent, the second from uncertainty of the utilized
basic methods such as schema matching and entity resolution, and the third from
uncertainty in the sources. Information retrieval systems solve this problem by pre-
senting not one exact, but a top-k list of possible results. For example, errors in
relevance estimation are tolerable, as long as some relevant documents are included
in the top-k result list. Unclear user intent or ambiguities in the query keywords can

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

be resolved by returning documents based on multiple interpretations of the query,
instead of focusing exclusively on the most likely interpretation [3]. Furthermore,
the challenge of exploratory search can also be solved in a top-k setting by means of
result list diversification, as is common practice in Web search [5] or recommender
systems [58]. We argue that for entity augmentation a similar argument can be made:
It is advantageous to provide not only one solution, but allow the user to choose
from a ranked list of alternative solutions. In other words, we aim at extending entity
augmentation to diversified top-k entity augmentation.

Let us reconsider our running example shown in Fig. 3. Instead of returning only
one result based on S2, S3 as discussed above, one alternative would be a result
based on S1, S4. It has a worse average score, but has clearly marked year in both
sources, which may be more useful for the user on manual inspection, because of
the clearly marked year information in the context.

Another aspect are attribute variations, which, due to the exploratory nature of
entity augmentation queries, may also be of interest to the user. An example would
be a third result based on S6 and the second column of S5 which represents changes
in revenue instead of absolute revenue. Yet another exploratory result could be com-
prised of just S9, which does not cover all entities, but might give the users’ analysis
a new direction.

Note however, that we want to generate solutions that are real alternatives, such as
the three examples above. Because of copying effects on theWeb [13, 38], using only
the most relevant sources for creating all k augmentation results however would lead
to many answers being created from structurally and semantically similar sources.
Furthermore, because we fuse results from several sources, naïve solutions would
use the same, most relevant sources multiple times in various combinations, leading
to redundancy in the result list. In the example, one such redundant result would
be S1, S7. However, since S7 differs only superficially from source S4, the results
S1, S4 and S1, S7 are very similar. We want to avoid slight variations of one solution
as this would add little information to the top-k result. A meaningful top-k list needs
to consider a diverse set of sources, exploring the space of available data sources
while still creating correct and consistent answers. This has been recognized a long
time ago in information retrieval [10], but has recently been explored for structured
queries [14, 32], and even for Web table search [46], which is highly related to entity
augmentation. We will define the notion of result diversity for our specific problem,
as well as our means to achieve it, in the following sections.

In a nutshell, we can derive the following two goals: We aim at providing a
diversified top-k list of alternative results, which are composed of consistent and
minimal individual results.

2.3 Top-k Consistent Entity Augmentation

In this section we will describe our novel method of Top-k Consistent Entity Aug-
mentation. Initially, we will formalize augmentation queries and the optimization

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

objectives of our method in Sect. 2.3 and introduce top-k consistent set covering as
an abstract framework for solving our problem in Sect. 2.3.

Entity Augmentation QueriesWe will now formalize our notion of Top-k Consis-
tent Entity Augmentation, and introduce the optimization objectives that we aim at.
First, consider a general entity augmentation query definition.

Definition 1 (Entity Augmentation Query) Let E(a1, . . .a n) denote a set of entities
with attributes a1, . . . , an , and a+ denote the augmentation attribute requested by the
user. Then, an augmentation query is of the form:

QEA(a+, E(a1, . . . , an)) = E(a1, . . . , an, a+)

In other words, the result of such a query is exactly the set of input entities with the
augmented attribute added. To create this new set of entities, the EAS has to retrieve
values for attribute a+ for each entity e ∈ E , which we will denote ve. These values
will be retrieved from a corpus of data sources D managed by the EAS, from which
it selects a relevant subset D for each query QEA.

Sources d ∈ D can provide a+ values for some subset of E , denoted cov(d),
i.e., they cover E only partially in the general case. Individual values provided by
a source d for an entity e are denoted d[e] with e ∈ cov(d). Given a heterogeneous
corpus of overlapping data sources, an augmentation system will potentially retrieve
multiple values for an entity e, the set of which we will denote by Ve = ⋃

di∈D di [e].
Finally, the EAS assigns each data source a relevance score rel : D → [0, 1] with
respect to the query. To determine this relevance score, various measures can be
combined. Examples include the similarity between the queried attribute name and
the respective attribute’s name in the data source, or the quality of the match between
the queried instances and those found in the data source. In addition, global measures
for the quality, such as the PageRank of the source page, can be integrated.

As we described in Sect. 2.1, most systems from literature assume that they can
reconcile the set of values Ve into a single correct augmentation value ve for each
entity. An example for such a fusion method would be majority voting, or clus-
tering values and then picking a representative from the highest ranked cluster as
in [37, 56].

As motivated in Sect. 2.2, our notion of an entity augmentation query differs in
several aspects: First, instead of individual values, it picks subsets of sources that
cover E , and second, it returns an ordered list of alternative solutions. In other words,
its basic result is a list of top-k alternative selections of sources.

Definition 2 (Top-k Source Selections) Given a set D of relevant data sources, and
a number k of augmentations to create, a top-k Source Selection is defined as:

QEA(a+, E, k) = [c1, . . . , ck | ci ⊂ D ∧ cov(ci) = E] (1)

We call one such set ci a cover or an augmentation, and the list of these augmentations
the query result.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

13

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Fig. 4 MaxRelevance

Fig. 5 MinSources

Definition 3 (Cover/Augmentation)Acover is an ordered subset of D that covers E ,
i.e., c = [di , . . . , dx]with⋃

d∈c cov(d) = E . If multiple data sources provide values
for a distinct e, i.e., if ∃e(e ∈ cov(di) ∩ cov(d j)), the augmented value for e is decided
by the order of the sources in c, i.e., ve = di [e] with i = min({i | e ∈ di ∧ di ∈ c}).
As discussed in Sect. 2.2, the aim is to enable the user to choose the most promising
augmentation from the ranked list of alternatives. This leads to the question of how
to construct these subsets ci ⊂ D, in order to create a valuable list of alternatives for
the user.Wewill now introduce the individual dimensions of this problem, relevance,
minimality, consistency and diversity, discussing exemplary baseline strategies that
optimize for one of each dimension.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

14

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Fig. 6 MaxConsistency

Relevance One naïve baseline strategy, which we call MaxRelevance, is depicted
in Fig. 4. Starting from the highest ranked data source, it picks all the values it
provides for entities that do not have a value yet, then continues to the next most
relevant source, according to the relevance function introduced above. While this
strategy obviously maximizes the average relevance of the created augmentation, a
large number of distinct sources might be picked. This makes it harder for the user
to understand the query result and assess its quality, and also has a high chance of
producing inconsistencies between sources.

Minimality A naïve approach to solve the latter problem would be to prioritize data
sources with large coverage of the queried entities. This strategy, calledMinSources,
is illustrated in Fig. 5. As is illustrated in this particular example, while solutions
created this way use a minimal number of distinct sources, the other objectives, such
as relevance, can be arbitrarily bad.

ConsistencyNext, consider the strategyMaxConsistency, inwhich sources are chosen
based on ameasure of source similarity, i.e., a function sim : D × D → [0, 1], which
is depicted usingdashed arrows inFig. 6. This function captures our notion of attribute
variant consistency as discussed in Sect. 2.1. Utilizing such a function to guide source
selection will increase the overall consistency of the created augmentations, but
will create augmentations that are not necessarily minimal nor highly relevant. It
is calculated from measures such as the similarity between the two data source’s
attribute names, their value sets, and by comparing the associated metadata such as
dataset titles and context.

Diversity In addition, we will have to devise a method that is able to create multiple
meaningful alternative solutions. A naïve solution would be to create one cover c
from sources D, and then iteratively set D′ = D \ c and create the next cover from
D′. This approach, called NoReuse, is illustrated in Fig. 7. It has two problems:

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

15

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Fig. 7 NoReuse

Firstly, each data source can be used in only one alternative, even though several
combinations of good sources might be possible. Secondly, just prohibiting reuse
of specific datasets does not necessarily lead to diversified solutions, as there may
be data sources so that ∃di ,d j |di 	= d j ∧ sim(di , d j) ≈ 1.0. This occurs, for example,
due to frequent copying-effects on theWeb [13, 38]. Since we aim at minimizing the
pairwise similarity of covers in the query result, we introduce a similarity function
sim : D × D → [0, 1] that compares covers instead of data sources. This lifts the
similarity function to the domain of covers simA : C × C → [0, 1], whereas the
aggregation function A can be an average or max.

We consider these four dimensions to be the decisive factors for a useful top-k
entity augmentation result.Whatwe therefore need, is a strategy that creates complete
covers, while jointly optimizing all mentioned objectives.

Definition 4 (Top-k Consistent Entity Augmentation) A top-k Consistent Entity
Augmentation query produces a top-k Source Selection (Definition 2) that is opti-
mizedwith respect to the relevance,minimality, consistency, and diversity objectives.

In the next section, we will introduce our algorithmic approach to processing top-k
Consistent Entity Augmentation queries.

Ranked Consistent Set Covering We propose a new approach for constructing
entity set augmentations by modeling it as an extended form of the Weighted Set
Cover Problem, one of Karp’s original 21 NP complete problems [34].

Definition 5 (Weighted Set Cover) Given a universe of elements U and a family of
subsets of this universe S, each associated with a weightwi , the Weighted Set Cover
problem is to find a subset s ⊂ S with

⋃
s = U , such that

∑
i∈s wi is minimized.

