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Abstract. This paper explores the capabilities of convolutional neural
networks to deal with a task that is easily manageable for humans: per-
ceiving 3D pose of a human body from varying angles. However, in our
approach, we are restricted to using a monocular vision system. For this
purpose, we apply a convolutional neural network approach on RGB
videos and extend it to three dimensional convolutions. This is done via
encoding the time dimension in videos as the 3'¢ dimension in convolu-
tional space, and directly regressing to human body joint positions in 3D
coordinate space. This research shows the ability of such a network to
achieve state-of-the-art performance on the selected Human3.6M dataset,
thus demonstrating the possibility of successfully representing temporal
data with an additional dimension in the convolutional operation.

1 Introduction

From a psychological stand point, it has been argued that humans detect real-
world structures by detecting changes along physical dimensions (contrast val-
ues) and representing these changes (with respect to time) as relations (differ-
ences) along subjective dimensions [1]. More directly, it has been suggested that
the temporal dimension is necessary and is coupled with spatial dimensions in
human mental representations of the world [2]. This implies merit in incorporat-
ing time into a definition of structure from a computer vision modelling point of
view. This forms the inspiration for this work.

This work deals with a long-standing task in computer vision - human pose
modelling in 3D from monocular videos. The challenges of this task include
large variability in poses, movements, appearance and background, occlusions
and changes in illumination.

This paper proposes a method to estimate the body pose of a human (in
terms of body joint locations in 3D) from video capture using a single 2D monoc-
ular camera via a deep three dimensional convolutional neural network. The key
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idea behind this approach is that time, as a dimension, could be encoded as
the Z-dimension of 3D convolutional operation (where the other two X and Y
dimensions are along the height and width of the image). The hypothesis behind
this is that temporal information can be efficiently represented as an additional
dimension in deep convolutional neural networks (see [3,4] for a detailed descrip-
tion of 3D convolution). It is important to note here that no depth information
is provided to the network as input, and the system is expected to infer the
location of body joint positions in all three spatial dimensions only based on the
stream of 2D frames in the video. A more detailed and complete description of
this work can be found in [4].

Such a system can have applications in areas such as visual surveillance,
human action prediction, emotional state recognition, human-computer inter-
faces, video coding, ergonomics, video indexing and retrieval, etc.

2 Related Work

There have been a number of studies carried out in the human pose estimation
field using different generative and discriminative approaches. Most of the pub-
lished works deal with still single [5] or depth images [6]. Also, most often it
is attempting to estimate 2D full [7], upper body [8] or single [9] joint position
in the image plane. Additionally, many approaches incorporate 2D pose estima-
tions or features to retrieve 3D poses [10,11]. The work in [8] formulates 2D
pose estimation as a joint regression problem, using a conventional deep CNN
architecture. The predictions are further iteratively refined by analysing rele-
vant regions within the images in higher resolution. [12] introduces a heat-map
based approach, where a spatial pyramid input is used to generate a heat map
describing the spatial likelihood of joint positions. [13] presents an architecture
similar to [8], with a key difference being that multiple consecutive video frames
are encoded as separate colour channels in the input. Although this approach
appears similar to that of 3D CNNs, the key difference here is that this app-
roach enforces the Z dimension of the ‘3D’ kernel to be equal to the number of
channels. Therefore, the kernel has no space to convolve in this dimension. The
first architecture utilizing 3D CNNs was proposed in 2013 and applied to human
action recognition in [14]. As in our proposed work, the third spatial dimension
of the convolution operation is used to encode the time dimension on the video
stream. This work also utilizes recurrent neural networks to finally predict the
human action category. However, they do not explore the use of 3D CNNs for
predicting the precise locations of body joints. Recent methods tested on the
Human3.6M dataset include a discriminative approach to 3D human pose esti-
mation using spatiotemporal features (HOG-KDE) [15], as well as a 2D CNN
based 3D pose estimation framework (2DCNN-EM) [11]. However, one of the
drawbacks of these approaches is that they utilize a large number of frames in a
sequence comparing to our proposed 3D CNN method.

