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Abstract

In this paper, we present a link between preference-based and multiob-
jective sequential decision-making. While transforming a multiobjective
problem to a preference-based one is quite natural, the other direction is
a bit less obvious. We present how this transformation (from preference-
based to multiobjective) can be done under the classic condition that
preferences over histories can be represented by additively decomposable
utilities and that the decision criterion to evaluate policies in a state is
based on expectation. This link yields a new source of multiobjective se-
quential decision-making problems (i.e., when reward values are unknown)
and justifies the use of solving methods developed in one setting in the
other one.
Keywords: Sequential decision-making, Preference-based Re-

inforcement Learning, Multiobjective Markov decision process,

Multiobjective Reinforcement Learning

1 Introduction

Reinforcement learning (RL) [27] has proved to be a powerful framework for
solving sequential decision-making problems under uncertainty. For instance,
RL has been used to build an expert backgammon player [28], an acrobatic
helicopter pilot [1], a human-level video game player [15]. RL is based on the
Markov decision process model (MDP) [21]. In the standard setting, both MDP
and RL rely on scalar numeric evaluations of actions (and thus histories and
policies). However, in practice, those evaluations may not be scalar or may
even not be available.

Often actions are rather valued on several generally conflicting dimensions.
For instance, in a navigation problem, these dimensions may represent duration,
cost and length. This observation has led to the extension of MDP and RL to
multiobjective MDP (MOMDP) and RL (MORL) [24]. In multiobjective opti-
mization, it is possible to distinguish three interpretations for objectives. The
first one corresponds to single-agent decision-making problems where actions are
evaluated on different criteria, like in the navigation example. The second comes
up when the effects of actions are uncertain and one then also wants to optimize
objectives that correspond to probability of success or risk for instance. The
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last interpretation is in multiagent settings where each objective represents the
payoff received by a different agent. Of course, in one particular multiobjective
problem, one may encounter objectives with different interpretations.

More generally, sometimes no numerical evaluation of actions is available at
all. In this case, inverse reinforcement learning (IRL) [16] has been proposed as
an approach to learn a reward function from demonstration provided by a human
expert who is assumed to use an optimal policy. However, this assumption
may be problematic in practice as humans are known not to act optimally.
A different approach, qualified as preference-based, takes as initial preferential
information the comparisons of actions or histories instead of a reward function.
This direction has been explored in the MDP setting [12] and the RL setting
where it is called preference-based RL (PBRL) [2, 9].

This theoretic paper presents a short overview of some recent work on mul-
tiobjective and preference-based sequential decision-making with the goal of
relating those two research strands. The contribution of this paper is threefold.
We build a bridge between preference-based RL and multiobjective RL, and
highlight new possible approaches for both settings. In particular, our obser-
vation offers a new interpretation of an objective, which yields a new source of
multiobjective problems.

The paper is organized as follows. In Section 2, we recall the definition of
standard MDP/RL, their extensions to the multiobjective setting and their gen-
eralizations to the preference-based setting. In Section 3, we show how MORL
can be viewed as a PBRL problem. This then allows the methods developed
for PBRL to be imported to the MORL setting. Conversely, in Section 4, we
show how some structured PBRL can be viewed as an MORL, which then jus-
tifies the application of MORL techniques on those PBRL problems. Finally,
we conclude in Section 5.

2 Background and Related Work

In this section, we recall the necessary definitions needed in the next sections
while presenting a short review of related work. We start with the reinforcement
learning setting (Section 2.1) and then present its extension to the multiobjective
setting (Section 2.2) and to the preference-based setting (Section 2.3).

