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Abstract. Local covariant feature detection, namely the problem of extracting
viewpoint invariant features from images, has so far largely resisted the appli-
cation of machine learning techniques. In this paper, we propose the first fully
general formulation for learning local covariant feature detectors. We propose to
cast detection as a regression problem, enabling the use of powerful regressors
such as deep neural networks. We then derive a covariance constraint that can
be used to automatically learn which visual structures provide stable anchors for
local feature detection. We support these ideas theoretically, proposing a novel
analysis of local features in term of geometric transformations, and we show that
all common and many uncommon detectors can be derived in this framework.
Finally, we present empirical results on translation and rotation covariant detec-
tors on standard feature benchmarks, showing the power and flexibility of the
framework.

1 Introduction

Image matching, i.e. the problem of establishing point correspondences between two
images of the same scene, is central to computer vision. In the past two decades, this
problem stimulated the creation of numerous viewpoint invariant local feature detec-
tors. These were also adopted in problems such as large scale image retrieval and ob-
ject category recognition, as a general-purpose image representations. More recently,
however, deep learning has replaced local features as the preferred method to construct
image representations; in fact, the most recent works on local feature descriptors are
now based on deep learning [10,46].

Differently from descriptors, the problem of constructing local feature detectors has
so far largely resisted machine learning. The goal of a detector is to extract stable local
features from images, which is an essential step in any matching algorithm based on
sparse features. It may be surprising that machine learning has not been very successful
at this task given that it has proved very useful in many other detection problems. We
believe that the reason is the difficulty of devising a learning formulation for viewpoint
invariant features.

To clarify this difficulty, note that the fundamental aim of a local feature detector
is to extract the same features from images regardless of effects such as viewpoint
changes. In computer vision, this behavior is more formally called covariant detection.
Handcrafted detectors achieve it by anchoring features to image structures, such as
corners or blobs, that are preserved under a viewpoint change. However, there is no
a—priori list of what visual structures constitute useful anchors. Thus, an algorithm
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Fig. 1: Detection by regression. We train a neural network ¢ that, given a patch x|, around each
pixel p in an image, produces a displacement vector h, = ¢(x|,) pointing to the nearest feature
location (middle column). Displacements from nearby pixels are then pooled to detect features
(right column). The neural network is trained in order to be covariant with transformations g of
the image (bottom row). Best viewed on screen. Image data from [4].

must not only learn the appearance of the anchors, but needs to determine what anchors
are in the first place. In other words, the challenge is to learn simultaneously a detector
together with the detection targets.

In this paper we propose a method to address this challenge. Our first contribution is
to introduce a novel learning formulation for covariant detectors (Sect. 2). This is based
on two ideas: i) defining an objective function in term of a covariance constraint which
is anchor-agnostic (Sect. 2.1) and ii) formulating detection as a regression problem,
which allows to use powerful regressors such as deep networks for this task (Fig. 1).

Our second contribution is to support this approach theoretically. We show how
covariant feature detectors are best understood and manipulated in term of image trans-
formations (Sect. 2.2). Then, we show that, geometrically, different detector types can
be characterized by which transformations they are covariant with and, among those,
which ones they fix and which they leave undetermined (Sect. 2.3). We then show that
this formulation encompasses all common and many uncommon detector types and al-
lows to derive a covariance constraint for each one of them (Sect. 2.4).

Our last contribution is to validate this approach empirically. We do so by first dis-
cussing several important implementation details (Sect. 3), and then by training and as-
sessing two different detector types, comparing them to off-the-shelf detectors (Sect. 4).
Finally, we discuss future extensions (Sect. 5).