Intuitively speaking, the aim is to cover all elements in U using sets from S with
minimal cost. In our problem domain, the algorithm input consists of a set of entities

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

16

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

E that are to be augmented, corresponding to U in the original problem, and a set
of data sources D = {d1, . . . dn}, as retrieved and matched by the underlying entity
augmentation system, corresponding to S. The relevance score assigned to each
datasource by rel(d) is used in place of the weights w.

So far, we could trivially map our problem to the well known Set Cover prob-
lem. Specifically, the Relevance andMinimality objectives defined in section“Entity
Augmentation Queries” correspond closely to the objective

∑
i∈s wi in the set cover

problem. Still, there are some crucial differences: In contrast to the original problem,
where only a singleminimal cover is required, the output we aim for is a ranked list of
covers, denotedC = [c1, . . . , cn]. Furthermore, as illustrated in section“Entity Aug-
mentation Queries”, the entity augmentation use case does not only require small
covers with high individual relevance, but consistent covers, as defined in the consis-
tency objective. And lastly, we also introduced the diversity objective, i.e., the covers
should not consist of the same or similar datasets throughout the top-k list, but be
complementary alternatives.

We will now incrementally develop our proposed algorithms for top-k consistent
set covering. We start from the well known greedy algorithm for the Weighted Set
Cover problem, which, given a universe U , a set of sets S with weights w, and a set
of yet uncovered elements F , iteratively picks the set:

argmin
Si∈S

wi

|Si ∩ F | (Greedy Set Cover Algorithm Step)

The algorithm chooses sets Si until F = ∅, at which point a complete cover has been
formed. Although the greedy algorithm does not create optimal covers, it is still the
most frequently employed algorithm for the set covering problem. In fact, it has been
shown that the algorithm, achieving an approximation ratio of H(s ′) = ∑n

k=1
1
k is

essentially the best possible polynomial-time approximation algorithm for the set
cover problem.

Coverage and Relevance.We therefore also initially base our algorithm on the greedy
set covering algorithm. With an initially empty cover c and a free entity set F = E ,
we can use the original greedy Set Cover algorithm to produce an ordered subset of
D, by picking in each iteration the dataset d that maximizes:

argmax
di∈D

rel(di) · |cov(di) ∩ F | (2)

until F = ∅. Note that we maximize scores instead of minimizing weights as this is
more intuitive for the problem domain.

An augmentation constructed in this way would roughly correspond to a middle
ground strategy between the MaxRelevance and MinSources strategies discussed in
section“Entity Augmentation Queries”. This implies, however, that it can potentially
create augmentations from very heterogeneous data sources.

Cover Consistency. To counteract this effect, we explicitly model consistency
between the datasets that make up a cover. We utilize the similarity function

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

17

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

between datasets sim : D × D → [0, 1], as defined in section“Entity Augmentation
Queries”, which models the consistency between data sources. Given an initially
empty cover c and an aggregation functionA such as average ormax, we can greed-
ily generate covers using consistent datasets by picking in each iteration the dataset
d that maximizes:

argmax
d∈D rel(d) · |cov(d) ∩ F | · simA(d, c) (3)

This means we encourage picks of data sources that are similar to data sources
that were already picked for the current cover. We assume as a special case that
simA(di ,∅) = 1, which implies that the first data source chosen will be the same
as in regular set covering. Subsequent choices on the other hand will be influenced
by already selected sources. This also implies that datasets with a low relevance or
coverage, that are not picked initially, may still be chosen in a later iteration, if they
fit well with those chosen so far. Since we require |cov(d) ∩ F | to be greater than
zero, the algorithm will still make progress with every step, as only datasets that
provide at least one new value can be selected.

Using objective function (3), the algorithm picks datasets to create covers that
are not only highly relevant to the query, but also fit well together according to
sim : D × D.

However, using only this objective function, there is still no intuitive way of cre-
ating useful top-k augmentations. The naïve approach re-running the same algorithm
with D \ c as the set of candidate data sources would not lead to useful alternative
solutions, as discussed in Sect. 2.3.

Top-k Results and Diversity. Let C denote the set of previously created covers, with
|C | ≥ 1. This set could be initialized with a single cover created, for example, using
the greedy algorithm and objective function (3). Our core idea is to perform con-
secutive runs of the greedy algorithm using the same input datasets, with each run
placing greater emphasis on datasets that are dissimilar to datasets picked in pre-
vious iterations, i.e., dissimilar to datasets in

⋃
C . Implementing this idea naïvely

however, for example by dividing function (3) by
∑

di∈⋃
C
sim(d, di) does not yield

the expected results. While the second iteration might then choose datasets from a
different part of the similarity space than the first iteration, the term becomes increas-
ingly meaningless with more iterations as

⋃
C grows. This is because newly picked

datasets are compared to a larger and larger subset of the candidate set D, leading to
an increasingly uniform value for

∑
di∈⋃

C
sim(d, di).

Instead, we introduce a more complex dissimilarity metric based on individual
entities in E and the datasets that were used to cover them in previous iterations.
We define a function coveredBy(e,C) which yields the datasets that were used to
augment the entity e in covers C created in previous iterations.

coveredBy(e,C) = {d | ∃c ∈ C : d ∈ c ∧ e ∈ cov(d)} (4)

We can then define our final scoring function as

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

18

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Algorithm 1 Top-k consistent set covering: Greedy
function Greedy- TopK- Covers(k, E, D)

C ← ∅

U ←
⎛

⎜
⎝

0 . . . 0
.
.
.
. . .

.

.

.

0 . . . 0

⎞

⎟
⎠

|E |×|D|

� Usage matrix

while |C | < k do
c ← Cover(E, D,U)

for all (e → d) ∈ c do � Update Usage Matrix
U [e, d] ← U [e, d] + 1

if c /∈ C then � Remove duplicates
C ← c

return C

function Cover(E, D,U)
c ← ∅
F ← E � Free set, uncovered entities
while |F | > 0 do

d ← argmaxd∈D rel(d)·|cov(d)∩F |·simA(d,c)
redundancy(d,D,F,U)

for all e ∈ F ∩ cov(d) do
F ← F \ e � Update free set
c ← c ∪ (e → d) � Update cover

return c

function redundancy(d, D, F,U)
r, norm = 0, 0
for all e ∈ F ∩ cov(d) do � Coverable by d

u ← U [e] � Sources used to cover e
r ← r + ∑|u|

i=0 u[i] ∗ sim(d, D[i])
norm ← norm + ∑

u

return r
norm

argmax
d∈D

rel(d) · |cov(d) ∩ F | · simA(d, c)
redundancy(d, F,C)

(5)

where
redundancy(d, F,C) =

∑

e∈F∩cov(d)
simA(d, coveredBy(e,C)) (6)

In other words, we penalize picks that would cover entities with data sources that are
similar to datasets that were already used to cover these entities in previous iterations.
By penalizing similarity to previous covers, we avoid using the same similar datasets
repeatedly for all covers in the top-k list, but we also do not strictly disallow the
re-use of data sources in new combinations. Objective function (5) forms the core of
our proposed entity augmentation algorithms, which we will introduce in the next
sections.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

19

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Basic Greedy Algorithm and Extensions With the scoring function in place, we
can construct a greedy consistent set covering, shown in Algorithm 1, that produces
consistent individual augmentations, as well as diversified solutions when run with
k > 1. In Algorithm 1, the function Greedy-TopK-Covers produces k covers by call-
ing the function Cover k times, while keeping an |E | × |D| matrix calledU as state
between the calls.While theCover function performs the basic greedy set cover algo-
rithmwith the objective function defined above, the main function updates thematrix
U after each iteration by increasing the entry for each entity/dataset combination that
is part of the produced cover. The function coveredBy used in the redundancy term
of objective function (5) is realized in the algorithm by summing up the matrix row
values U [e], which record the datasets used to cover e in previous covers. Note that
the main function also discards duplicate solutions, which may occur if the influence
of the redundancy function is not strong enough to steer the search away from an
already existing solution. Still, the matrix U is updated even if a solution is redis-
covered, so that further choices of the same data sources become more and more
penalized, guiding the search into a different part of the solution space.

The greedy approach, while being easy to implement and fast to execute, will
not necessarily construct the best possible list of solutions, as our evaluation in [22]
shows. This is mainly due to exploring only a small part of the search space, i.e.,
considering only k different covers. Therefore, we developed two further algorithms
as extensions of the basic framework: the first one is based on the observation that the
first k solutions produced by Algorithm 1 may not necessarily be the best solutions.
After the first solution has been produced the search is mainly guided by using
different datasets for each solution, and thus new combinations of previously used
data sets are often not considered in the basic greedy algorithm.One simple extension
is called Greedy*-algorithm, which uses the basic greedy algorithm to create more
covers than requested, and then introduces a second phase to the query processing
called Select, in which the k best solutions are selected from a pool of s × k possible
solutions, with s being the scale factor. In comparison to the Greedy algorithm, the
Greedy* approach should find better solutions as it searches a larger portion of the
search space, at the cost of a runtime that increases with the scale factor s, plus some
overhead for the selection phase. However, the way it explores the solution space
is relatively naïve. For this reason, we also developed a genetic approach which
naturally fits to our problem as it intrinsically generates a pool of solutions from
which k can be picked, and both consistency and diversity of the results can be
modeled intuitively. Specifically, consistency can be modeled as part of the fitness
function, and diversity can be introduced through a suitable population replacement
strategy.

