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Abstract. This paper proposes a novel method for robust 3D object
tracking from a monocular RGB image when an object model is available.
The proposed method is based on direct image alignment between con-
secutive frames over a 3D target object. Unlike conventional direct meth-
ods that only rely on image intensity, we newly model intensity variations
using the surface normal of the object under the Lambertian assumption.
From the prediction about image intensity in this model, we also employ
a constrained objective function, which significantly alleviates degrada-
tion of the tracking performance. In experiments, we evaluate our method
using datasets that consist of test sequences under challenging conditions,
and demonstrate its benefits compared to other methods.

Keywords: Pose estimation · Object tracking · Model-based · Direct
image alignment · Motion model

1 Introduction

3D tracking (or 6D pose estimation) of target objects is a crucial issue in com-
puter vision, robotics, and augmented reality. Over the last decade, numerous
methods have been proposed and successfully demonstrated for 3D object track-
ing. Despite that, achieving accurate, robust, and fast tracking is still challenging
in everyday environments where there exists a large range of 3D objects under
various backgrounds, illuminations, occlusions, and motions.

In early methods, feature points have prominently been used to handle pose
estimation problems of 2D/3D objects [27,30], but such feature-based methods
require that the objects have sufficient texture on their surfaces. For poorly tex-
tured 3D objects, strong edges have been popular and are still promising in many
industrial applications [7,11]. However, they are often troublesome against heavy
background clutter due to the nature of edge property. As recent RGBD cam-
eras enable to obtain more dense information about 3D scenes including objects,
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Fig. 1. Tracking results using the proposed method under challenging conditions (green
lines visualize object models projected on images with estimated poses). (Color figure
online)

RGBD-based methods have been boosted to tackle challenging pose estimation
problems [15,18,29]. Nevertheless, RGBD cameras have several issues need to be
considered: depth information is quite noisy and only available within limited
ranges with material difficulties (such as specular and transparent materials).
Moreover, they are not commonly supported yet in real application domains,
compared to RGB cameras.

On the other hand, direct methods have been attractive because they allow
that rich information in an image can be contributed to pose estimation, instead
of being limited by local features [1,4,5,8,12]. In direct methods, the brightness
(intensity) constancy is commonly assumed, but it is often violated by inten-
sity variations, which are induced by illumination changes, surface reflectance
properties, or even changes in camera gain. In this paper, we propose a direct
method for robust 3D object tracking from a monocular RGB image when an
object model is available. In our method, we model intensity variations by deriv-
ing differential entities from image formation under the Lambertian assumption,
and define a compensation parameter using the surface normal of a 3D target
object. From the prediction about image intensity in this model, we also employ a
constrained objective function, resulting in suppressing the error accumulation
and converging with less iteration. In addition, we provide new datasets that
comprise challenging conditions such as partial occlusions, background clutters,
and illumination changes (see Fig. 3), in order to evaluate our method in an
intensive manner and explicitly demonstrate its advantages.

Our main contribution is a novel direct method based on an elaborate motion
model between consecutive frames over a 3D target object, leading to robust
3D object tracking as shown in Fig. 1. Here, we clarify that this paper focuses
on robust frame-to-frame pose estimation when an initial pose is only given
without preparing or training a set of reference images; thus, the initialization
(or reinitialization) issue is out of scope in this paper, and if available, its relevant
methods can be combined with the proposed method.



A Direct Method for Robust Model-Based 3D Object Tracking 553

2 Related Work

In the literature, lots of methods have been proposed for dealing with 6D pose
estimation problems. As more relevant works in our interest, we briefly highlight
model-based approaches for 3D object tracking in a monocular RGB view where
3D knowledge of a target object, such as a 3D model or a set of registered
patches, is known as a prior.1

In a typical way of model-based approaches, the pose estimation is performed
by establishing 3D-2D correspondences between 3D knowledge and 2D observa-
tion in an image (such as feature points [27,30] or edges [7,11]); thus, most of
methods in this manner highly depend on how to extract and match distinctive
local features, which are not trivial tasks under challenging conditions.