1.1 Related work

Covariant detectors differ by the type of features that they extract: points [11,16,36,0],
circles [17,19,23], or ellipses [18,42,2,35,22,24]. In turn, the type of feature determines
which class of transformations that they can handle: Euclidean transformations, simi-
larities, and affinities.
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Another differentiating factor is the type of visual structures used as anchors.
For instance, early approaches used corners extracted from an analysis of image ed-
glets [29,8,34]. These were soon surpassed by methods that extracted corners and other
anchors using operators of the image intensity such as the Hessian of Gaussian [3] or
the structure tensor [7,11,47] and its generalizations [40]. In order to handle transfor-
mations more complex than translations and rotations, scale selection methods using the
Laplacian/Difference of Gaussian operator (L/DoG) were introduced [19,23], and fur-
ther extended with affine adaptation [2,24] to handle full affine transformations. While
these are probably the best known detectors, several other approaches were explored as
well, including parametric feature models [9,28] and using self-dissimilarity [38,13].

All detectors discussed so far are handcrafted. Learning has been mostly limited to
the case in which detection anchors are defined a-priori, either by manual labelling [ 14]
or as the output of a pre-existing handcrafted detetctor [5,31,39,12], with the goal of
accelerating detection. Closer to our aim, [32] use simulated annealing to optimise the
parameters of their FAST detector for repeatability. To the best of our knowledge, the
only line of work that attempted to learn repeatable anchors from scratch is the one
of [41,25], who did so using genetic programming; however, their approach is much
more limited than ours, focusing only on the repeatability of corner points.

More recently, [44] learns to estimate the orientation of feature points using deep
learning. Contrary to our approach, the loss function is defined on top of the local image
feature descriptors and is limited to estimating the rotation of keypoints. The work
of [45,27,37] also use Siamese deep learning architectures for local features, but for
local image feature description, whereas we use them for feature detection.

2 Method

We first introduce our method in a special case, namely in learning a basic corner de-
tector (Sect. 2.1), and then we extend it to general covariant features (Sect. 2.2 and 2.3).
Finally, we show how the theory applies to concrete examples of detectors (Sect. 2.4).

2.1 The covariance constraint

Let x be an image and let Tx be its version translated by T € R? pixels. A corner
detector extracts from x a (small) collection of points f € R2. The detector is said to
be covariant if, when applied to the translated image 7%, it returns the translated points
f + T. Most covariant detectors work by anchoring features to image structures that,
such as corners, are preserved under transformation. A challenge in defining anchors
is that these must be general enough to be found in most images and at the same time
sufficiently distinctive to achieve covariance.

Anchor extraction is usually formulated as a selection problem by finding the fea-
tures that maximize a handcrafted figure of merit such as Harris’ cornerness, the Lapla-
cian of Gaussian, or the Hessian of Gaussian. This indirect construction makes learning
anchors difficult. As a solution, we propose to regard feature detection not as a selection
problem but as a regression one. Thus the goal is to learn a function ¢ : x — f that
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Fig.2: Left: an oriented circular frame f = gfy is obtained as a unique similarity transformation
g € G of the canonical frame fy, where the orientation is represented by the dot. Concretely,
this could be the output of the SIFT detector after orientation assignment. Middle: the detector
finds feature frames f; = ¢;fo, gi = &(x;) in images x1 and x» respectively due to covariance,
matching the features allows to recover the underlying image transformation x2 = gx; as g =
g2 o g7 '. Right: equivalently, then inverse transformations g; ' normalize the images, resulting
in the same canonical view.

directly maps an image (patch') x to a corner f. The key advantage is that this function
can be implemented by any regression method, including a deep neural network.

This leaves the problem of defining a learning objective. This would be easy if we
had example anchors annotated in the data; however, our aim is to discover useful an-
chors automatically. Thus, we propose to use covariance itself as a learning objective.
This is formally captured by the covariance constraint ¥(Tx) = T + 1 (x). A corre-
sponding learning objective can be formulated as follows:

1 n
min 3 [(Tix) — i) = T ®
i=1

where (x;,T;) are example patches and transformations and the optimization is over
the parameters of the regressor ¢ (e.g. the filter weights in a deep neural network).