2.1 Reinforcement Learning

A reinforcement learning problem is usually defined using the Markov Decision
Process (MDP) model. A standard MDP [21] is defined as a tuple 〈S,A, T,R〉
where:

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a transition function with T (s, a, s′) being the
probability of reaching state s′ after executing action a in state s,

• R : S × A → R is a reward function with R(s, a) being the immediate
numerical environmental feedback received by the agent after performing
action a in state s.
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In this framework, a t-step history ht is a sequence of state-action:

ht = (s0, a1, s1, . . . , st)

where ∀i = 0, 1, . . . , t, si ∈ S and ∀i = 1, 2, . . . , t, ai ∈ A. The value of such a
history ht is defined as:

R(ht) =

t
∑

i=1

γi−1R(si−1, ai)

where γ ∈ [0, 1) is a discount factor. A policy specifies how to choose an action
in every state. A deterministic policy π : S → A is a function from the set of
states to the set of actions, while a randomized policy π : S × A → [0, 1] states
the probability π(s, a) of choosing an action a in a state s.

The value function of a policy π in a state s is defined as:

vπ(s) = E
[

∑

t≥0

γtRt

]

(1)

where Rt is a random variable defining the reward received at time t under
policy π and starting in state s. Equation (1) can be computed iteratively as
the limit of the following sequence: ∀s ∈ S,

vπ0 (s) = 0 (2)

vπt+1(s) = R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)vπt (s
′) . (3)

In a standard MDP, an optimal policy can be obtained by solving the Bell-
man’s optimality equations: ∀s ∈ S,

vπ(s) = max
a∈A

R(s, a) + γ
∑

s′∈S

T (s, a, s′)vπ(s′) . (4)

Many solution methods can be used [21] to solve this problem exactly: for in-
stance, value iteration, policy iteration, linear programming. Approaches based
on approximating the value function for solving large-sized state space have also
been proposed [27].

Classically, in reinforcement learning (RL), it is assumed that the agent
does not know the transition and reward functions. In that case, an optimal
policy has to be learned by interacting with the environment. Two main ap-
proaches can be distinguished here [27]. The first (called indirect or model-based
method), tries to first estimate the transition and reward functions and then use
an MDP solving method on the learned environment model (e.g., [26]). The sec-
ond (called direct or model-free method), searches for an optimal policy without
trying to learn a model of the environment.

The preference model that describes how policies are compared in standard
MDP/RL is defined as follows. A history is valued by the discounted sum of
rewards obtained along that history. Then, as a policy in a state induces a
probability distribution over histories, it also induces a probability distribution
over discounted sums of rewards. The decision criterion used to compare policies
in standard MDP is then based on the expectation criterion.
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Both MDP and RL assume that the environmental feedback from which the
agent plans/learns a (near) optimal policy is a scalar numeric reward value. In
many settings, this assumption does not hold. The value of an action may be
determined over several often conflicting dimensions. For instance, in the au-
tonomous navigation problem, an action lasts a certain duration, has an energy
consumption cost and travels a certain length. To tackle those situations, MDP
and RL have been extended to deal with vectorial rewards.

2.2 Multiobjective RL

Multiobjective MDP (MOMDP) [24] is an MDP 〈S,A, T, ~R〉 where the reward

function is redefined as ~R : S ×A → R
d with d being the number of objectives.

The value function ~v π of a policy π is now vectorial and can be computed as
the limit of the vectorial version of (2) and (3): ∀s ∈ S,

~v π
0 (s) = (0, . . . , 0) ∈ R

d (5)

~v π
t+1(s) =

~R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)~v π
t (s′) . (6)

In MOMDP, the value function of policy π Pareto-dominates that of another pol-
icy π′ if in every state s, ~v π(s) is not smaller than ~v π′

(s) on every objective and
~v π(s) is greater than ~v π′

(s) on at least one objective. By extension, we say that
π Pareto-dominates π′ if value function vπ Pareto-dominates value function vπ

′

.
A value function (resp. policy) is Pareto-optimal if it is not Pareto-dominated
by any other value function (resp. policy). Due to incomparability of vectorial
value functions, there are generally many Pareto-optimal value functions (and
therefore policies), which constitutes the main difficulty of the multiobjective
setting.