Region-based methods have been of interest in terms of 6D pose estima-
tion. In particular, level set based segmentation methods have successfully been
demonstrated for 3D object tracking [9,24]. These methods follow a general
statistical representation of a level set function and evolve a contour of a 3D
model over a camera pose, without considering the correspondence problem. In
principle, however, such region segmentation requires intensive tasks because
the contour is evolved in an infinite-dimensional space, and it is also difficult to
guarantee good segmentation results according to scene complexity, even though
these issues have been improved [22,26].

To date, direct methods have actively been adopted for 2D object tracking.
Similar to region-based methods, direct methods exploit rich information in an
image instead of local features, but they directly align image intensity with one
of registered templates. As a pioneer work, the Lucas and Kanade framework [19]
has played a prominent role and has brought about many variants with improve-
ments; for example, efficient optimization algorithms [1,4] or robust similarity
measures [10,16,23,25]. With the availability of 3D knowledge of a target object,
direct methods have also successfully been applied for 3D object tracking [5,8].

Even though direct methods have been promising for pose estimation, its
underlying assumption (i.e., brightness constancy) is often violated by intensity
variations. To tackle such errors, intensity variations have been modeled not only
in a typical form, represented by a multiplicative term [32], an additive term [6],
or both terms [2,17,20], but also in a more generalized framework, described
by complex physical processes [14]. In an alternative way, direct methods have
also employed learning-based approaches to handle 3D objects with complex
shapes as well as challenging conditions such as illumination changes and occlu-
sions [21,28], but they require computationally demanding training stages with
a significant number of data, which are quite cumbersome in practice.

1 In model-based approaches, simultaneous localization and mapping-based methods
can be considered for pose estimation in unknown 3D environments, but they are
not suitable for 3D object tracking that aims at estimating poses relative to target
objects; thus, we do not detail methods in this category.
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3 Proposed Method

We start by briefly defining fundamental relations between consecutive frames
over a 3D target object under a camera motion in Sect. 3.1. The proposed method
is then detailed in Sect. 3.2 (modeling intensity variations) through Sect. 3.3
(objective function and optimization).

3.1 Motion Model Between Consecutive Frames

Consider a camera is moving relative to a 3D target object as shown in Fig. 2.
Under the perspective projection Π, the 3D point on the object surface in the
camera coordinate system sC = (XC , Y C , ZC)� is mapped to the 2D point on
the image plane u = (u, v)�:

u = Π(sC) =
(

XCfu

ZC + u0,
Y Cfv

ZC + v0

)�
, (1)

where (fu, fv) are the focal lengths of the camera, and (u0, v0) are the principal
points of the camera. Under the rigid body transformation G ∈ SE(3), the sC

is transformed from the 3D point on the object surface in the world coordinate
system sO:

u = Π(G(sO; ξ)) with ξ = (ω�, τ�)�, (2)

where ξ is the parameter associated with the Lie algebra se(3)2, described by
the translational velocity ω and the rotational velocity τ . In a monocular RGB
view, the sO is in general unknown, but it can be determined when the object
model mO is given; thus, Eq. (2) can be rewritten as

u = Π(G(sO → mO(u); ξ)) with mO(u) = G−1(Π−1(u, dC); ξ), (3)

Fig. 2. Illustration and notations of image information between consecutive frames
over a 3D target object under a camera motion.

2 Since the relation of the G to the camera pose is straightforward, this paper retains
the same notation ξ for the camera pose or motion.
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where dC is the depth buffer to be rendered using the object model with respect
to the ξ.

Under the camera motion between consecutive frames Δξ, on the other hand,
the 2D point on the image plane at time t is mapped to the corresponding 2D
point on the image plane at time t + 1, and it can be defined as the following
consistency constraint (under the brightness constancy assumption):

It+1(u + Δu) = It(u), (4)

where It(u) is the image intensity of the 2D point u at time t, and Δu is the
displacement of the point on the image plane. Since the Δu can be represented
by the Δξ from Eq. (2), it can also be redefined as a consistency constraint with
respect to the Δξ by coupling both of relations (Eqs. (3) and (4)):

It+1(Π(G(mO(u); ξ + Δξ))) = It(u). (5)