2.2 Beyond corners

This section provides a first generalization of the construction above. While simple de-
tectors such as Harris extract 2D points f in correspondence of corners, others such
as SIFT extract circles in correspondence of blobs, and others again extract even more
complex features such as oriented circles (e.g. SIFT with orientation assignment), el-
lipses (e.g. Harris-Affine), oriented ellipses (e.g. Harris-Affine with orientation assign-
ment), etc. In general, due to their role in fixing image transformations, we will call the
extracted shapes f € F feature frames.

The detector is thus a function ¢ : X — F, x — f mapping an image patch x to
a corresponding feature frame f. We say that the detector is covariant with a group of

! As the function ¢ needs to be location invariant it can be applied in a sliding window manner.
Therefore x can be a single patch which represents its perception field.
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transformations’ g € G (e.g. similarity or affine) when

VxeX,geG: Y(gx) = gi(x) )

where ¢f is the transformed frame and gx is the warped image.’

Working with feature frames is intuitive, but cumbersome and not very flexible. A
much better approach is to drop frames altogether and replace them with corresponding
transformations. For instance, in SIFT with orientation assignment all possible oriented
circles f can be expressed uniquely as a similarity gfy of a fixed oriented circle £
(Fig. 2.left). Hence, instead of talking about oriented circles f, we can equivalently talk
about similarities g. Likewise, in the case of the Harris’ corner detector, all possible 2D
points f can be expressed as translations 7' + f; of the origin fj;, and so we can talk
about translations 7" instead of points f.

To generalize this idea, we say that that a class of frames F resolves a group of
transformations G when, given a fixed canonical frame fy € F, all frames are uniquely
generated from it by the action of G:

F=Gfy={gfh: g€ G} and Vg,heG: gfy =hfy = g = h (uniqueness).

This bijective correspondence allows to “rename” frames with transformations. Using
this renaming, the detector ) can be rewritten as a function ¢ that outputs directly a
transformation 1 (x) = ¢(x)fj instead of a frame.

With this substitution, the covariance constraint (2) becomes

o(gx) 0 6(x) Log i =1 3)

Note that, for the group of translations G = T'(2), this constraint corresponds directly to
the objective function (1). Fig. 2 provides two intuitive visualizations of this constraint.
It is also useful to extend the learning objective (1) as follows. As training data, we
consider n triplets (x;,X;,¢;),% = 1,...,n comprising an image (patch) x;, a transfor-
mation g;, and the transformed and distorted image x; = gx; + 7. Here 7 represents
additive noise or some other useful distortion such as a random rescaling of the intensity
which allows to train a more robust detector. The learning problem is then given by:

¢ N

IR . -
min =Y "d(r;,1)%, 1= (%) 0 d(x;) " o gt €
=1
where d(r;, 1) is the “distance” of the residual transformation r; from the identity.

2.3 General covariant feature extraction

The theory presented so far is insufficient to fully account for the properties of many
common detectors. For this, we need to remove the assumptions that feature frames

% Here, a group of transformation (G, o) is a set of functions g, h : R* — R? together with
composition goh € G as group operation. Composition is associative; furthermore, GG contains
the identity transformation 1 and the inverse g~ * of each of its elements g € G.

3 The action gx of the transformation g on the image x is to warp it: (gx)(u,v) = x(g~*(u, v))
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Fig.3: Left: a (unoriented) circle identifies the translation and scale component of a similarity
transformation g € G, but leaves a residual rotation ¢ € @ undetermined. Concretely, this could
be the output of the SIFT detector prior orientation assignment. Right: normalization is achieved
up to the residual transformation gq.

resolve (i.e. fix) completely the group of transformations G. Most detectors are in fact
covariant with transformation groups larger than the ones that they can resolve. For
example, the Harris’s detector is covariant with rotation and translation (in the sense
that the same corners are extracted after the image is roto-translated), but, by detecting
2D points, it only resolves translations. Likewise, SIFT without orientation assignment
is covariant to full similarity transformations but, by detecting circles, only resolves
dilations (i.e. rotations remains undetermined; Fig. 3).