Similarly to standard MDP, MOMDP can be extended to multiobjective
reinforcement learning (MORL), in which case the agent is not assumed to
know the transition function, neither the vectorial reward function.

In multiobjective optimization, four main families of approaches can be dis-
tinguished. One first natural approach is to determine the set of all Pareto-
optimal solutions (e.g., [33, 14]). However, in practice, searching for all the
Pareto-optimal solutions may not be feasible. Indeed, it is known [20] that
this set can be exponential in the size of the state and action spaces. A more
practical approach is then to determine an ǫ-cover of it [7, 20], which is an
approximation of the set of Pareto-optimal solutions.

Definition 2.1 A set C ⊆ R
d is an ǫ-cover of a set P ⊆ R

d if

∀v ∈ P, ∃v′ ∈ C, (1 + ǫ)v′ ≥ v

where ǫ > 0.

Another approach related to the first one is to consider refinements of Pareto
dominance, such as Lorenz dominance (which models a certain notion of fair-
ness) or lexicographic order [34, 10]. In fact, with Lorenz dominance, the set
of optimal value functions may still be exponential in the size of the state and
action spaces. Again, one may therefore prefer to determine its ǫ-cover [20] in
practice.
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Still another approach to solve multiobjective problems is to assume the
existence of a scalarizing function f : Rd → R, which, given a vector v ∈ R

d,
returns a scalar valuation. Two cases can be considered: f can be either linear
[3] or nonlinear [19, 18, 17].

The scalarizing function can be used at three different levels:

• It can be directly applied on the vectorial reward function leading to the
definition of a scalarized reward function. This boils down to defining a
standard MDP/RL from a MOMDP/MORL, which can then be tackled
with standard solving methods.

• It can also aggregate the different objectives of the vector values of histo-
ries and then a policy in a state can be valued by taking the expectation
of those scalarized evaluation of histories.

• It can be applied on the vectorial value functions of policies in order to
obtain scalar value functions.

For linear scalarizing functions, those three levels lead to the same solutions.
However, for nonlinear scalarizing functions, they generally lead to different so-
lutions. In practice, it generally only makes sense to use a nonlinear scalarizing
function on expected discounted sum of vector rewards (i.e., vector value func-
tions), as the scalarizing function is normally defined to aggregate over the final
vector values. To the best of our knowledge, most previous work has applied a
scalarizing function in this fashion. In Section 3, we describe a setting where
applying a nonlinear scalarizing function on vector values of histories could be
justified.

A final approach to multiobjective problem assumes an interactive setting
where a human expert is present and can provide additional preferential infor-
mation (i.e., how to trade-off between different objectives). This approach loops
between the following two steps until a certain criterion is satisfied (e.g., the
expert is satisfied with a proposed solution or there is only one solution left):

• show potential solutions or ask query to the expert

• receive a feedback/answer from the expert

The feedback/answer from the expert allows to guide the search for a preferred
solution among all Pareto-optimal ones [25], or elicit unknown parameters of
user preference model [22].

In both standard MDP/RL and MOMDP/MORL, it is assumed that nu-
meric environmental feedback is available. In fact, this may not be the case
in some situations. For instance, in the medical domain, it may be difficult
and even impossible to value a treatment of a life-threatening illness in terms
of patient well-being or death with a single numeric value. Preference-based
approaches have been proposed to handle these situations.