A detailed evaluation and comparison of all three algorithms is provided by [22].

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

20

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

2.4 Related Work

Entity Augmention An early publication on Web table-based entity augmentation is
[8], which is concerned with automating the search for relevant Web tables. The
paper does not aim at fully automated table extension, but proposes a set of operators
that are to be used in a semi-automatic process, enabling the user to search for
tables, extract their context, but also to extend a found table with information from
a related table. This last operator, called extend, corresponds to our notion of entity
augmentation. The paper proposes an algorithm called MultiJoin, that attempts to
find matching Web tables for each queried entity independently, and then clusters
the tables found to return the cluster with the largest coverage. However, it does not
try to construct consistent solutions, but returns the set of possible values for each
entity.

A strongly related work is the InfoGather system [56], and its extension Info-
Gather+ [57]. The first system introduces Web table-based entity augmentation, as
well as related operations such as attribute name-based table queries. InfoGather
improved the state of the art especially by identifying more candidate tables than a
naïvematching approach, while eliminatingmany spuriousmatches at the same time.
They also introduce methods for efficiently computing the similarity graph between
all indexed tables offline. InfoGather+ improves the system by tackling similar con-
sistency issues as our work: it assigns labels for time and units of measurements
to tables, and propagates these labels along the similarity graph described above to
other tables where such labels can not be found directly. While InfoGather+ tackles
the problem of producingmore consistent results from various possibleWeb sources,
it does not produce top-k results, or minimize the number of sources used.

The basic problem that there will be more than one correct answer for many
augmentation queries, e.g., multiple revenue values for a single company because
of different years of validity, is also explored in [50]. Specifically, the work targets
quantity queries, i.e., queries for a numeric attribute of a certain entity. The earlier
InfoGather+ already allows the user to specify a unit of measurement and a year-
of-validity, and will only try to retrieve a single attribute value with these specific
constraints. The QEWT system presented in [50], on the other hand, solves this
problem bymodeling the query answer as a probability distribution over the retrieved
values, and then returning a ranked list of intervals as the final query answer. This
work is similar in spirit to ours, in that it does not try to simplify complex real-world
attributes into single values, but deals with the uncertainty of data explicitly.

In [37], a table augmentation system calledMannheim SearchJoin Engine is pro-
posed that, in addition to entity augmentation given a specific attribute, also supports
unconstrained queries, i.e., queries in which, given only a set of entities, all possible
augmentation attributes are to be retrieved. Their method of dealing with multiple,
possibly conflicting sources, by merging values using clustering andmajority voting,
is similar to [56].

In [45] a comprehensive system for so-called transformation queries, that largely
correspond to entity augmentation queries, is envisioned. The paper’s main con-

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

21

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

tribution is that it proposes a system, named DataXFormer, that includes multiple
transformation subsystems, based on Web tables, wrapped Web forms, as well as
crowdsourcing, although it does not give specific methods of combining the subsys-
tems. Furthermore, it also relies on returning a single value for each queried attribute.

Set Covering The set covering problem as one of Karp’s original 21 NP complete
problems [34] implies the need for heuristic solutions and led to many optimiza-
tion techniques. Our methods for generating top-k covers are inspired by multi-start
optimization methods [43], such as GRASP [26] and Meta-RaPS [15], which have
been applied to the set cover problem among others in [7, 35]. On a high level, these
methods combine multiple iterations of a randomized construction phase and a local
improvement phase. In the first phase, a solution is created using some heuristic,
e.g., the Greedy approach, but applying some form of randomization. The random-
ization allows the algorithm to create slightly different results in multiple runs. This
is achieved for example by randomly making non-optimal decisions in the individual
steps of the respective algorithm.

A second inspiration for our top-k approach is tabu search [27], in which an initial
solution is the starting point for multiple iterations of a neighborhood search aimed
at improving the solution. The distinguishing feature is the tabu list, which stores
already visited parts of the solution space. It is used to prohibit the algorithm from
returning to an already visited part of the solution space, unless a so-called aspiration
criterion is met, or a certain amount of iterations has passed. In this way, the search
is prevented from getting stuck in, or repeatedly revisiting, the same local optima.
Our approach tracks which entities have already been covered by which datasets in
previous solutions by using a usage matrix (see Algorithm 1 in Sect. 2.3). Similarly
to tabu lists, this matrix is then used to discourage the algorithm from making those
choices again, preventing future iterations from creating similar covers. This was
partly inspired by the concept of tabu lists, except that our approach does not prohibit
certain choices, but only adjusts their weights.

Fig. 8 Exemplary Open
World SQL query, ad-hoc
integrated attributes gdp and
creditRating highlighted

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

22

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

3 DrillBeyond – Processing Open World SQL

So far, we only studied top-k entity augmentation queries (see Sect. 2) in an isolated
context, i.e. for a single table and simple attribute queries QEA(E, a+, k). However, it
is natural to assume that ad-hoc data integration will be most useful in analytical Big
Data scenarios, in which the user works with complex databases, and the augmen-
tation query is only one step in a chain of analytical operations. We will exemplify
this on a data analytics scenario illustrated in Fig. 8. There, we see a TPC-H query
with two highlighted augmentation attributes “GDP” and “creditRating” that are not
defined in the TPC-H schema, i.e. the query is not immediately processable in a
traditional relational system with a closed schema. A possible way to approach the
above query would be to export the “nation” relation, and feed it into a stand-alone
augmentation system, such as the REA system introduced in the previous chapter.
However, part of our solution to these challenges is to introduce the top-k entity
augmentation paradigm, in which the system produces several alternative solutions
from which the user has to choose from. This process would therefore result in a
top-k list of possible augmentations for the exported table. Since a standard DBMS
can not process the query based on amulti-valued augmentation, the user would have
to choose one of the augmentations while in the independent context of the augmen-
tation system, and then re-import the selected augmentation into the DBMS. Again,
iterations of this process may be necessary if the initial result is not satisfactory.

In the next section, we will discuss the challenges that arise when entity augmen-
tation is utilized in analytical scenarios involving traditional database management
systems. From the identified challenges, we will derive the need for closer inte-
gration of top-k EA systems and RDBMS, and derive requirements for a hybrid
system in Sect. 3.2. In Sect. 3.3, we will introduce the system architecture of our
DrillBeyond system, and describe its core, the DrillBeyond plan operator. We will
also discuss peculiarities of hybrid augmentation/relational query processing, and
introduce Drillbeyond’s ways of dealing with them. Finally, we will survey related
work in Sect. 3.5.

Parts of the material presented in this chapter have already been published
in [20, 21].

3.1 Motivation and Challenges

We already introduced how top-k entity augmentation can be applied in analytics
scenarios to fulfill ad-hoc information needs. However, we also argued that in com-
plex analytical scenarios, using a standalone entity augmentation system to answer
ad-hoc information needs has several deficiencies that should be discussed in the
following

Context-Switching First, there is a cost associated with context-switching, both with
respect to user effort, but also with respect to data locality. The user would be

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

23

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

required to move the data that is to be augmented into the specialized data search and
integration system, such as REA presented in Sect. 2, inspect and verify the solution
in this context, and then move the data back into the actual analytics system. On
the one hand, this introduces a considerable overhead into the analysts workflow,
requiring additional effort that may even discourage from performing certain ad-hoc
exploratory queries at all. On the other hand, it also introduces physical overhead
of moving the data between systems. This overhead may be negligible if a small
dimension table, e.g. the “Nation” table in the example, is to be augmented. For
larger tables, however, data transfer times can be significant, and further impede an
interactive analytics workflow.

Incompatible Query Model A second challenge when introducing top-k entity aug-
mentation into a traditional analytics workflow is the mismatch in query models.
Augmentation systems such as REA produce top-k results, while other parts of the
environment, such as DBMS, work with exact, single results. In this respect, top-k
augmentation systems are more similar to information retrieval systems that handle
the uncertainty of their results by producing a list of possible results. However, a
traditional DBMS is not natively prepared to handle multi-variant data. This gap
needs to be bridged in order to enable effective combination of the two system types.

Loss of Context Information Third, by using a separate system for augmentation
queries, the broader context associated with the analytical task is not taken into
account. A generic entity augmentation system uses only the set of entities and
the augmentation attribute as input to guide its data search and integration process.
However, the query context may contain valuable hints that can improve the aug-
mentation system performance or precision, if the systems were able to exploit them.
For example, in an SQL query, other tables that are joined with the augmented table
may provide useful context for the data source retrieval and matching process in the
augmentation system. Similarly, predicates used in the original query add semantics
that can be used to improve the precision of downstream augmentation system. In
an optimal combination of DBMS and entity augmentation system, such context
information incurring in one system would be utilized in the other.

Unused Optimization Potential Finally, by using separate systems, query optimiza-
tion potential is wasted. For example, DBMS use cardinalities and estimated selec-
tivities to choose an optimal join order for a given query. If a manual entity augmen-
tation has to be performed before the query can be executed, then the cardinality of
the augmented relation, or the selectivity of predicates on the augmented attribute
can not be exploited in this optimization process. Depending on the exact circum-
stances, it can be beneficial to intermingle the normal DBMS query processing and
the augmentation query processing to achieve optimal performance.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

24

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

3.2 Requirements

From the challenges we identified in Sect. 3.1, it is easily recognizable that a closer
integration of the two system types DBMS and EAS (Entity Augmentation System)
is necessary. In this section, we will introduce requirements for a hybrid system that
is able to close this gap.