Next, we explain how eq. (3) must be modified to deal with detectors that (i) are
covariant with a transformation group G but (ii) resolve only a subgroup H C G. In
this case, the detector function ¢(x) € H returns a transformation in the smaller group
H, and the covariance constraint (3) is satisfied up to a complementary transformation
q € @ that makes up for the part not resolved by the detector:

dge@: P(gx)oqo qb(x)_l og_1 =1. (®)]

This situation is illustrated graphically in Fig. 3.

For this construction to work, given H C G, the group () C G must be chosen
appropriately. In eq. (5), and following Fig. 3, call h; = ¢(x) and ha = ¢(gx). Rear-
ranging the terms, we get that hog = hig, where hy € H,q € @ and h1g € G. This
means that any element in G must be expressible as a composition hq, i.e. G = HQ =
{hg : h € H,q € Q}. Formally (proofs in appendix):

Proposition 1. If the group G = HQ is the product of the subgroups H and @), then,
for any choice of g € G and hy € H, there is always a decomposition

hoqhi'g™' =1, suchthat hy € H, q € Q. (6)

In practice, given G and H, () is usually easily found as the “missing transforma-
tion”; however, compared to (2), the transformation ¢ in constraint (5) is an extra de-
gree of freedom that complicates optimization. Fortunately, in many cases the following
proposition shows that there is only one possible g:

Proposition 2. If H < G is normal in G (i.e. Vg € G,h € H : g-'hg € H) and
HNQ = {1}, then, given g € G, the choice of q in the decomposition (5) is unique.

The next section works through several concrete examples to illustrate these con-
cepts.
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2.4 A taxonomy of detectors

This section applies the theory developed above to standard detectors. Concretely, we
limit ourselves to transformations up to affine, and write:

b — M; P; _|LO _|AT
o 1|"9 o1]" YT o]
Here P; can be interpreted as the centre of the feature in image x; and M; as its affine
shape, (A, T) as the parameters of the image transformation, and L as the parameter

of the complementary transformation not fixed by the detector. The covariance con-
straint (5) can be written, after a short calculation, as

MoLM; "' = A, Py— AP, =T. (7)

As a first example, consider a basic corner detector that resolves translations H =
G = T(2) with no (non-trivial) complementary transformation @ = {1}. Hence M; =
Ms = L = A = I and (5) becomes:

P,—P =T (8)

This is the same expression found in the simple example of Sect. 2.1 and requires the
detected features to have the correct relative shift 7.

The Harris corner detector is similar, but is covariant with rotations too. Formally,
H =T(2) C G = SE(2) (Euclidean transforms) and @) = SO(2) (rotations). Since
T'(2) <« SE(2) is a normal subgroup, we expect to find a unique choice for ¢. In fact, it
must be M; = I, A = L = R, and the constraint reduces to:

P,—RP, =T. 9

In SIFT, G = S(2) is the group of similarities, so that A = sR is the composition
of a rotation R € SO(2) and an isotropic scaling s € R,. SIFT prior to orientation
assignment resolves the subgroup H of dilations (scaling and translation), so that M; =
o1 (scaling) and the complement is a rotation L € SO(2). Once again H < G, so the
choice of g is unique, and in particular L = R. The constraint reduces to:

PQ — SRPl = T7 0'2/0'1 = S. (10)

When orientation assignment is added to SIFT, the similarities are completely resolved
H =G = 5(2), M; = 0;R; is arotation and scaling, and the constraint becomes:

P, —sRP, =T, 09/01 = s, RyR] =R. (11)

Affine detectors such as Harris-Affine (without orientation assignment) are more
complex. In this case G = A(2) are affinities and H = UA(2) are upright affinities, i.e.
affinities where the linear map M; € LT (2) is a lower-triangular matrix with positive
diagonal (these affinities, which still form a group, leave the “up” direction unchanged).
The residual @ = SO(2) are rotations and HQ = G is still satisfied. However, UA(2)
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is not normal in A(2), Prop. 2 does not apply, and the choice of @ is not unique.* The
constraint has the form:

Py — AP, =T, My AM, € SO(2). (12)
For affine detectors with orientation assignment, H = G = A(2) and the constraint is:
P, — AP, =T, MoM;! = A. (13)

The generality of our formulation allows learning many new types of detectors. For
example, by setting H = T'(2) and G = A(2) it is possible to train a corner detector
such as Harris which is covariant to full affine transformations. Furthermore, a benefit
of working with transformations instead of feature frames is that we can train detectors
that would be difficult to express in terms of geometric primitives. For instance, by
setting H = SO(2) and G = SE(2), we can train a orientation detector which is
covariant with rotation and translation. As for affine upright features, in this case H
is not normal in G so the complementary translation ¢ = (I,7") € @ is not uniquely
fixed by ¢ = (R,T) € G, nevertheless, a short calculation shows that the only part
of (5) that matters in this case is

RJR =R (14)

where h; = (R;, 0) are the rotations estimated by the regressor.

3 Implementation

This section discusses several implementation details of our method: the parametriza-
tion of transformations, example CNN architectures, multiple features detection, effi-
cient dense detection, and preparing the training data.

Transformations: parametrization and loss. Implementing (4) requires parametrizing
the transformation ¢(x) € H predicted by the regressor. In the most general case of
interest here, H = A(2) are affine transformations and the simplest approach is to
output the corresponding matrix of coefficients:

= |Gy b'u Do

0 01

- [p2

Here p can be interpreted as the feature center and a and b as the feature affine shape.
By rearranging the terms in (2), the loss function in (4) takes the form

d*(r,1) = min lg6(x) — (9%)a, (15)
where || - || 7 is the Frobenius norm. As seen before, the complementary transformation

q is often uniquely determined given g and the minimization can be removed by sub-
stituting this fixed value for ¢. In practice, g and ¢ are also represented by matrices, as
described in Sect. 2.4.

* Concretely, from M>L = AM; the complement matrix L is given by the QR decomposition
of the r.h.s. which is a function of M3, i.e. not unique.
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Table 1: Network architectures. The DetNet-S and DetNet-L. CNN architectures used which con-
sist of a small number of convolutional layers applied densely and with no padding. The filter
sizes and number is specified in the top part of each cell. Filters are followed by ReLU layers
and, where indicated, by 2 x 2 max pooling and/or LRN.

Model Convl Conv2 Conv3 Conv4 Conv5 Conv6 Conv7
5xX5x40 5x5x 100 [4 x4 x300{1x1x500{1x1xb500[ 1x1x2
Pool | 2 Pool | 2
5X 5 X 60 5x5x150 [4x4Xx450{1x1x600{1x1x600{1x1x600{1x1x2
Pool | 2 |Pool | 2 +LRN

DetNet-S

DetNet-L

When the resolved transformations H are less general than affinities, the parametriza-
tion can be adjusted accordingly. For instance, for the basic detector of Sect. 2.1, where
H =T(2),oncanfixa = (1,0), b= (0,1),¢ = I and g = (I, T'), which reduces to
eq. (1). If, on the other hand, H = SO(2) are rotation matrices as for the orientation
detector (14),

1 Ay —0y 0
P(x) = ——— |a, a, Of. (16)

Va,+ai o o 1

Network architectures. One of the benefits of our approach is that it allows to use deep
neural networks in order to implement the feature regressor ¢(x). Here we experiment
with two such architectures, DetNet-S and DetNet-L, summarized in Tab. 1. For fast de-
tection, these resemble the compact LeNet model of [15]. The main difference between
the two is the number of layers and filters. The loss (15) is differentiable and easily
implemented in a network loss layer. Note that the loss requires evaluating the network
¢ twice, once applied to image x and once to image gx. Like in siamese architectures,
these can be thought of as two networks with shared weights.