Our approach studies the suitability of using 3D convolutional networks for
the task of 3D pose estimation from 2D videos. To the extent of our knowl-
edge, this is the first work to do so. More fundamentally, this work explores the
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effects of processing spatio-temporal data using three dimensional convolutions,
where the temporal dimension in data is represented as a additional dimension
in convolutions.

3 Dataset

Human3.6M Dataset [16] is so far the largest publicly available motion capture
dataset. It consists of high resolution 50 Hz video sequences from 4 calibrated
cameras capturing 10 subjects performing 15 different actions (‘eating’, ‘pos-
ing’, etc.). 3D ground truth joint locations as well as bounding boxes of human
bodies are provided. Note that we consider videos from the 4 camera positions
independently, and do not combine them in any way. Our evaluation was done
on 17 core joints from the available 32 joint locations. For official testing, the
ground truth data for 3 subjects is withheld and used for results evaluation on
the server.

4 Method

4.1 Pre-processing

The original Human3.6M video frames are cropped using bounding box binary
masks and extended to the larger side to make the crop squared. Cropped images
are resized to 128 x 128 resolution (chosen arbitrarily). The results of cropping
can be seen in Fig. 1.

1000 px

1000 px

Fig. 1. Image pre-processing from 4 camera views capturing subject no. 1 performing
action ‘Directions’

Data Sampling. Due to the large amount of available data, limited memory
and time constrains, data sub-sampling is performed. One training data sample
is composed of 5 sequential colour images with resolution of 128 x 128. These
were sampled from the original video to obtain a frame-rate of 13 Hz. Random
selection was performed from every chosen training, validation and testing sub-
jects’ videos to ensure that all the possible poses are selected.
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Data Alignment. Ground truth joint positions were centered to the pelvis
bone position (first joint).

Contrast Normalization. To reduce the variability that DNN needs to
account for during training, global contrast normalization (GCN) was applied
to the network’s input data (per colour channel).

4.2 Deep 3D Convolutional Neural Network

The final model of network’s architecture was made up by starting with the small
basic network with only three hidden 3D convolutional layers and building it up
when testing with the small subset of data. Decisions on the construction parts
and hyper-parameter selection were made by analysing experimental results and
utilizing similar choices reported in related work reviewed in Sect.2. In this
network, all the activations are PReLUs [17] with p set to 0.01.

The following equation provides a mathematical expression of discrete con-
volution (denoted by *) applied to three dimensional data (X, of dimensions
m x n x 1), using three dimensional flipped kernels (K):

(K * X)i,j,k = Z Z Z Xi—m,j—n,k—le,n,l (1)
m n l

In our implementation, the stride is always equal to 1 and there is no zero-
padding performed. Experiments have been completed with different kernel sizes
and a number of convolutional layers in the network. The best performance was
achieved with 5 convolutional layers with kernel sizes 3 x 5 x 5,2 X 5 X b5,
1 x5x5,1x3x3and1 x 3 x 3 respectively. Max pooling is performed after
the first, second and fifth convolutional layers, and only on the image space with
the kernel of size 2 x 2 (and not on the third time dimension). In our proposed
architecture, the output of the last pooling layer is flattened to one dimensional
vector of size 9680 and then is fully connected to the output layer of size 255 (5
frames x 17 joints x 3 dimensions). Complete 3D CNN architecture is shown in

Fig. 2.
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Fig. 2. Proposed 3D CNN Architecture. Legend: C stands for convolutional layer, P
for pooling layer; kernel sizes are specified in parenthesis; second row shows the size of
corresponding layer’s output; images show slices of some 3D activation maps per layer.
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Training. The network was trained using mini-batch (of size 10) stochastic
gradient descent (with a learning rate of 10—5 and Nestrov momentum [18] of
0.9). Xavier initialization method [19] was used to set the initial weights, while
the biases in convolutional layers were set to zero. Due to the memory and time
limitations, the maximum number of batches used was 20,000 for training, 2,000
for validation and 2,000 for testing (approximately half of the available data).
The cost function to be minimized during training was chosen to be the mean per
joint position error (MPJPE) [16], which is the mean euclidean distance between
the true and predicted joint locations. This also serves as a good performance
measure during testing. Early stopping technique was used to avoid overfitting,
where the training was terminated when the performance on the validation set
stopped improving for 15 consecutive epochs.