DBMS-integrated Entity Augmentation In the previous section, we discussed how
the lack of integration between DBMS and EAS systems leads to an increased user
effort for situational one-of analysis queries. This effort could be reduced if the
DBMS would directly support looking up and integrating Web data sources as part
of its query processing, and allow the specification of such queries declaratively in
SQL. However, there are several differences to bridge. First, the two system types
differ in the type of data they manage: DBMS deal with structured and cohesive
databases, while EAS deal primarily with large heterogeneous corpora of Web data
sources. Further, DBMS work with fully specified queries in a structured language,
while EAS, lacking a defined schema, accept keyword queries. We therefore require
a design that blurs the line between these classes of systems in all three aspects
mentioned above: type of data managed, query language used, and nature of the
query result. The resulting hybrid system should be able process mixed SQL/EA
queries, which we will call Open World SQL queries. In these queries, the user may
reference arbitrary additional attributes not defined in the schema. We will use Fig. 8
as our running example for such a query. The system will associate values of these
additional attributes to instances at query processing time, avoiding an explicit data
retrieval and integration step. This is achieved by executing top-k entity augmentation
queries at runtime,which are integrated as a new type of subquery of regular relational
queries. Since a top-k augmentation query will return multiple augmentations as
described in Sect. 2.3, anOpenWorld SQLquerywill, instead of returning a definitive
query answer, return multiple alternative query results as well. Figure9 gives an
intuitive overview of our goal. It illustrates how an Open World query is processed
by integrating entity augmentation into query processing, producing k alternative
SQL query results.

In conclusion, the system should produce structured results of exactly the form
specified by the user query, just as a regular DBMS would, but also presents several
possible versions of the result, similarly to an information retrieval system. How-
ever, producing multiple alternative SQL results for a single query has performance
implications, which we will discuss next.

Efficient Multi-result Query Processing A naïve approach to bridging the different
querymodels of DBMS and top-k EA systems would be to process the EA query, and
then process the SQL querymultiple times. For example, if k possible augmentations
are requested, the runtime of the SQL query is increased by this factor k. This is not
acceptable, since in many Open World SQL queries, the majority of the processing
time will still be spent processing local data, which does not change between runs
of the query. For example, consider again the example Open World SQL depicted
in Fig. 8. Here, a large part of the work consists of local joins between the relations

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

25

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Fig. 9 RDBMS-integrated top-k augmentations using web tables

Customer and Order, and aggregation of the local attribute o_totalprice.
When processing this query multiple times based on different augmentations, only
the set of nations that pass the predicate on gdp, as well as the order of result tuples
would change, but not the aggregates for the individual nations. Consequently, the
hybrid system should process Open World SQL queries in a way that minimizes
duplicate work between query variant executions.

OpenWorldQueryPlanningThe third requirement arises from the fact that properties
of data sources used in augmentation are not fully known at plan-time. For instance,
estimating the selectivity of a predicate over an augmentation attribute is not easy,
as the set of data sources that will be used is not known at planning-time. The same

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

26

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

holds for determining the open attributes’ metadata, such as the data type, since we
do not require the user to specify it in the query. Therefore, the system should be
able to plan queries even if some attributes are only fully known at run-time.

With these requirements established, we will introduce the DrillBeyond system
and its entity augmentation operator in the following section.

3.3 The DrillBeyond System

To solve the challenges identified in Sect. 3.1 and enable entity augmentation queries
as part of relational query processing, we designed the DrillBeyond system. It is
an RDBMS/EAS hybrid, that embeds entity augmentation sub-queries into standard
RDBMS query processing. The next sections will detail the required changes to the
RDBMS architecture to realize this mixed query processing.

System Architecture Processing open world SQL queries requires a top-k entity
augmentation system, including a data sourcemanagement system, aswell asmodifi-
cations to three core RDBMS components: the analyzer, the planner and the executor.
Figure10 gives an overview of the modified and the novel components, and further
includes a high level description of the changes in control flow. The core augmenta-
tion functionality is introduced through the new DrillBeyond plan operator, which
will be discussed in detail in Sect. drillbeyond:sec:DrillBeyondspssystem. In the fol-
lowing, we will first give a general overview of all the novel or modified DBMS
components in DrillBeyond.

Data Source Management System A standard RDBMS is tailored to manage a rel-
atively small set of relations that form a coherent schema. An EAS, on the other
hand, manages a large corpus of heterogeneous individual Web data sources. We
aim at enabling one system to process both kinds of data. The DrillBeyond system
does not make assumptions regarding the nature of the data sources and system
that they are managed by. A generic system that exposes an interface for keyword-
based dataset search is sufficient. For example, when using our proposed EAS (see
Sect. 2), an industry-standard document index server such as Solr3 or ElasticSearch4

is sufficient. The necessary source selection, matching and integration operations are
performed in the integrated entity augmentation system, which we discuss next.

Entity Augmentation System This component implements the actual top-k entity aug-
mentation processing inside the DBMS. It interfaces with the data source manage-
ment system to retrieve Web data sources, and with the core RDBMS components to
provide augmentation services to the executor and the planner. DrillBeyond extends
the generic augmentation query definition (see Definition 1) using query context
hints H , which are extracted from the respective outer SQL query. These hints are
used to guide the search and the ranking of Web data sources. For example, if the

3http://lucene.apache.org/solr/.
4https://www.elastic.co/.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

27

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

http://lucene.apache.org/solr/
https://www.elastic.co/

Fig. 10 System architecture and high level control flow

outer SQL query includes a numeric predicate on the augmentation attribute, this fact
can be used as a query hint by instructing the augmentation system to only retrieve
data sources that provide numeric values. We discuss the exact nature and usage of
these context hints in section“Pushing SQL Query Context”. The complete interface
used by the executor is therefore QEA(a+, E, k, H). Having introduced the novel
components necessary for entity augmentation in the DrillBeyond system, we will
now give an overview of the modifications to existing RDBMS core components.

Query Analyzer The first step in DrillBeyond query processing is triggered by the
query analyzer,whichmaps tokens in the SQLquery string to objects in the database’s
metadata catalog. Unrecognized tokens, such as gdp lead to an error in a typical
RDBMS. In the DrillBeyond system, we take a minimally invasive approach: we
introduce transient metadata for the duration of the query, so that the regular analysis
can continue. The query is then rewritten to include an additional join with a transient

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

28

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

relation, effectively introducing a source for the missing attribute into the query
processing, and also paving the way for the DrillBeyond operator to be placed by
the regular join order planning mechanisms of the DBMS. The analyzer is also
responsible for determining the type of all expressions in the query. In the case
of augmentation attributes, which are not represented with a type in the database
catalog, we include a type inference mechanism. It first tries to infer the data type
syntactically, by considering filter and join predicates the attribute is used in, and
comparing it with the types of regular attributes and constants in these expressions.
If syntactic inference is not possible, DrillBeyond infers a type statistically. It uses
the augmentation system to determine the most common data type occurring for
attributes named a+ in the dataset corpus using a fast probe query. Having created
the necessary querymetadata, the analyzed statement canbepassedon to themodified
query planner.

Query Planner In DrillBeyond, the query planer has several new tasks to perform
compared to a regular RDBMS. First, it needs to place the DrillBeyond operator
in the query plan. This placement is crucial to the execution time of the query but
also influences the augmentation quality. Furthermore, while regular query plans
are created to be optimal for a single execution, multi-solution processing requires
plans that minimize the overhead of creating multiple result variants based on top-k
augmentations. This is impeded by the lack of plan-time knowledge about the data
sources, requiring plan adaption.

Executor The executor is modified to repeatedly execute the planned operator trees,
creating the top-k query result. In each iteration, it orders the DrillBeyond operators
to augment incoming tuples with values from a different augmentation. It further
tags the SQL results produced with a distinct augmentation id, by adding a column
carrying this id to each finished result. This allows external tools using the top-k SQL
result to distinguish between the tuples belonging to alternative results. The majority
of new functionality, however, is part of the DrillBeyond operator itself, which we
will detail in the next section.

TheDrillBeyondOperator In its basic form, theDrillBeyond plan operator, denoted
ω, is designed to resemble a join operator, which facilitates integration with the exist-
ing system architecture. Specifically, it acts like an outer join: it adds new attributes
to its input tuples based on join keys, but will not filter original tuples if no partner is
found. Instead, it adds null values if the augmentation system can not produce a value.
In this way, the part of the query operating on local data can still be processed. How-
ever, in contrast to a regular join, only one of the joined tables is known at plan-time,
while the other table, as well as the join keys, are decided at query processing time.
These run-time decisions are made by the entity augmentation system based on the
input tuples of the operator. Specifically, the operator extracts distinct combinations
of textual attributes from input tuples, as these are used to functionally determine the
values of the augmented attribute.