When implemented in a standard CNN toolbox (in our case in MatConvNet [43]),
multiple patch pairs are processed in parallel by a single CNN execution in what is
known as a minibatch. In practice, the operations in (15) can be implemented using
off-the-shelf CNN components. For example, the multiplication by the affine transfor-
mation g in (15), which depends on which pair of images in the batch is considered,
can be implemented by using convolution routines, 1 x 1 filters, and so called “filter
groups”.

From local regression to global detection. The formulation (4) learns a function ) that
maps an image patch x to a single detected feature f = ¢ (x). In order to detect multiple
features in a larger image, the function ¢ is simply applied convolutionally at all image
locations (Fig. 1). Then, due to covariance, partially overlapping patches x that contain
the same feature are mapped by v to the same detection f. Such duplicate detections
are collapsed and their number, which reflects the stability of the feature, is used as
detection confidence.

For point features (G = T'(2)), this voting process is implemented efficiently by
accumulating votes in a map containing one bin for each pixel in the input image. Votes
are accumulated using bilinear interpolation, after which non-maxima suppression is
applied with aradius of two pixels. This scheme can be easily extended to more complex
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Fig. 4: Training and validation patches. Example of training triplets (x1,x2, g) (x1 above and
X2 = gxi below) for different detectors. The figure also shows “easy” and “hard” patch pairs,
extracted from the validation set based on the value of the loss (16). The crosses and bars represent
respectively the detected translation and orientation, as learned by DETNET-L and ROTNET-L.

features, particularly under the reasonable assumption that only one feature is detected
at each image location.

Note that some patches may in practice contain two or more clearly visible feature
anchors. The detector 1 must then decide which one to select. This is not a significant
limitation at test time (as the missed anchors would likely be selected by a translated
application of v). Its effect at training time is discussed later.

Efficient dense evaluation. As most CNNs, architectures DetNet-S and DetNet-L rapidly
downsample their input for efficiency. In order to perform dense feature detection, the
easiest approach is to reapply the CNNs to slightly shifted versions of the image, fill-
ing the “holes” left in the downsampled output. An equivalent but much more efficient
method, which reuses significant computations in the denser early layers of the network,
is the a trous algorithm [21,26].

We propose here an algorithm equivalent to a trous which is just as efficient and
more easily implemented. Given a CNN layer x; = ¢;(x;_1) that downsamples the
input tensor x;_1 by a factor of, say, two, the downsampling factor is changed to one,
and the now larger output x; is split into four parts xl(k), k = 1,...,4. Each part is
obtained by downsampling x; after shifting it by zero or one pixels in the horizontal
and vertical directions (for a total of four combinations). Then the deeper layers of the
networks are computed as usual on the four parts independently. The construction is
repeated whenever downsampling needs to be performed.
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Detection speed can be improved with evaluating the regressor with stride 2 (at
every second pixel). We refer to these detector as DETNETS2. Source code and the
DETNETmodels are freely available”.

Training data. Training images are obtained from the ImageNet ILSVRC 2012 training
data [33], extracting twenty random 57 X 57 crops per image, for up to 6M crops.
Uniform crops are discarded since they clearly cannot contain any useful anchor. To
do so, the absolute response of a LoG filter of variance o = 2.5 is averaged and the
crop is retained if the response is greater than 1.5 (image intensities are in the range
[0, 255]). Note that, combined with random selection, this operation does not center
crops on blobs or any other pre-defined anchors, but simply discards uniform or very
low contrast crops.

Recall that the formulation Sect. 2.2 requires triplets (x1,X2, g). A triplet is gen-
erated by randomly picking a crop and then by extracting 28 x 28 patches x; and x»
within 20 pixels of the crop center (Fig. 4). This samples two patches related by trans-
lation, corresponding to the translation sampled in g, while guaranteeing that patches
overlap by least 27%. Then the linear part of g is sampled at random and used to warp X2
around its center. In order too achieve better robustness to photometric transformations,
additive (+8% of the intensity range) and multiplicative (£40% of a pixel intensity) is
added to the pixels .