2.3 Preference-Based RL

A preference-based MDP (PBMDP) is an MDP where possibly no reward func-
tion is given. Instead, one assumes that a preference relation & is defined over
histories. In the case where the dynamics of the system is not known, this set-
ting is referred to as preference-based reinforcement learning (PBRL) [9, 2, 4, 6].
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Due to this ordinal preferential information, it is not possible to directly use the
same decision criterion based on expectation like in the standard or multiobjec-
tive cases. Most approaches in PBRL [9, 4, 6] relies on comparing policies with
probabilistic dominance, which is defined as follows:

π % π′ ⇐⇒ P[π & π′] ≥ P[π′ & π] (7)

where P[π & π′] denotes the probability that policy π generates a history pre-
ferred or equivalent to that generated by policy π′. Probabilistic dominance
is related to Condorcet methods (where a candidate is preferred to another if
more voters prefers the former than the latter) in social choice theory. This is
why the optimal policy for probabilistic dominance is often called a Condorcet

winner.
The difficulty with this decision model is that it may lead to preference

cycles (i.e., π ≻ π′ ≻ π′′ ≻ π) [12]. To tackle this issue, three approaches
have been considered. The first approach simply consists in assuming some
consistency conditions that forbid the occurence of preference cycles. This is the
case in the seminal paper [35] that proposed the framework of dueling bandits.
This setting is the preference-based version of multi-armed bandit, which is
itself a special case of reinforcement learning. The second approach consists in
considering stronger versions of (7). Drawing from voting rules studied in social
choice theory, refinements such as Copeland’s rule or Borda’s rule for instance,
have been considered [5, 6]. The last approach, which was proposed recently
[12, 8], consists in searching for an optimal mixed1 policy instead of an optimal
deterministic policy, which may not exist. Drawing from the minimax theorem
in game theory, it can be shown that an optimal mixed policy is guaranteed to
exist.

3 MORL AS PBRL

An MOMDP/MORL problem can obviously be seen as a PBMDP/PBRL prob-
lem. Indeed, the preference relation & over histories can simply be taken as the
preference relation induced over histories by Pareto dominance. Then proba-
bilistic dominance (7) in this setting can be interpreted as follows. A policy π

is preferred to another policy π′ if the probability that π generates a history
that Pareto-dominates a history generated by π′ is higher than the probability
of the opposite event. A minor issue in this formulation is that incomparability
is treated in the same way as equivalence.

More interestingly, when a scalarizing function f is given, scalarized values
of histories can then be used and compared in (7), leading to:

π % π′ ⇐⇒ P[f(~R(Hπ)) ≥ f(~R(Hπ′))] ≥ P[f(~R(Hπ′)) ≥ f(~R(Hπ))]

where Hπ (resp. Hπ′) is a random history generated by policy π (resp. π′)

and ~R(Hπ) (resp. ~R(Hπ′)) is its vectorial value. Notably, this setting motivates
the application of a nonlinear scalarizing function on vector values of histories,
which has not been investigated before [24].

More generally, viewing MOMDP/MORL as a PBMDP/PBRL, one can im-
port all the techniques and solving methods that have been developed in the

1The randomization is over policies and not over actions, like in randomized policies.
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preference-based settings [9, 6, 12]. As far as we know, both cases above (with
Pareto dominance or with a scalarizing function) have not been investigated.
We expect that efficient solving algorithms exploiting the additively decompos-
able vector rewards could possibly be designed by adapting PBMDP/PBRL
algorithms.

When transforming a multiobjective into a preference-based problem, the
decision criterion has generally to be changed from one based on expectation to
one based on probabilistic dominance. This change may be justified for different
reasons. For instance, when it is known in advance that an agent is going to
face the decision problems only a limited number times, the expectation criterion
may not be suitable because it does not take into account notions of variability
and risk attitudes. Besides, when the decision problem really corresponds to a
competitive setting, probabilistic dominance is particularly well-suited.

4 PBRL AS MORL

While viewing MOMDP/MORL as PBMDP/PBRL is quite natural, the other
way around may be less obvious and more interesting. We therefore develop in
more details this direction by focusing on one particular case of PBMDP/PBRL
where the preference relation over histories is assumed to be representable by
an additively decomposable utility function and the decision criterion is based
on expectation (e.g., as assumed in inverse reinforcement learning [16]). This
amounts to assuming the existence of a reward function R̂ : S×A → {x1, . . . , xd}
where the xi’s are unknown scalar numeric reward values. Exploiting this as-
sumption, we present two cases where PBMDP/PBRL can be transformed into
MOMDP/MORL, and justifies the use of one scalarizing function, the Cheby-
shev norm, on the MOMDP/MORL model obtained from a PBMDP/PBRL
model.