Algorithm 2 shows the specifics of the state kept in the operator and the implemen-
tations of its iterator interface and helper functions. DrillBeyond uses a traditional

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

29

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Algorithm 2 DrillBeyond operator
function Init

state ← ‘collecting′
tuplestore ← ∅
augMap ← HashMap()
n ← 0 � Current Iteration, runs from 0 to k − 1

function Next

if state = ‘collecting′ then
Collect()
Augment()
state ← ‘projecting′

return Project()

function Collect

while true do � Retrieve all tuples
t ← Next(child Plan)
if t = NULL then

break
tuplestore ← t
augKey ← textAttrs(t)
if augKey /∈ augMap then

augMap[augKey] ← ∅

function Augment

augReq ← (∀k ∈ augMap | augMap[k] = ∅)
for all augKey, [augValues...] ∈ Send(augReq) do

augMap[augKey] ← [augValues...]

function Project

t ← Next(tuplestore)
if t = NULL then return NULL
augKey ← textAttrs(t)
t[a+] = augMap[augKey][n]
return t

function Rescan

state ← ‘collecting′
tuplestore ← ∅

function NextVariant

ReScan(tuplestore)
n ← n + 1

row-based iterating executor. The conventional interface functions Init(), Next() and
ReScan(), as well as the novel NextVariant() function, are called by the DBMS dur-
ing regular query processing. The other functions shown in Algorithm 2 are used
internally by the operator.

The Init() function, which is called by the RDBMS executor before processing the
query the first time, initializes operator state. This includes a tuple store for material-

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

30

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

izing the lower operator’s output, a hash table mapping local textual attribute values
to augmented values called augMap, and two variables state and n, determining
the behavior of the operator when Next() is called.

TheNext() function is called by the executor and produces augmented tuples. This
is done in three phases:Collect(), Augment() and Project(). On the first call toNext(),
since no augmented values are available, the first two phases are triggered. In the
Collect() phase, the operator pulls and stores all tuples that the lower plan operator
can produce, making DrillBeyond a blocking operator. The reasons for blocking
are discussed in section“Augmentation Granularity”. In this phase, the operator also
stores the textual attributes originating from the augmented relation and its context in
a hash table, to obtain all distinct combinations of textual values in the input tuples.
In the Augment() phase, all entries in the augmentation map that do not yet have
values associated with them are passed to augmentation system as one augmentation
context. After successfully retrieving values for all collected tuples, the operator
is put into the projecting state, and produces the first output tuple. Output tuples
are produced in the Project() function by replaying the stored tuples and filling the
augmentation attribute by looking up values in the hash table.

The ReScan() function is called by the DBMS executor when subtrees have to
be re-executed, e.g., in dependent subqueries or below a nested loop join. Here, the
operator empties its tuplestore and changes state to collect new input, but keeps
its augmentation hash table, to prevent expensive re-augmentation for values that
have already been seen. Finally, NextVariant() is an interface extension not seen in
typical RDBMS operators, which is necessary for producing the multi-variant query
results as discussed in Sect. 3.2. When called, the operator’s tuplestore is prepared
for another iteration over the stored tuples usingReScan(), and the iteration counter n
is incremented. This makes sure that in a new execution of the query plan, operators
below theDrillBeyond operator are not called again. Instead theirmaterialized output
will be replayed, and augmented with the next augmentation variant in the Project()
function.

Fig. 11 Example augmentation problem

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

31

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

The functions Init() and Next() are part of the traditional iterator interface used in
RDBMS and are called by the executor in regular query processing. The NextVari-
ant() function is different however, and requires novel functionality in the executor.
Specifically, when the top operator of the plan returns null, the executor usually
assumes that all data has been sent and stops the processing. DrillBeyond however,
keeps a global iteration count n, running from 1 to k, to track the number of produced
alternative results. In case the plan has finished, n is increased,NextVariant() is called
on the DrillBeyond operator, and then the whole plan is restarted. In case there is
more than one augmentation attribute, and thus more than one DrillBeyond operator,
the system produces a crossproduct of alternative results. This is achieved by sys-
tematically calling NextVariant() only one operator in each iteration, to iteratively
produce all combinations of possible results for all augmented attributes.

Having introduced the basic operator functionality, and the way it is called by
the DBMS executor, we will discuss the operator characteristics in the following
subsections.

AugmentationGranularityAnaïve entity augmentation operator working tuple-at-
a-timewould be most compatible to the iterator-based query processing used in most
traditional RDBMS operators. However, augmenting each tuple on its own implies
looking up and matching Web data sources for each tuple individually. Consider the
simplified augmentation example shown in Fig. 11, where the table to be augmented
is on top, and the available Web data sources at the bottom. With the tuple-at-a-time
style, the augmentation system may choose ds1, ds2 and ds4 for the USA, Russia,
and UK tuples respectively. These sources match each individual tuple best, and the
individual tuples are what the augmentation system can process in this case.

Still, we can see that the augmentation system can not perform optimally with
regard to the query as a whole, as it is not provided with the overall query context.
While the chosen sources are the best fitting for each individual tuple, they donot form
a consistent joint result, as the units of currency do not match. If the augmentation
system is instead provided with the set the complete set of tuples as the input for one
augmentation query, the more consistent solution comprised of ds1 and ds3 can be
constructed, even though the individual entity matches are slightly worse. This is a
similar argument to thosewementioned in Sect. 2 about result consistency. Extending
single tuples individually would correspond to the By-Entity Fusion augmentation
strategy as introduced in section“Entity Augmentation Queries” leading to results
with similar deficiencies as discussed there. In [22], we showed that our approach
to entity augmentation leads to higher quality results, but requires all entities to be
queried in a group. Otherwise, the consistency of the source selection can not be
ensured. We conclude that for reasons of result quality, the DrillBeyond operator
needs to be a blocking operator, i.e. it consumes tuples from underlying operators
until they are exhausted, then hands them over to the augmentation system, and
produces the first result tuple only when it returns. Referring back to Algorithm 2,
this blocking behavior is realized in the state “collecting” in function Next().

Context-Dependent ResultsHaving established the DrillBeyond operator as block-
ing, we will now consider the question of where to place it in a query plan. Let us

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

32

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

assume two queries. The first one performs the augmentation directly after the scan
of the TPC-H Nation table, while in the second query ω is executed after Nation
has been joined with table Region and was filtered for European countries only.
In the first case, the augmentation system will retrieve, match, rank, and combine
datasets for all countries in the local database. In the second case, the local join will
remove tuples about non-European nations, so the results of the entity augmentation
will be more likely to be based on data sources specifically about Europe. Further-
more, completing the join with the Region table does not only limit the scope of
the query, it also adds context to each tuple by adding Region’s attributes. So even
if the join would not act as a filter limiting the number of tuples, adding information
about the region name will improve the accuracy of the augmentation system. For
example, while augmenting a set of City tuples may be hard and error-prone because
of the ambiguity of common city names such as “Springfield”, augmenting after a
join with a State will be a more realistic task for the augmentation system. We have
identified the following property of the ω operator:

Definition 6 (Selection Dependency) The DrillBeyond operator is not associative
with respect to selection in the general case. When augmenting relation R with
attributea+ and selectingwith predicate p on R, thenωR,a+(σp(R)) 	= σp(ωR,a+(R)).

Note that the augmentation system uses only the textual attributes text Attr(R) for
matching withWeb data sources. Therefore, in the special case that the set of distinct
textual attribute values is invariant under predicate p, the augmentation results are
also invariant under selection with p. For example, if a selection σp(Nation) returns
at least one tuple for each Nation in its result set, then ωNation,a+(σp(Nation)) =
σp(ωNation,a+(Nation)). This however, is not the general case, and can not be relied
upon.

A similar dependency property holds for another form of query context, namely
for the set of attributes of the input tuples of an operator ω. As mentioned, the key
for searching matching Web datasets for R are its textual attributes text Attr(R).
For example, not projecting the attribute n_name of the TPC-H Nation relation,
possibly because it is not part of the desired query result, will make augmentation
impossible. No Web data source can be found if the natural key of the relation, the
nation’s name, is not part of ω’s input.

Definition 7 (Projection Dependency) TheDrillBeyond operator is associative with
respect to projections only if it includes all textual attributes of R. Formally, when
augmenting relation R with attribute a+, and projecting to a set of attributes A with
A ∩ text Attr(R) 	= text Attr(R), then ωR,a+(πA(R)) 	= πA(ωR,a+(R)).

Given that the result of ωR,a+ changes under projection and selection, we define the
following placement rule that defines bounds on the placement of the operator.

Definition 8 (Placement Bounds) The DrillBeyond operator augmenting a relation
R can only be placed with respect to the following conditions:

1. after all operators filtering R such as joins and selections
2. before any projection removing textual attributes of R

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

33

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

In other words, the DrillBeyond operator ω is always applied to the minimum num-
ber of distinct combinations of textual column values in the tuples of R, as these
determine the matching process and its result.

Pushing SQL Query Context As mentioned in Sect. 3.1, context from the outer
SQL query can be used as filter to improve the accuracy and runtime of the inner
entity augmentation query, when compared to isolated augmentation. These filters
work implicitly to improve the augmentation quality by narrowing the scope of the
augmentation operation, and do not require any changes to the augmentation system
or its API. However, we can further improve the augmentation by explicitly pushing
additional query knowledge to augmentation system. Specifically, we push two types
of information: type information and predicates on augmented attributes.

Type Information Though the user can specify a data type such as text or double for
open attributes using SQL syntax, we do not expect those annotations to be provided.
However, in many cases it is possible to infer the type of the open attributes from
the surrounding query by applying methods of type inference to SQL. As mentioned
in section“System Architecture”, we integrated a type inference mechanism that
determines an open attribute’s data type both from the query expressions it takes
part in, and from the Web data corpus used. We can pass type information to the
augmentation system, which in turn uses this type information to restrict the set of
candidate data sources to those matching the open attribute’s type. Consider again
the query shown in Fig. 8. From the constraint on the gdp attribute it can be inferred
that it must be of a numeric type. This allows the augmentation system both to reduce
its runtime and increase precision by pruning non-numeric candidate sources.