Training uses batches of 64 patch pairs. An epoch contains 40 - 103 pairs, and the
data is resampled after each epoch completes. The learning rate is set to A = 0.01
and decreased tenfold when the validation error stops decreasing. Usually, training con-
verges after 60 epochs, which, due to the small size of the network and input patches,
takes no more than a couple of minutes on a GPU.

4 Experiments

We apply our framework to learn two complementary types of detectors in order to
illustrate the flexibility of the approach: a corner detector (Sect. 4.1) and an orientation
detector (Sect. 4.2).

Evaluation benchmark and metrics. We compare the learned detectors to standard ones:
FAST [31,30] (using OpenCV’s implementation®), the Difference of Gaussian detector
(DoG) or SIFT [20], the Harris corner point detector [1 1] and Hessian point detector
[24] (all using VLFeat’s implementation’). All experiments are performed at a single
scale, but all detectors can be applied to a scale space pyramid if needed.

For evaluation of the corner detector, we use the standard VGG-Affine benchmark
dataset [24], using both the repeatability and matching score criteria. For matching
score, SIFT descriptors are extracted from a fixed region of 41 x 41 pixels around each
corner. A second limitation in the original protocol of [24] is that repeatability can be
made arbitrarily large simply by detecting enough features. Thus, in order to control

>https://github.com/lenck/ddet

6 opencv.org

7www.vlfeat.org
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Fig.5: Repeatability on the DTU Dataset averaged over all 60 scenes, divided by arc. Repeata-
bility is computed over the top 600 detections for each detector.

for the number of features detected, we compute repeatability and matching score as
the feature detection threshold is increased; we then plot the metrics as functions of the
number of feature selected in the first image.

VGG-Affine contains scenes related by homography. We also consider the more
recent DTU-Robots dataset [1] that contains 3D objects under changing viewpoint.
Matches in DTU dataset are estimated using the known 3D shape of the objects and po-
sition of the camera. The data is divided in three “arcs”, corresponding to three swipes
of the robotic camera at different distances from the scene (0.5, 0.65, and 0.8m respec-
tively). Due to the large number of images in this dataset, only aggregated results for
n = 600 are reported.

4.1 Corner or translation detector

In this section we train a “corner detector” network DETNET. Using the formalism of
Sect. 2, this is a detector which is covariant with translations G = T'(2), corresponding
to the covariance constraint of eq. (1). Fig. 4 provides a few examples of the patches
used for training, as well as of the anchors discovered by learning.

Fig. 5 reports the performance of the two versions of DETNET, small and large, on
the DTU data. As noted in [1], the Harris corner detector performs very well on the first
arc; however, on the other two arcs DETNET-L clearly outperforms the other methods,
whereas DETNET-S is on par or a little better than standard detectors.

Fig. 6 evaluates the method on the VGG-Affine dataset. Here the learned networks
perform generally well too, outperforming existing detectors in some scenarios and
performing less well on others. Note that our current implementation is the simplest
possible and the very first of its kind; in the future more refined setups may improve the
learned detectors across the board (Sect. 5).

The speed of the tested detectors is shown in Table 2. While our goal is not to
obtain the fastest detector but rather to demonstrate the possibility of learning detectors
from scratch, we note that even an unoptimised MATLAB implementation can achieve
reasonable performance on a GPU, especially with stride 2 with a slightly decreased
performance compared to the dense evaluation (see Figure 6).
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Table 2: The detection speed (in FPS) for different image sizes of all tested detectors, computed
as an average over 10 measurements. Please not that the DETNETdetectors run on a GPU, other
detectors run on a CPU.

DETNET-L DETNET-L S2|DETNET-S DETNET-S S2| Harris DoG Hessian FAST

320 x 240 9.16 33.14 27.26 83.16(144.39 88.64 150.34 439.68

800 x 600 1.45 5.87 4.68 19.32] 15.65 8.00 17.45 328.20

1024 x 768 0.39 1.56 2.78 11.68| 12.21 6.05 11.17 206.96
Wall (Viewpoint) Graf (Viewpoint) Bikes (Light) Boat (Rot.+Scale) Leuven (Blur)

Repeatability

Matchinh Sc.