3.2 Modeling Intensity Variations

Assuming that a 3D target object is rigid and has a Lambertian surface; the
object is illuminated by a distant point light; and a camera undergoes a rigid
motion relative to the target object, the observed image intensity at a 2D point
u on the image plane is given by

I(u) = σ(s)n(s)�l, (6)

where σ is the surface albedo, n is the unit surface normal, l is the unknown
scaled light vector representing the light direction and intensity, and s is the
surface point corresponding to the u. For the differential change of the intensity,
we take the total derivative of the intensity with respect to t:

dI

dt
= (n�l)

dσ

dt
+ σ

d

dt
(n�l). (7)

Since the dσ
dt is an entity on the surface, it is constant over time, and the differ-

ential change of the intensity is then simplified to dI = σd(n�l). Therefore, the
intensity variations between consecutive frames ΔIt+1

t can be described by

ΔIt+1
t = σΔ(n�l)t+1

t = σ(n�
t+1lt+1 − n�

t lt)

= σ(n�
t lt)(κ − 1) = It(κ − 1),

(8)

where κ is the compensation parameter, given by κ = n�
t lt+1/n�

t lt under the
given object rigidity assumption (nt+1 = nt). Here the conventional brightness
constancy assumption is satisfied when κ = 1.

In general, the illumination is unknown, and its complete modeling is nearly
impossible. In this model, however, the κ can be estimated using the surface
normal of the object:

κ =
n�

t lt+1

n�
t lt

≈ E [It+1|nt]
E [It|nt]

, (9)
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where E [I|n] is the conditional expectation of I given n, modeled by the first-
order approximation of the radiance model from any Lambertian object under
the general distant light distribution [3]: I ≈ E [I|n] = σ(l0 +nxlx +nyly +nzlz),
where n = (nx, ny, nz)� and l = (lx, ly, lz)� are the surface normal and illumi-
nation vectors, and l0 is the additional offset. Here, the conditional expectation
is computed using the multivariate linear regression when the surface normal of
the object is given.

3.3 Objective Function and Optimization

In the proposed method, the 6D pose estimation is formulated by the minimiza-
tion of an objective function, including an error term and a stability term. By
combining Eqs. (5) and (8), the error term eI(u; ξ) is defined as

eI(u; ξ) = It+1(Π(G(mO(u); ξ))) − κIt(u). (10)

From the prediction about image intensity in Eq. (9), on the other hand, it follows
that, for any function Θ of n,

E [(I − Θ(n))2] = E [(I − E [I|n] + E [I|n] − Θ(n))2]

= E [(I − E [I|n])2] + E [(E [I|n] − Θ(n))2]

≥ E [(I − E [I|n])2],

(11)

where the cross term is zero, so that we define the stability term eS(u; ξ) as
follows:

eS(u; ξ) = It+1(Π(G(mO(u); ξ))) − E [It|n](u). (12)

Therefore, the minimization becomes

min
ξ

∑
u∈R

ψ
(
eI(u; ξ)2 + γ(κ)eS(u; ξ)2

)
, (13)

where Ψ(·) is the robust estimator to penalize outliers, γ(κ) is the weight function
to balance both of terms, and R is the object region where the depth information
is available. For robust estimation, we adopt the Charbonnier penalty function:
ψ(e) = (e2 + ε2)0.5. For balancing the weight, we define an exponential decay
function: γ(κ) = exp(−λ|κ − 1|), where λ is the constant.

For optimization, the minimization can be linearized using the first-order
Taylor series expansion under a small camera motion δξ. In the form of Eqs. (10)
and (12), moreover, efficient optimization algorithms [1] can be applied with less
modification because the Π(G(·)) can be considered as a family of warps (i.e.,
a warp between image planes over a 3D object). In the proposed method, we
adopt the forward compositional (FC) algorithm, which is efficiently compatible
with our objective function, and then the minimization is written as (under the
assumption that Π(G(mO(u); 0)) = u)

min
δξ

∑
u⊆R

ψ

(
||eI(u; ξ) + JT δξ||2 + γ(κ)||eS(u; ξ) + JT δξ||2

)
, (14)
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where JT is the chain of the Jacobian matrices, detailed by

∇It+1(Π(G(mO(u); ξ)))
∂Π(G(mO(u); ξ))

∂ξ

∣∣∣
ξ=0

. (15)

Here, pixels with small gradient are filtered out because they do not much con-
tribute to the optimization, and then remaining pixels are regularly sampled with
a grid (u ⊆ R). The final pose is therefore determined by iteratively updating
the latest pose with the estimated motion until the norm of the estimated para-
meters is small or the maximum number of iterations is reached.