Predicates on augmented attributes In addition to the data type of open attributes,
we can also push-down the predicates on open attributes themselves. This allows a
similar, butmore sophisticated, candidate pruning.We assume that users expect some
filtering on the database instance level to happen when specifying a predicate, i.e.,
we assume that some domain-knowledge is encoded in the predicate. With the query
shown in Fig. 8, the user clearly intends to filter low GDP countries, and has given
a relatively large integer number as the specific condition. Though the user query is
given only with the very general keyword GDP, by also considering the predicate,
the augmentation system can improve its data source ranking. In the example, all
candidate datasets that give the GDP as a percentage or rank can be ranked lower,
because those datasets will not discriminate the entities with respect to the predicate.
In other words, given the predicate above, using a dataset that provides GDP rank
values will lead to all entities being filtered, which is clearly not the user-intent. To
improve the augmentation systems ranking, we can therefore check how well the
data source’s values fit to the predicate that will be applied, i.e., how well the data
source discriminates the entities with respect to the predicate. Additionally, we check
whether the predicate value and the average of the data source’s values are in the
same order or magnitude. Again, the intent is measuring whether the data source is
fit to evaluate the given predicate.

The improvements in precision and runtime of the EAS when considering predi-
cate and type information are shown in [21].

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

34

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Cost Model and Initial Placement Strategy The observations from the previous
three sections might suggest that the DrillBeyond operator should be placed as late
as possible in the query plan, to maximize the context knowledge available in the
intermediate result. However, in addition to quality considerations, there are also
performance considerations to be made. As mentioned, the operator is modeled
to resemble a join from the perspective of the DBMS. We can therefore reuse the
existing join optimizationmachinery to place theDrillBeyond operator. This however
depends on a model for the operator runtime and the operator’s output cardinality.

Output Cardinality In the most basic case, the operator produces exactly as many
tuples as its input relation, as it just adds a single attribute to each tuple. However, we
also must consider selectivity of possible predicates on augmented attributes, and the
value of k, i.e., the number of alternative augmentations that are to be processed. Since
at plan-time we do not assume any knowledge about whichWeb data sources will be
used to augment an attribute, correctly estimating selectivity is almost impossible.
A well-known solution to processing queries with unknown selectivities is run-time
plan adaptation [33]. We therefore initially use the DBMS’ default selectivities for
different types of predicates, and employ run-time optimizations to compensatewhen
more information is available. The variable k on the other hand is known at plan-
time, and could be part of the cost model. However, with our execution strategy, the
operator does not produce k tuples for each input tuple, but just a different one in
each of k query executions. We therefore do not consider k at this point, but create
optimal plans for single execution, and then later optimize their re-execution.

Cost Model The operator’s runtime depends on three components: The first part is
incoming tuple processing, the second entity augmentation, and the third is projecting
tupleswith the augmented attribute (seeAlgorithm2). Sincewe designed the operator
as blocking, the first part consists of reading all tuples from lower plan nodes, storing
them, and computing all distinct combinations of all textual attributes, which are
needed by the entity augmentation system for matching. In the second phase, the
distinct combinations are then submitted to the augmentation system. The third phase
then consists of iterating all stored tuples, and projecting the new attribute based on
the combination of textual attributes found in each tuple.

We can estimate the cost of the operator using a similar model as for a hash join,
as phases one and three, hashing the child relation, and then probing it against the
augmented hash table correspond to the phases of a hash join. Additionally, there is
the cost of phase two, the actual augmentation, which depends not on the number
of tuples, but on the number of distinct entries in the augmentation hash table. The
processing cost per entry depends on the augmentation algorithms, and is therefore
not easy to model in the context of a generic DBMS cost model. However, we can
assume that the cost per entry is in a different order of magnitude than the per-tuple
cost of the relatively primitive database operations such as comparison or hashing.
For our cost model we therefore assume an additional large constant factor C which
is learned from previous executions of our augmentation system (see Sect. 2).

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

35

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

Fig. 12 Plan invariants

3.4 Processing Multi-result Queries

So far, we have considered the DrillBeyond operator in a single query result setting.
However, as discussed in Sect. 3.2, we aim at translating the top-k result returned by
the augmentation system into a top-k SQL result. The naïvemethod, given our opera-
tor, is to simply re-execute the query plan k times, and after each execution trigger the
projection of a new augmentation result from the operator via the NextVariant() API
depicted in Algorithm 2. This obviously leads to duplicated work, as only the output
of the DrillBeyond operator changes between executions, while the other parts of
the query plan operate the same way. Consider the query plan in Fig. 12. Here, only
the values of the gdp attribute would change between query runs, while the other
operations, notably themore expensive joins with the Customer and Orders rela-
tions, would not change. This means that simple re-execution would increase time
to compute the query k-fold, with most of the effort being inefficient duplicate work.
Our first approach to this problem is to identify and then maximize invariant parts of
the multiple executions, preventing their re-execution by materializing intermediate
results. As a first observation, note that all tuple flows below the DrillBeyond opera-
tor can actually never change between executions: in the example shown in Fig. 12,
these operators are highlighted. The cost of those operations can be minimized by
materializing the input to the DrillBeyond operator. This elementary optimization
is already included in the basic operator implementation shown in Algorithm 2, in
the form of the tuple store created by the operator. However, the changing augmen-
tation output may influence the result of other operators further up the query plan.
In the example, the aggregation of the gdp attribute will change its output in each
iteration based on the augmentation values provided by the DrillBeyond operator. In
addition, even the aggregation of the regular attribute totalprice is influenced
by the changing gdp values: Since the selectivity of the predicate on gdpmay vary

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

36

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

using different augmentations, the set of Orders-tuples that has to be aggregated
may vary in different executions as well.

In [21]we introduced a series of optimization strategies for these problems includ-
ing invariant caching, augmentation operator splitting, selection pull-up, projec-
tion pull-up partial selection and run-time reoptimization. We also implemented the
described system in PostgreSQL and evaluated it on modified TPC-H queries [21].
The evaluation shows the effectiveness of various optimizations in minimizing the
runtime overhead of producing multiple SQL query results based on alternative aug-
mentations. Finally, we showed that pushing SQL query context into the EA system
can improve quality and performance of the EA processing compared to standalone
processing.

The tight integration of augmentation and relational query processing and its
various optimizations provided byDrillBeyond, enables the use of ad-hoc data search
and integration in new contexts, and greatly increase the practicality of the entity
augmentation methods.

3.5 Related Work

To the best of our knowledge, there is no previous work that allows the user to
augment a relational database with external data at query-time by simply adding
arbitrary new attributes to an SQL query. However, there are considerable amounts
of works that can be related to the various individual aspects of DrillBeyond.

Self-service BI andMashup ToolsAwork closely related in spirit to ours is [2]. In this
paper, the authors discuss their vision for self-service BI, in which an existing data
cube can be semi-automatically extendedwith so-called situational data in the course
of an interactive OLAP session. However, in contrast to thework at hand, it is a vision
paper, and does therefore not present a concrete system design. In [40], a vision for
ad-hoc BI based on data extracted from the textual Web content is presented. They
envision using cloud-computing and parallelized information extraction methods to
answer OLAP queries over the general Web, e.g., by enabling ad-hoc extracting
of product data, reviews and customer sentiments from the general Web. Further,
there is a considerable amount of work aimed at bridging traditional OLAP and
semantic Web technologies to enable novel, agile forms of business intelligence. [1]
gives a comprehensive survey of these efforts to utilize the semantic Web to acquire
and integrate relevant external data with internal warehouse data. For example, [25]
propose a RDFS vocabulary for expressing multidimensional data cubes, so-called
Web Cubes over semantic Web data, and show how traditional OLAP operations can
be performed over combined internal and Web cubes.

One of the central properties of our proposedOpen World Queries is their declar-
ative nature: users specify their information need simply by an attribute name, i.e.,
a keyword query. While this approach is sufficient in many use cases, more com-
plex Web data integration problems may require more sophisticated, programmatic

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

37

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

specifications. One class of approaches to this problem, calledMashup tools, aims at
allowing users with only basic programming knowledge to easily compose various
data sources to higher level services [16]. Many of these tools have been proposed,
which differ in their level of abstraction, community features, user interfaces, or
support for discovery of data sources and mashups [28]. Similarly to our work, most
research on mashups uses public Web data sources because of their general avail-
ability. However, mashups have also been recognized as a lightweight form of data
integration for the enterprise context, which is exemplified by systems such as IBM’s
Damia [51]. In [54], a framework for mashup construction with strong focus on data
integration is proposed. It adds more complex data transformation operators, such as
a fuse operator for automatic object matching, and an aggregation operator to reduce
multiple matches that result from a fuse operation to a concise representation. Fur-
thermore, it introduced entity search strategies that minimize the number of queries
that need to be issued to data sources such as entity search engines or Deep Web
databases. These strategies where explored in more detail in [23], where different
query generators are combined with query ranking and selection strategies to form
an adaptive querying process, which also utilizes initial query results to optimize
the choice of further queries. In [24], this feature set is further extended to include
efficient, pipelined executionof suchqueryprocesses, enabling stream-basedprocess-
ing and quick presentation of initial integration results. By combining approaches
such as the ones outlined here, mashup tools can become a powerful alternative to
traditional data integration processes. While they are more expressive than Open
World Queries, they are only applicable in situations where the sources to be inte-
grated are known, and a user with programming knowledge is available to define the
mashup and necessary source adapters.