0 0 0 0
100 860 1,620 100 860 1,620 100 860 1,620 100 860 1,620 100 860 1,620

Num. Features Num. Features Num. Features Num. Features Num. Features

—u— DetNet-L = « = DetNet-L S2 —w— DetNet-S = « = DetNet-S S2
DoG —uw— Harris —uw— Hessian FAST

Fig. 6: Repeatability and matching score on VGG dataset comparing two versions of DetNet and
standard detectors controlled for an increasing number of detected features. Dashed line values
are for DetNet with stride 2. Scores are computed as an average over all 5 transformed images
for each set (e.g. “wall”).

4.2 Orientation detector

This section evaluates a network, ROTNET, trained for orientation detection. This de-
tector resolves H = SO(2) rotations and is covariant to Euclidean transformations
G = SE(2), which means that translations ) = T'(2) are nuisance factor that the de-
tector should ignore. The corresponding form of the covariance constraint is given by
eq. (14). Training proceeds as above, using 28 x 28 pixels patches and, for g, random 27
rotations composed with a maximum nuisance translation of 0, 3, or 6 pixels, resulting
in three different versions of the network (Fig. 4).

The SIFT detector [20] contains both a blob detector as well as an orientation de-
tector, based on determining the dominant gradient orientation in the patch. Fig. 7 com-
pares the average angular registration error obtained by the SIFT orientation detector
and different versions of ROTNET, measured from pairs of randomly-sampled image
patches. We note that: 1) ROTNETis sensibly better than the SIFT orientation detector,
with up to half the error rate, and that 2) while the error increases with the maximum



=
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—— RN+TR6

- —— SIFT Matching score (%)

75 -4 RN graf|boat|bark| bikes|leuven
| SIFT 68.0173.7175.3| 81.8 | 85.2
— RN+TR3
B + ROTNET-L|67.3|74.3|81.1| 83.0| 85.2

Avg. Angle error [deg]
3

O‘\\ww‘

Max Displacement [px]

Fig. 7: Orientation detector evaluation. Left: versions of ROTNET(RN) and the SIFT orientation
detector evaluated on recovering the relative rotation of random patch pairs. Right: matching
score on the VGG-Affine benchmark when the native SIFT orientation estimation is replaced
with ROTNET(percentage of correct matches using the DoG-Affine detector).

nuisance translation between patches, networks that are trained to account for such
translations are sensibly better than the ones that do not. Furthermore, when applied to
the output of the SIFT blob detector, the improved orientation estimation results in an
improved feature matching score, as measured on the VGG-Affine benchmark.

5 Discussion

We have presented the first general machine learning formulation for covariant feature
detectors. The latter is supported by a comprehensive theory of covariant detectors, and
builds on the idea of casting detection as a regression problem. We have shown that this
method can successfully learn corner and orientation detectors that outperform in sev-
eral cases off-the-shelf detectors. The potential is significant; for example, the frame-
work can be used to learn scale selection and affine adaptation CNNs. Furthermore,
many significant improvements to our basic implementation are possible, including ex-
plicitly modelling detection strength/confidence, predicting multiple features in a patch,
and jointly training detectors and descriptors.

Acknowledgements We would like to thank ERC 677195-IDIU for supporting this
research.

A Proofs

Proof (of Proposition ). Due to group closure, gh; € G. Since HQ) = G, then there
must be hy € H,q € Q such that hag = ghy, and so hoghy 'g~" = 1.

Proof (of Proposition 2). Let hoq(hy)~! = hbq'(h})~! be two such decompositions
and multiply to the left by (q)~*(h%)~! and to the right by h/}:

q " [(hy) thal g bRy =g
—_——— —— ——~
€ H (due to normality) €H €Q

Since this quantity is simultaneously in H and in @), it must be in the intersection H NQ),
which by hypothesis contains only the identity. Hence ¢ '¢' = 1 and ¢ = ¢'.
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