4 Experiments

4.1 Details on Implementation

To handle large motions, we adopted a multiscale strategy. In our implementa-
tion, we used four levels (the image resolution at the finest level was 640 × 480),
and each level was downsampled by a factor of two with a Gaussian smoothing
(5 × 5 kernel) and a bilinear interpolation. The depth and surface normal infor-
mation were not scaled down to avoid interpolation across boundaries, but they
were directly interpolated from ones at the finest level. The optimization was
started at the coarsest level, and the estimated pose was used as the initial pose
for the next fine level. The pixel filtering and sampling were only performed at the
finest level. For all evaluations, several parameters were set: λ = 1.0, ε = 0.001,
the minimum magnitude of the gradient = 0.1, the grid interval = 4 pixels, the
minimum norm of the estimated parameters = 10e-6, and the maximum number
of iterations = 200. Here, the grid interval was adaptively set (with an increment
or decrement of one pixel) relative to the object area, which is changed accord-
ing to the distance between the camera and object. In addition, several steps to
acquire information, such as depth, surface normal, object silhouette, and image
gradient, were implemented using the rendering pipeline of a GPU.

4.2 Datasets

For intensive evaluations, we created new datasets that provide test sequences
(RGB images), ground truth poses, camera intrinsic parameters, and 3D object
models. As target objects, we chose two 3D objects (Gear and Wheel) that
have complex shapes and no texture, rather than other objects that have com-
mon shapes (like a box or cup) and/or sufficient texture. For their 3D models,
wireframe models were prepared without texture maps. Test sequences were
captured with various camera motions under three different conditions such as
controlled scene (Seq1), partial occlusions and background clutters (Seq2), and
illumination changes (Seq3). For obtaining ground truth poses, each object was
manually registered on multiple ARUCO markers [13]. Prior to capturing test
sequences, the camera (standard USB RGB camera) was calibrated once. Auto-
matic camera settings related to exposure time, gain, and white balance were not
controlled during the capturing, except for an automatic focus. Figure 3 shows
examples of test sequences in our datasets.
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Fig. 3. Examples of test sequences in our datasets: (Top-Row) Gear-Seq1, Seq2, Seq3,
(Bottom-Row) Wheel-Seq1, Seq2, Seq3.

4.3 Evaluations and Comparisons

We evaluated our method with several different methods, which can be derived
from both terms in our objective function, in order to validate its benefits:

– BCC (κ = 1 and γ(κ) = 0): An objective function has a single error term
based on the brightness consistency constraint.

– BCC+S (κ = 1 and γ(κ) = 1): An objective function has an error term based
on the brightness consistency constraint and a stability term, where both terms
are equally weighted.

– Ours (κ and γ(κ) are estimated): An objective function has an error term,
compensated by the κ and a stability term, weighted by the γ(κ).

Here, these methods were tested in combination with the FC algorithm and the
efficient second order minimization (ESM) algorithm [4] as well, wheter a better
convergence rate can be expected. We also compared our method with edge-
based tracking using a Gaussian mixture model (EBT-GM) [31], which is one of
promising approaches in model-based 3D object tracking. Note that, in all tests,
the initial poses were set with the ground truth poses.

For evaluations, we computed the average distance (AD) of all model points
transformed with the estimated pose and the ground truth pose, which was
defined in [15]. In this metric, we decided that the estimated pose was correct
when the average distance was below 10 % of the object model diameter and
calculated the success rate. To detail error profiles, we also computed the dis-
tances of rotation and translation parameters between the estimated pose and
the ground truth pose. In addition, we computed the average processing times
and the average iteration numbers in each case to examine the runtime perfor-
mance and computational efficiency.