4.1 From Unknown Rewards to Vectorial Rewards

The first transformation assumes that an order over unknown rewards is known,
while the second assumes more generally that an order over some histories are
known.

4.1.1 Ordered Rewards

In the first case, we assume that we know the order over the xi’s. Without loss
of generality, we assume that x1 < x2 < . . . < xd.

Following previous work [29, 30], it is possible to transform a PBMDP into
an MDP with vector rewards by defining the following vectorial reward function
R̄ from R̂:

∀s ∈ S, ∀a ∈ A, R̄(s, a) = 1i if R̂(s, a) = xi (8)

where 1i is the i-th canonical vector of Rd. Using R̄, one can compute the vector
value function of a policy by adapting (5) and (6). The i-th component of a
vector value function of a policy π in a state can be interpreted as the expected
discounted count of reward xi obtained when applying policy π. However, note
that because of the preferential order over components, two vectors cannot be
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directly compared with Pareto dominance. Another transformation is needed
to obtain a usual MOMDP.

Given a vector v, we define its decumulative v↓ as follows:

∀k = 1, . . . , d, v↓k =

d
∑

j=k

vj

A PBMDP/PBRL can be reformulated as the following MOMDP/MORL where
the reward function is defined by:

∀s ∈ S, ∀a ∈ A, ~R(s, a) = 1
↓
i if R̂(s, a) = xi (9)

Using this reward function, the vector value function ~v π of a policy π can be
computed by adapting (5) and (6). One may notice that ~v π(s) is the decumu-
lative vector computed from v̄π .

The relations between the standard value function vπ , the vectorial value
functions v̄π and ~v π are stated in the following lemma.

Lemma 4.1 We have:

∀s ∈ S, vπ(s) = (x1, x2, . . . , xd) · v̄
π(s) = (x1, x2 − x1, . . . , xd − xd−1) · ~v

π(s)

where x · y denotes the inner product of vector x and vector y.

It is then easy to see that if ~v π(s) Pareto-dominates ~v π′

(s) then vπ(s) ≥ vπ
′

(s)
thanks to the order over the xi’s.

4.1.2 Ordered Histories

In some situations, the order over unknown rewards may not be known and may
not be easily determined. For instance, in a navigation problem, it may not be
obvious how to compare each action locally. However, comparing trajectories
may be more natural and easier to perform for the system designer. Note that
although vectorial reward function R̄ in (8) can be defined, without the order

over rewards xi’s, vectorial reward function ~R in (9) (and thus the corresponding
MOMDP/MORL) cannot be defined anymore.

In those cases, if sufficient preferential information over histories is given,
the previous trick can be adapted using simple linear algebra. We now present
this new transformation from PBMDP/PBRL to MOMDP/MORL. We assume
that the following comparisons are available:

h1 ≺ h2 ≺ . . . ≺ hd (10)

where the hi’s are histories. Using the vector reward R̄, one can compute the
vector value of each history, i.e., ∀i = 1, 2, . . . , d, if hi = (s0, a1, s1, . . . , st) then
its value is defined by:

r̄i =

t
∑

j=1

γj−1R̄(sj−1, aj) ∈ R
d.

We assume that {r̄1, . . . , r̄d} form an independent set, which implies that the
matrix H whose columns are composed of {r̄1, . . . , r̄d} is invertible. Recall
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H is the basis change matrix from basis {r̄1, . . . , r̄d} to the canonical basis
{11, . . . ,1d} and its inverse matrix H−1 is the basis change matrix in the other
direction. Rewards xi’s represented by the canonical basis can then be expressed
in the basis formed by the independent vectors {r̄1, . . . , r̄d} using the basis

change matrix H−1. Now, let us define a new vector reward function ~RH by:

∀s ∈ S, ∀a ∈ A, ~RH(s, a) = H
−1↓
i if R̂(s, a) = xi (11)

where H
−1↓
i is the decumulative of the i-th column of matrix H−1. Using this

new reward function, one can define vector value function ~v π of a policy π by
adapting (5) and (6).