Hybrid DB/IR Systems A closer integration between the worlds of database and IR
research has long been a goal of both communities [4, 11, 55]. There are several
classes of DB/IR integration, and multiple system architectures for achieving them.
First, there are works that aim at including IR capabilities, such as full text search
into database engines, e.g., to support keyword queries on textual attributes of a
database. Such systems have already been available in commercial RDBMS for some
time [17, 31, 41].

Of course, the other direction of system integration is also possible: extending
information retrieval systems with more database-like features. The authors of [49]
proposed a method for processing semi-structured keyword queries over large, Web-
extracted knowledge bases is presented. One novel aspect is the query language,
which only adds a minimal amount of structure compared to pure keyword queries,
but still allows users to formulate precise information needs without having to under-
stand the large, heterogeneous schema of the underlying knowledge base. The other
aspect is the disambiguation of the keywords in the query with respect to the concepts
and relations in the knowledge base. It may be worthwhile to apply their method for
graph-based query disambiguation to DrillBeyond.

Similar work has been done in the area of XML databases, where a large class of
work is aimed at enabling ranked retrieval over collections of XML documents. A

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

38

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

recent overview over this extensive field is given in [53]. The problems this research
faces are related to those faced byDrillBeyond: underspecified, but structured queries
have to be mapped to a large heterogeneous collection of datasets.

In [6], a hybrid DB/IR query type called context sensitive prefix search is intro-
duced. Given a set of documents forming a context, and a word prefix, this query type
aims at retrieving documents containing words with the given prefix, conditioned on
the words also occurring in the context document set. The authors show how, by
introducing further structure through special markup keywords, this abstract opera-
tor can be applied to implement many database and expressive information retrieval
operations, including joins and aggregation.

Other works aim at processing structured queries based on Web information
extraction, e.g., [9], or even at decomposing structured queries to keyword queries
that can be posed to an information retrieval system [39]. The idea in this case is to
enrich the structured query result with relevant documents.

In general, the large amount of related work in DB/IR hybrid technologies shows
the necessity of fusing the two paradigms formany applications. By integrating entity
augmentation directly into relational query processing, DrillBeyond also aims at sup-
porting scenarios that require a combination of structured and semi-structured data.

4 Summary and Future Work

In the era of Big Data, the number and variety of data sources is increasing every
day. However, not all of this new data is available in well-structured databases or
warehouses. Rather, data is collected at a rate that often precludes traditional integra-
tion with ETL processes and global schemata. Instead, heterogeneous collections of
individual datasets are becoming more prevalent, both inside enterprises in the form
of data lakes, and in public spaces such asWeb data sources. This newwealth of data,
though not integrated, has enormous potential for generating value in exploratory or
ad-hoc analysis processes,which are becomingmore commonwith increasingly agile
datamanagement practices. However, in today’s databasemanagement systems there
is a lack of support for ad-hoc data integration of such heterogeneous data sources.
Instead, integration of new sources into existing data management landscapes is a
laborious process that has to be performed ahead-of-time, i.e., before queries on the
combined data can be issued.

In this chapter, we introduced a combined database and information retrieval sys-
tem that enables users to query a database as well as a heterogeneous data repository
in a seamless and integrated way with standard SQL. Relevant sources are automat-
ically retrieved and integrated at query processing-time, without further input from
the user. The ambiguity resulting from the coarse query specification, as well as the
uncertainty introduced by relying on automatically integrated data is compensated
by returning a ranked list of possible results, instead of a single deterministic result
as in a regular SQL query. This allows the user to choose the best alternative for the
problem at hand.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

39

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

To achieve that, we introduced a novel method for Top-k Entity Augmentation
(Sect. 2) which is able to construct a top-k list of consistent integration results from
a large corpus of heterogeneous data sources. This technique forms the basis for
our DrillBeyond system (Sect. 3), which provides hybrid augmentation/relational
query processing capabilities. This enables the use of ad-hoc data integration for
exploratory data analysis queries, and improves both performance and quality when
compared to using separate systems for the two tasks.

In conclusion, we introduced novel, automatic data augmentation methods that
harness the large variety of data sources, while requiring minimal user effort and
incorporated thosemethods into traditional relational DBMS, to enable their efficient
use in analytical query contexts. To conclude this chapter, we will finally sketch
opportunities to extend and build on our contributions in future work.

4.1 Future Work

In the current work, we applied the Top-k Entity Augmentation to Web tables only.
However, we argue that underlying top-k consistent set covering is a general tech-
nique that can be applied to many different forms of data sources. For example,
there we discussed related work on augmentation based on information extraction
from general Web page text. Applying our approach to generate minimal but diverse
covers based on Web pages instead of Web tables would be a promising approach
to increase coverage. Furthermore, our approach does not yet consider correlations
between sources as a factor of trust. Approaches from data fusion literature that
detect and utilize such source correlations could be combined with our set covering
approach to increase the precision of the generated covers.

With respect to the DrillBeyond system, a possible avenue for future work would
be to investigate which parts of the concept could be adapted to modern analytical
RDBMS architectures to increase efficiency. In our current work, we integrate entity
augmentation with a classical, single-node row store DBMS. However, in many con-
temporary scenarios, analytical queries are executed on highly parallel, distributed
column stores. Investigating how our proposed architecture and optimizations apply
to these systems would increase our method’s practical applicability. Furthermore,
DrillBeyond so far only allows the usage of additional attributes, i.e., it allows only
horizontal table augmentation. However, methods for vertical augmentation, or in
other words, the ad-hoc integration of further tuples of an existing relation, have also
been discussed in related work [29, 48]. These approaches could be integrated with
relational query processing as well. Similarly, the materialization of completely new
relations from Web Data using just a schema description has also been studied in
isolation, but could be integratedwith general query processing aswell. Furthermore,
although DrillBeyond does support joins over open attributes, we did not study the
optimization of such joins. In summary, in future work the idea of Open World SQL
queries could be generalized from additional attributes to all aspects of SQL and
relation query processing.

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

40

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

References

1. A. Abello, O. Romero, T. Bach Pedersen, R. Berlanga, V. Nebot, M. Aramburu, A. Simitsis,
Using semantic web technologies for exploratory olap: a survey. IEEE Trans. Knowl. Data
Eng. 27(2), 571–588 (2015)

2. A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J.N. Mazón, F. Naumann, T.B. Pedersen,
S. Rizzi, J. Trujillo, P. Vassiliadis, G. Vossen, Fusion cubes: towards self-service business
intelligence. Int. J. Data Wareh. Mining (IJDWM) (2012). (accepted)

3. R. Agrawal, S. Gollapudi, A. Halverson, S. Ieong, Diversifying search results. In: Proceedings
of the Second ACM International Conference on Web Search and Data Mining, WSDM ’09
(ACM, New York, 2009), pp. 5–14

4. S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, G. Weikum, Report on the db/ir
panel at sigmod 2005. ACM SIGMOD Rec. 34(4), 71–74 (2005)

5. P. André, J. Teevan, S.T. Dumais, From x-rays to silly putty via Uranus: serendipity and its role
in web search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (ACM, New York, 2009), pp. 2033–2036

6. H. Bast, I. Weber, The complete search engine: Interactive, efficient, and towards IR and db
integration, in CIDR 2007: 3rd Biennial Conference on Innovative Data Systems Research, ed.
by G. Weikum (VLDB Endowment, Asilomar, CA, USA, 2007), pp. 88–95

7. J. Bautista, J. Pereira, A grasp algorithm to solve the unicost set covering problem. Comput.
Oper. Res. 34(10), 3162–3173 (2007)

8. M.J. Cafarella, J. Madhavan, A. Halevy, Web-scale extraction of structured data. SIGMOD
Rec. 37(4), 55–61 (2009)

9. M.J. Cafarella, C. Re, D. Suciu, O. Etzioni, M. Banko, Structured querying of web text, in
3rd Biennial Conference on Innovative Data Systems Research (CIDR) (Asilomar, California,
USA, 2007)

10. J. Carbonell, J. Goldstein, The use of MMR, diversity-based reranking for reordering docu-
ments and producing summaries, in Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’98 (ACM, New
York, NY, USA, 1998), pp. 335–336

11. S. Chaudhuri, R. Ramakrishnan, G. Weikum, Integrating DB and IR technologies: what is the
sound of one hand clapping, in CIDR (2005), pp. 1–12

12. J. Cohen, B. Dolan, M. Dunlap, J.M. Hellerstein, C. Welton, Mad skills: new analysis practices
for big data. Proc. VLDB Endow. 2, 1481–1492 (2009)

13. N. Dalvi, A. Machanavajjhala, B. Pang, An analysis of structured data on the web. Proc. VLDB
Endow. 5(7), 680–691 (2012)

14. E. Demidova, P. Fankhauser, X. Zhou, W. Nejdl, Divq: Diversification for keyword search
over structured databases, in Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’10 (ACM, New York, NY, USA,
2010), pp. 331–338

15. G.W. DePuy, R.J. Moraga, G.E. Whitehouse, Meta-raps: a simple and effective approach for
solving the traveling salesmanproblem.Transp.Res. Part ELogist. Transp.Rev. 41(2), 115–130
(2005)