Table 1 summarizes results of our evaluations. Overall, the proposed method
consistently performed well in every case. In particular, it outperformed other
methods on challenging scenes (Seq2 and Seq3). The BCCs were often drifted
and unstable due to the error accumulation (some details are shown by error
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Table 1. Evaluation results: (First Rows) success rates based on the AD criterion [15]
and (Second Rows) average processing times (ms) (the highest scores in the success
rates are bold; asterisks denote that the tracking totally failed from certain sequences;
and numbers in parentheses indicate the total numbers of test sequences).

Method Gear Wheel Average

Seq1 Seq2 Seq3 Seq1 Seq2 Seq3

(850) (934) (1046) (811) (981) (941)

BCC(FC) 0.701 0.320 0.165 0.459 0.235 0.180∗ 0.344

32.74 32.49 34.77 32.49 32.51 33.51 33.08

BCC(ESM) 0.611 0.338 0.079 0.859 0.411 0.054 0.392

33.43 30.41 32.86 32.73 32.42 37.07 33.15

BCC+S(FC) 0.961 0.916 0.155∗ 1.000 0.919 0.410∗ 0.727

30.86 29.06 34.10 30.55 30.27 31.98 31.14

Ours(FC) 0.962 0.919 0.992 1.000 0.920 1.000 0.966

46.28 41.00 49.11 44.20 44.44 46.43 45.24

Ours(ESM) 0.974 0.941 0.999 1.000 0.955 0.868 0.956

41.90 38.07 45.09 39.88 37.30 42.71 40.83

EBT-GM [31] 0.981 0.027∗ 0.770∗ 0.352∗ 0.004∗ 0.191∗ 0.388

23.23 44.02 22.05 44.00 61.13 40.15 39.10
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Fig. 4. (Left) Error profiles of BCC(FC) and Ours(FC) in Gear-Seq2, (Right) Aver-
age iteration numbers (asterisks denote that the tracking totally failed from certain
sequences).

profiles in Fig. 4-(Left)). The EBT-GM was very sensitive to partial occlusions,
background clutters, and even object clutters (e.g., which are caused by near
edges in thin parts of the objects), so that in most of cases, it totally failed
from certain sequences. From results of the BCC+S, it was verified that both
of terms in our objective function contributed not only to significantly alleviate
degradation of the tracking performance, but also to provide a better conver-
gence rate (see Fig. 4-(Right)). Figures 5 and 6 show several comparison results
in Seq2 and Seq3, and more results are shown in a supplementary video. On the
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Fig. 5. Comparisons of (green lines) Ours(FC) and (yellow lines) BCC(FC) in (Left to
Right) Gear-Seq2, Seq3 and Wheel-Seq2, Seq3 (numbers with hashtags indicate test
sequence numbers, and color lines visualize object models projected on images with
estimated poses). (Color figure online)

Fig. 6. Comparisons of (green lines) Ours(FC) and (red lines) EBT-GM in (Left to
Right) Gear-Seq2, Seq3 and Wheel-Seq2, Seq3 (numbers with hashtags indicate test
sequence numbers, and color lines visualize object models projected on images with
estimated poses). (Color figure online)

other hand, the proposed method relatively needed more computations, but the
average processing times were fairly acceptable for real-time applications (about
20–24 fps on a desktop with a 2.93 GHz CPU). Moreover, our implementation
was not fully optimized and can be improved for more speed-up; for example,
pixel-wise computations can obviously be parallelized using a GPU.

5 Conclusion

This paper proposed a new direct method for robust 3D object tracking. In
our method, the image alignment was newly formulated by modeling intensity
variations using surface normal information of an object and defining a stability
term based on the prediction model about image intensity. Experimental results
showed that our method successfully performed even on challenging scenes.
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In this paper, we focused on 6D pose estimation of a single 3D object instance
in a monocular RGB view, but it would be very interesting to explore further
improvements and extensions of our method.

Acknowledgements. This work was carried out during the tenure of an ERCIM
‘Alain Bensoussan’ Fellowship Programme.
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