Lemma 4.2 We have:

∀s ∈ S, vπ(s) = (r1, r2 − r1, . . . , rd − rd−1) · ~v
π(s)

where ri is the value of history hi, i.e., ri = (x1, . . . , xd) · r̄i.

As the value of the ri’s is increasing with i, if ~v π(s) Pareto-dominates ~v π′

(s),
then π should be preferred.

4.1.3 Applying MORL techniques to PBRL

We have seen two cases where a PBMDP/PBRL problem can be transformed
into an MOMDP/MORL problem. As a side note, one may notice that the
second case is a generalization of the first one. Thanks to this transformation,
the multiobjective approaches that we recalled in Section 2.2 can be applied
in the preference-based setting. We now mention a few cases that would be
interesting to investigate in our opinion.

Here, a Pareto-optimal solution corresponds to a policy that is optimal for
admissible reward values that respects the order known over rewards or histories.
Like in MOMDP/MORL, it may not be feasible to determine the set of all Pareto
optimal solutions. A natural approach [20] is then to compute its ǫ-cover to
obtain a representative set of solutions that are approximately optimal.

Another approach is to use a non-linear scalarizing function like the Cheby-
shev distance to an ideal point. A policy π∗ is Chebyshev-optimal if it minimizes:

π∗ = argmin
π

max
i=1,...,d

Ii −
∑

s∈S

µ(s)~v π
i (s) (12)

where Ii = maxπ
∑

s∈S µ(s)~v π
i (s) defines the i-th component of the ideal point

I ∈ R
d, µ is a positive probability distribution over initial states and ~v π

i is the i-
th component of the vector value function of an MOMDP/MORL obtained from
a PBMDP/PBRL. It is possible to show that a Chebyshev-optimal policy is a
minimax-regret-optimal policy [23], whose definition can be written as follows:

π∗ = argmin
π

max
x∈R

max
π′

∑

s∈S

µ(s)x · ~v π′

(s)−
∑

s∈S

µ(s)x · ~v π(s) (13)

where R ⊂ [0, 1]d is the set of nonnegative values representing differences of
consecutive reward values.
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Lemma 4.3 A policy is Chebyshev-optimal if and only if it is minimax-regret-

optimal.

It is easy to see that the maximum (over x) in (13) is attained by choosing x

as a canonical vector and equal to the maximum (over i) in (12). This simple
property justifies the application of one simple non-linear scalarizing function
used in multiobjective optimization in the preference-based setting.

The interactive approach mentioned in Section 2.2 has been already ex-
ploited for eliciting the unknown rewards in interactive settings where compar-
ison queries can be issued to an expert by interleaving optimization/learning
phases with elicitation phases in PBMDP with value iteration [31, 11] and PBRL
with Q-learning [32]. It would be interesting to use an interactive approach to
elicit the reward values by comparing the element of an ǫ-cover of the Pareto
optimal solutions. This technique may help reduce the number of queries.

5 Conclusion

In this paper, we highlighted the relation between two sequential decision-
making settings: preference-based MDP/RL and multiobjective MDP/RL. In
particular, we showed that multiobjective problems can also arise in situations
of unknown reward values. Based on the link between both formalisms, one
can possibly import techniques designed for one setting to solve the other. To
illustrate our points, we also listed a few interesting cases.

Besides, in our translation of a PBMDP/PBRL to an MOMDP/MORL,
we assumed that rewards were Markovian, which may not always be true in
practice. It would be interesting to extend our translation to the non-Markovian
case [13].
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