16. G. Di Lorenzo, H. Hacid, Hy Paik, B. Benatallah, Data integration in mashups. SIGMOD Rec.
38(1), 59–66 (2009)

17. P. Dixon, Basics of oracle text retrieval. IEEE Data Eng. Bull. 24(4), 11–14 (2001)
18. X.L. Dong, B. Saha, D. Srivastava, Less is more: selecting sources wisely for integration, in

Proceedings of the 39th international conference on Very Large Data Bases, PVLDB’13, VLDB
Endowment (2013), pp. 37–48

19. J. Eberius, K. Braunschweig, M. Hentsch, M. Thiele, A. Ahmadov, W. Lehner, Building the
dresden web table corpus: a classification approach, in 2nd IEEE/ACM International Sympo-
sium on Big Data Computing, BDC (2015)

20. J. Eberius, M. Thiele, K. Braunschweig, W. Lehner, DrillBeyond: enabling business analysts
to explore the web of open data, in PVLDB (2012)

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

41

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

21. J. Eberius, M. Thiele, K. Braunschweig, W. Lehner, Drillbeyond: processing multi-result open
world SQL queries, in Proceedings of the 27th International Conference on Scientific and
Statistical Database Management, SSDBM ’15 (ACM, New York, NY, USA, 2015), pp. 16:1–
16:12

22. J. Eberius,M. Thiele, K. Braunschweig,W. Lehner, Top-k entity augmentation using consistent
set covering, in Proceedings of the 27th International Conference on Scientific and Statistical
Database Management, SSDBM ’15 (ACM, New York, NY, USA, 2015), pp. 8:1–8:12

23. S. Endrullis, A. Thor, E. Rahm, Entity search strategies for mashup applications, in 2012 IEEE
28th International Conference on Data Engineering (ICDE) (IEEE, New Jersey, 2012), pp.
66–77

24. S. Endrullis, A. Thor, E. Rahm, Wetsuit: an efficient mashup tool for searching and fusing web
entities. Proceedings of the VLDB Endowment 5(12), 1970–1973 (2012)

25. L. Etcheverry, A. Vaisman, Enhancing olap analysis with web cubes, in The Semantic Web:
Research and Applications, vol. 7295, Lecture Notes in Computer Science, ed. by E. Simperl, P.
Cimiano, A. Polleres, O. Corcho, V. Presutti (Springer, Berlin Heidelberg, 2012), pp. 469–483

26. T.A. Feo, M.G. Resende, Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2),
109–133 (1995)

27. F. Glover, Tabu search-part i. ORSA J. Comput. 1(3), 190–206 (1989)
28. L. Grammel, M.A. Storey, A survey of mashup development environments, in The Smart

Internet, Lecture Notes in Computer Science vol. 6400 (2010), pp. 137–151
29. R. Gupta, S. Sarawagi, Answering table augmentation queries from unstructured lists on the

web. Proc. VLDB Endow. 2(1), 289–300 (2009)
30. A. Halevy, A. Rajaraman, J. Ordille, Data integration: the teenage years, in Proceedings of

the 32nd International Conference on Very Large Data Bases, VLDB ’06, VLDB Endowment
(2006), pp. 9–16

31. J.R. Hamilton, T.K. Nayak, Microsoft SQL server full-text search. IEEE Data Eng. Bull. 24(4),
7–10 (2001)

32. M. Hasan, A. Mueen, V. Tsotras, E. Keogh, Diversifying query results on semi-structured data,
in Proceedings of the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12 (ACM, New York, NY, USA, 2012), pp. 2099–2103

33. Z.G. Ives, D. Florescu, M. Friedman, A. Levy, D.S. Weld, An adaptive query execution system
for data integration, in Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’99 (ACM, New York, NY, USA, 1999), pp. 299–310

34. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations (1972)

35. G. Lan, G.W. DePuy, G.E. Whitehouse, An effective and simple heuristic for the set covering
problem. Eur. J. Oper. Res. 176(3), 1387–1403 (2007)

36. D. Laney, 3d data management: controlling data volume, velocity and variety. META Group
Res. Note 6, 70 (2001)

37. O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim, C. Bizer, The mannheim search
join engine, inWeb Semantics: Science, Services and Agents on the World Wide Web (2015)

38. X. Li, X.L. Dong, K. Lyons, W. Meng, D. Srivastava, Truth finding on the deep web: is the
problem solved? in Proceedings of the 39th International Conference on Very Large Data
Bases, PVLDB’13, VLDB Endowment (2013), pp. 97–108

39. J. Liu, X. Dong, A.Y. Halevy, Answering structured queries on unstructured data, in WebDB,
vol. 6 (Citeseer, 2006), pp. 25–30

40. A. Löser, F. Hueske, V. Markl, Situational business intelligence, in Business Intelligence for
the Real-Time Enterprise, vol. 27, Lecture Notes in Business Information Processing, ed. by
M. Castellanos, U. Dayal, T. Sellis (Springer, Berlin, 2009), pp. 1–11

41. A. Maier, D.E. Simmen, DB2 optimization in support of full text search. IEEE Data Eng. Bull.
24(4), 3–6 (2001)

42. G. Marchionini, Exploratory search: From finding to understanding. Commun. ACM 49(4),
41–46 (2006)

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

42

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

43. R. Martí, M.G. Resende, C.C. Ribeiro, Multi-start methods for combinatorial optimization.
Eur. J. Oper. Res. 226(1), 1–8 (2013)

44. H. Mohanty, P. Bhuyan, D. Chenthati, Big Data: A Primer (Springer, India, 2015)
45. J. Morcos, Z. Abedjan, I.F. Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, Dataxformer: an

interactive data transformation tool, in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (ACM, New Jersey, 2015), pp. 883–888

46. T.T. Nguyen, Q.V.H. Nguyen, M. Weidlich, K. Aberer, Result selection and summarization for
web table search, in 2015 IEEE 31st International Conference on Data Engineering (ICDE)
(2015), pp. 231–242

47. D.E. O’Leary, Embedding ai and crowdsourcing in the big data lake. IEEE Intell. Syst. 29(5),
70–73 (2014)

48. R. Pimplikar, S. Sarawagi, Answering table queries on the web using column keywords, in
Proceedings of the 36th Int’l Conference on Very Large Databases (VLDB) (2012)

49. J. Pound, I.F. Ilyas, G. Weddell, Expressive and flexible access to web-extracted data: a
keyword-based structured query language, in Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’10 (ACM, New York, NY, USA, 2010),
pp. 423–434

50. S. Sarawagi, S. Chakrabarti, Open-domain quantity queries on web tables: Annotation,
response, and consensus models, in Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’14 (ACM, New York, NY, USA,
2014), pp. 711–720

51. D.E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, A. Singh, Damia: data mashups for
intranet applications, in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, SIGMOD ’08 (ACM, New York, NY, USA, 2008)

52. F.M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in Proceedings
of the 16th International Conference on World Wide Web, WWW ’07 (ACM, New York, NY,
USA, 2007), pp. 697–706

53. M.A. Tahraoui, K. Pinel-Sauvagnat, C. Laitang, M. Boughanem, H. Kheddouci, L. Ning, A
survey on tree matching and XML retrieval. Comput. Sci. Rev. 8, 1–23 (2013)

54. A. Thor, D. Aumueller, E. Rahm, Data integration support for mashups, in Workshops at the
Twenty-Second AAAI Conference on Artificial Intelligence (2007)

55. G. Weikum, DB and IR: both sides now, in Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of Data (ACM, New Jersey, 2007), pp. 25–30

56. M. Yakout, K. Ganjam, K. Chakrabarti, S. Chaudhuri, Infogather: entity augmentation and
attribute discovery by holistic matching with web tables, in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12 (ACM, New York,
NY, USA, 2012), pp. 97–108

57. M. Zhang, K. Chakrabarti, Infogather+: semantic matching and annotation of numeric and
time-varying attributes in web tables, in Proceedings of the 2013 International Conference on
Management of data, SIGMOD ’13 (ACM, New York, NY, USA, 2013), pp. 145–156

58. C.N. Ziegler, S.M. McNee, J.A. Konstan, G. Lausen, Improving recommendation lists through
topic diversification, in Proceedings of the 14th International Conference on World Wide Web,
WWW ’05 (ACM, New York, NY, USA, 2005), pp. 22–32

Final edited form was published in A bert Y. Zomaya, Sherif Sakr, Hgg., 2017. "Handbook of Big Data Technologies".
Cham: Springer, S. 365–407. ISBN 978-3-319-49339-8.

https://doi.org/10.1145/2236584.2236587

43

Provided by Sächsische Landesbibliothek, Staats- und Universitätsb bliothek Dresden

	Exploratory Ad-Hoc Analytics for Big Data
	1 Exploratory Analytics for Big Data
	1.1 Requirements
	1.2 Architecture Overview

	2 A Top-K Entity Augmentation System
	2.1 Motivation and Challenges
	2.2 Requirements
	2.3 Top-k Consistent Entity Augmentation
	2.4 Related Work

	3 DrillBeyond -- Processing Open World SQL
	3.1 Motivation and Challenges
	3.2 Requirements
	3.3 The DrillBeyond System
	3.4 Processing Multi-result Queries
	3.5 Related Work

	4 Summary and Future Work
	4.1 Future Work

	References

	ADP4F8E.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Julian Eberius, Maik Thiele, Wolfgang Lehner