4.3 Post-processing

The shape of the network output contains estimated 3D joint positions for 5
consecutive frames. During inference time, this makes it possible to feed each
video frames 5 times through the network at 5 different positions in the input
sequence. This gives us 5 outputs for each frame. In order to get a more robust
estimation, these overlapping outputs are averaged together.

5 Results

In Table1 the best results are compared with state-of-the-art reported on the
dataset website. All the numbers are MPJPEs in millimetres. It can be seen
that network performs better on 11 actions and the MPJPE is 11 % smaller
on average. However, the model performs worse on the actions where people
are sitting on the chair or on the ground showing difficulties to deal with body
part occlusions. Figure3 shows some selected examples of pose estimation by
the network. This could also be due to the fact that the temporal window of 5
frames is too short to capture these joint positions. Expanding the window or
incorporating recurrent neural networks in this architecture could handle this
better by capturing longer-term trajectories.

On further investigation, it was also found that the joint position of freely
moving upper body joints like hands were relatively poorly predicted. Coun-
tering this, a further improvement in performance was obtained by training a
separate network to estimate only the upper body joints, and merging the out-
puts together.

Unfortunately, the two most recent works in 3D pose estimation on the
Human3.6M dataset by [11,15] fail to report their scores on the official test sets,
thereby making it very hard to compare out works. However, they do report
average MPJPE scores of 124 [11] and 113 [15] on two male subjects (S9 and
S11, which are in our training set).

Additionally, a comparison was performed with a 2D convolution based model
with an otherwise identical architecture and training. It was found that our
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Fig. 3. Visualization of some good (left-half) and bad (right-half) 3D pose estimation
results.

3D CNN architecture outperforms this 2D CNN based network even without
the post-processing step, thereby suggesting that modelling temporal dynamics
improves 3D human pose estimation, perhaps due to inherent body-joint trajec-
tory tracking.

The average processing time per 5-frame sample during testing was about
1ms/13ms on a Nvidia GTX 1080 GPU/Intel Xeon E5 CPU, implying real-time
frame rates.

Table 1. Results comparing with the state-of-the-art (s.0.t.a) on the Human3.6M test
set. Legend: numbers denote MPJPE error in mm (less is better).

Action subset KDE [16](s.o.t.a) | 3DCNN (ours) | % Improvement
(ours over s.o.t.a)
Directions 117 91 A 22%
Discussion 108 89 A 18%
Eating 91 94 v-3%
Greeting 129 102 A21%
Phoning 104 105 v -1%
Posing 130 99 A 24%
Purchases 134 112 A16%
Sitting 135 151 v—-12%
Sitting down 200 239 v —20%
Smoking 117 109 A 7%
Taking Photo 195 151 A 23%
Waiting 132 106 A20%
Walking 115 101 A12%
Walking with Dog | 162 141 A 13%
Walking together |156 106 A32%
Average 133 119 A11%
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6 Conclusions

A discriminative 3D CNN model was implemented for the task of human pose
estimation in 3D coordinate space using 2D RGB video data. To the best of our
knowledge, this is the first attempt to utilize 3D convolutions for the formulated
task. It was shown that such a model can cope with 3D human pose estimation
in videos and outperform the existing methods on the Human3.6M dataset.
Proposed model was officially tested on dataset provider’s evaluation server and
compared with other reported results, which it could outperform with real-time
processing speeds. These results suggest that time can be successfully encoded
as an additional convolutional dimension for the task of modelling real world
objects from 2D sequence of images.

Future Work. There are a number of possible future work directions that can
extend this work: More hyper-parameter tuning and utilizing higher computa-
tional resources could possibly lead to more accurate estimations; testing model’s
capabilities on other available datasets; expanding the temporal window and/or
combining the proposed model with recurrent neural networks (known for their
ability to process temporal information).
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